1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a MachineCodeEmitter object that is used by the JIT to
11 // write machine code to memory and remember where relocatable values are.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "jit"
16 #include "JIT.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/OwningPtr.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/ValueMap.h"
23 #include "llvm/CodeGen/JITCodeEmitter.h"
24 #include "llvm/CodeGen/MachineCodeInfo.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRelocation.h"
30 #include "llvm/DebugInfo.h"
31 #include "llvm/ExecutionEngine/GenericValue.h"
32 #include "llvm/ExecutionEngine/JITEventListener.h"
33 #include "llvm/ExecutionEngine/JITMemoryManager.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/Disassembler.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/ManagedStatic.h"
42 #include "llvm/Support/Memory.h"
43 #include "llvm/Support/MutexGuard.h"
44 #include "llvm/Support/ValueHandle.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetJITInfo.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include <algorithm>
51 #ifndef NDEBUG
52 #include <iomanip>
53 #endif
54 using namespace llvm;
55
56 STATISTIC(NumBytes, "Number of bytes of machine code compiled");
57 STATISTIC(NumRelos, "Number of relocations applied");
58 STATISTIC(NumRetries, "Number of retries with more memory");
59
60
61 // A declaration may stop being a declaration once it's fully read from bitcode.
62 // This function returns true if F is fully read and is still a declaration.
isNonGhostDeclaration(const Function * F)63 static bool isNonGhostDeclaration(const Function *F) {
64 return F->isDeclaration() && !F->isMaterializable();
65 }
66
67 //===----------------------------------------------------------------------===//
68 // JIT lazy compilation code.
69 //
70 namespace {
71 class JITEmitter;
72 class JITResolverState;
73
74 template<typename ValueTy>
75 struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
76 typedef JITResolverState *ExtraData;
onRAUW__anona95759ac0111::NoRAUWValueMapConfig77 static void onRAUW(JITResolverState *, Value *Old, Value *New) {
78 llvm_unreachable("The JIT doesn't know how to handle a"
79 " RAUW on a value it has emitted.");
80 }
81 };
82
83 struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
84 typedef JITResolverState *ExtraData;
85 static void onDelete(JITResolverState *JRS, Function *F);
86 };
87
88 class JITResolverState {
89 public:
90 typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
91 FunctionToLazyStubMapTy;
92 typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
93 typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
94 CallSiteValueMapConfig> FunctionToCallSitesMapTy;
95 typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
96 private:
97 /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
98 /// particular function so that we can reuse them if necessary.
99 FunctionToLazyStubMapTy FunctionToLazyStubMap;
100
101 /// CallSiteToFunctionMap - Keep track of the function that each lazy call
102 /// site corresponds to, and vice versa.
103 CallSiteToFunctionMapTy CallSiteToFunctionMap;
104 FunctionToCallSitesMapTy FunctionToCallSitesMap;
105
106 /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
107 /// particular GlobalVariable so that we can reuse them if necessary.
108 GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
109
110 #ifndef NDEBUG
111 /// Instance of the JIT this ResolverState serves.
112 JIT *TheJIT;
113 #endif
114
115 public:
JITResolverState(JIT * jit)116 JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
117 FunctionToCallSitesMap(this) {
118 #ifndef NDEBUG
119 TheJIT = jit;
120 #endif
121 }
122
getFunctionToLazyStubMap(const MutexGuard & locked)123 FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
124 const MutexGuard& locked) {
125 assert(locked.holds(TheJIT->lock));
126 return FunctionToLazyStubMap;
127 }
128
getGlobalToIndirectSymMap(const MutexGuard & lck)129 GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) {
130 assert(lck.holds(TheJIT->lock));
131 return GlobalToIndirectSymMap;
132 }
133
LookupFunctionFromCallSite(const MutexGuard & locked,void * CallSite) const134 std::pair<void *, Function *> LookupFunctionFromCallSite(
135 const MutexGuard &locked, void *CallSite) const {
136 assert(locked.holds(TheJIT->lock));
137
138 // The address given to us for the stub may not be exactly right, it
139 // might be a little bit after the stub. As such, use upper_bound to
140 // find it.
