• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- SpillPlacement.h - Optimal Spill Code Placement --------*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This analysis computes the optimal spill code placement between basic blocks.
11 //
12 // The runOnMachineFunction() method only precomputes some profiling information
13 // about the CFG. The real work is done by prepare(), addConstraints(), and
14 // finish() which are called by the register allocator.
15 //
16 // Given a variable that is live across multiple basic blocks, and given
17 // constraints on the basic blocks where the variable is live, determine which
18 // edge bundles should have the variable in a register and which edge bundles
19 // should have the variable in a stack slot.
20 //
21 // The returned bit vector can be used to place optimal spill code at basic
22 // block entries and exits. Spill code placement inside a basic block is not
23 // considered.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #ifndef LLVM_CODEGEN_SPILLPLACEMENT_H
28 #define LLVM_CODEGEN_SPILLPLACEMENT_H
29 
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/Support/BlockFrequency.h"
34 
35 namespace llvm {
36 
37 class BitVector;
38 class EdgeBundles;
39 class MachineBasicBlock;
40 class MachineLoopInfo;
41 
42 class SpillPlacement  : public MachineFunctionPass {
43   struct Node;
44   const MachineFunction *MF;
45   const EdgeBundles *bundles;
46   const MachineLoopInfo *loops;
47   Node *nodes;
48 
49   // Nodes that are active in the current computation. Owned by the prepare()
50   // caller.
51   BitVector *ActiveNodes;
52 
53   // Nodes with active links. Populated by scanActiveBundles.
54   SmallVector<unsigned, 8> Linked;
55 
56   // Nodes that went positive during the last call to scanActiveBundles or
57   // iterate.
58   SmallVector<unsigned, 8> RecentPositive;
59 
60   // Block frequencies are computed once. Indexed by block number.
61   SmallVector<BlockFrequency, 4> BlockFrequencies;
62 
63 public:
64   static char ID; // Pass identification, replacement for typeid.
65 
SpillPlacement()66   SpillPlacement() : MachineFunctionPass(ID), nodes(0) {}
~SpillPlacement()67   ~SpillPlacement() { releaseMemory(); }
68 
69   /// BorderConstraint - A basic block has separate constraints for entry and
70   /// exit.
71   enum BorderConstraint {
72     DontCare,  ///< Block doesn't care / variable not live.
73     PrefReg,   ///< Block entry/exit prefers a register.
74     PrefSpill, ///< Block entry/exit prefers a stack slot.
75     PrefBoth,  ///< Block entry prefers both register and stack.
76     MustSpill  ///< A register is impossible, variable must be spilled.
77   };
78 
79   /// BlockConstraint - Entry and exit constraints for a basic block.
80   struct BlockConstraint {
81     unsigned Number;            ///< Basic block number (from MBB::getNumber()).
82     BorderConstraint Entry : 8; ///< Constraint on block entry.
83     BorderConstraint Exit : 8;  ///< Constraint on block exit.
84 
85     /// True when this block changes the value of the live range. This means
86     /// the block has a non-PHI def.  When this is false, a live-in value on
87     /// the stack can be live-out on the stack without inserting a spill.
88     bool ChangesValue;
89   };
90 
91   /// prepare - Reset state and prepare for a new spill placement computation.
92   /// @param RegBundles Bit vector to receive the edge bundles where the
93   ///                   variable should be kept in a register. Each bit
94   ///                   corresponds to an edge bundle, a set bit means the
95   ///                   variable should be kept in a register through the
96   ///                   bundle. A clear bit means the variable should be
97   ///                   spilled. This vector is retained.
98   void prepare(BitVector &RegBundles);
99 
100   /// addConstraints - Add constraints and biases. This method may be called
101   /// more than once to accumulate constraints.
102   /// @param LiveBlocks Constraints for blocks that have the variable live in or
103   ///                   live out.
104   void addConstraints(ArrayRef<BlockConstraint> LiveBlocks);
105 
106   /// addPrefSpill - Add PrefSpill constraints to all blocks listed.  This is
107   /// equivalent to calling addConstraint with identical BlockConstraints with
108   /// Entry = Exit = PrefSpill, and ChangesValue = false.
109   ///
110   /// @param Blocks Array of block numbers that prefer to spill in and out.
111   /// @param Strong When true, double the negative bias for these blocks.
112   void addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong);
113 
114   /// addLinks - Add transparent blocks with the given numbers.
115   void addLinks(ArrayRef<unsigned> Links);
116 
117   /// scanActiveBundles - Perform an initial scan of all bundles activated by
118   /// addConstraints and addLinks, updating their state. Add all the bundles
119   /// that now prefer a register to RecentPositive.
120   /// Prepare internal data structures for iterate.
121   /// Return true is there are any positive nodes.
122   bool scanActiveBundles();
123 
124   /// iterate - Update the network iteratively until convergence, or new bundles
125   /// are found.
126   void iterate();
127 
128   /// getRecentPositive - Return an array of bundles that became positive during
129   /// the previous call to scanActiveBundles or iterate.
getRecentPositive()130   ArrayRef<unsigned> getRecentPositive() { return RecentPositive; }
131 
132   /// finish - Compute the optimal spill code placement given the
133   /// constraints. No MustSpill constraints will be violated, and the smallest
134   /// possible number of PrefX constraints will be violated, weighted by
135   /// expected execution frequencies.
136   /// The selected bundles are returned in the bitvector passed to prepare().
137   /// @return True if a perfect solution was found, allowing the variable to be
138   ///         in a register through all relevant bundles.
139   bool finish();
140 
141   /// getBlockFrequency - Return the estimated block execution frequency per
142   /// function invocation.
getBlockFrequency(unsigned Number)143   BlockFrequency getBlockFrequency(unsigned Number) const {
144     return BlockFrequencies[Number];
145   }
146 
147 private:
148   virtual bool runOnMachineFunction(MachineFunction&);
149   virtual void getAnalysisUsage(AnalysisUsage&) const;
150   virtual void releaseMemory();
151 
152   void activate(unsigned);
153 };
154 
155 } // end namespace llvm
156 
157 #endif
158