141 CallSiteToFunctionMapTy::const_iterator I =
142 CallSiteToFunctionMap.upper_bound(CallSite);
143 assert(I != CallSiteToFunctionMap.begin() &&
144 "This is not a known call site!");
145 --I;
146 return *I;
147 }
148
AddCallSite(const MutexGuard & locked,void * CallSite,Function * F)149 void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
150 assert(locked.holds(TheJIT->lock));
151
152 bool Inserted = CallSiteToFunctionMap.insert(
153 std::make_pair(CallSite, F)).second;
154 (void)Inserted;
155 assert(Inserted && "Pair was already in CallSiteToFunctionMap");
156 FunctionToCallSitesMap[F].insert(CallSite);
157 }
158
159 void EraseAllCallSitesForPrelocked(Function *F);
160
161 // Erases _all_ call sites regardless of their function. This is used to
162 // unregister the stub addresses from the StubToResolverMap in
163 // ~JITResolver().
164 void EraseAllCallSitesPrelocked();
165 };
166
167 /// JITResolver - Keep track of, and resolve, call sites for functions that
168 /// have not yet been compiled.
169 class JITResolver {
170 typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
171 typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
172 typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
173
174 /// LazyResolverFn - The target lazy resolver function that we actually
175 /// rewrite instructions to use.
176 TargetJITInfo::LazyResolverFn LazyResolverFn;
177
178 JITResolverState state;
179
180 /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
181 /// for external functions. TODO: Of course, external functions don't need
182 /// a lazy stub. It's actually here to make it more likely that far calls
183 /// succeed, but no single stub can guarantee that. I'll remove this in a
184 /// subsequent checkin when I actually fix far calls.
185 std::map<void*, void*> ExternalFnToStubMap;
186
187 /// revGOTMap - map addresses to indexes in the GOT
188 std::map<void*, unsigned> revGOTMap;
189 unsigned nextGOTIndex;
190
191 JITEmitter &JE;
192
193 /// Instance of JIT corresponding to this Resolver.
194 JIT *TheJIT;
195
196 public:
JITResolver(JIT & jit,JITEmitter & je)197 explicit JITResolver(JIT &jit, JITEmitter &je)
198 : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
199 LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
200 }
201
202 ~JITResolver();
203
204 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
205 /// lazy-compilation stub if it has already been created.
206 void *getLazyFunctionStubIfAvailable(Function *F);
207
208 /// getLazyFunctionStub - This returns a pointer to a function's
209 /// lazy-compilation stub, creating one on demand as needed.
210 void *getLazyFunctionStub(Function *F);
211
212 /// getExternalFunctionStub - Return a stub for the function at the
213 /// specified address, created lazily on demand.
214 void *getExternalFunctionStub(void *FnAddr);
215
216 /// getGlobalValueIndirectSym - Return an indirect symbol containing the
217 /// specified GV address.
218 void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
219
220 /// getGOTIndexForAddress - Return a new or existing index in the GOT for
221 /// an address. This function only manages slots, it does not manage the
222 /// contents of the slots or the memory associated with the GOT.
223 unsigned getGOTIndexForAddr(void *addr);
224
225 /// JITCompilerFn - This function is called to resolve a stub to a compiled
226 /// address. If the LLVM Function corresponding to the stub has not yet
227 /// been compiled, this function compiles it first.
228 static void *JITCompilerFn(void *Stub);
229 };
230
231 class StubToResolverMapTy {
232 /// Map a stub address to a specific instance of a JITResolver so that
233 /// lazily-compiled functions can find the right resolver to use.
234 ///
235 /// Guarded by Lock.
236 std::map<void*, JITResolver*> Map;
237
238 /// Guards Map from concurrent accesses.
239 mutable sys::Mutex Lock;
240
241 public:
242 /// Registers a Stub to be resolved by Resolver.
RegisterStubResolver(void * Stub,JITResolver * Resolver)243 void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
244 MutexGuard guard(Lock);
245 Map.insert(std::make_pair(Stub, Resolver));
246 }
247 /// Unregisters the Stub when it's invalidated.
UnregisterStubResolver(void * Stub)248 void UnregisterStubResolver(void *Stub) {
249 MutexGuard guard(Lock);
250 Map.erase(Stub);
251 }
252 /// Returns the JITResolver instance that owns the Stub.
getResolverFromStub(void * Stub) const253 JITResolver *getResolverFromStub(void *Stub) const {
254 MutexGuard guard(Lock);
255 // The address given to us for the stub may not be exactly right, it might
256 // be a little bit after the stub. As such, use upper_bound to find it.
257 // This is the same trick as in LookupFunctionFromCallSite from
258 // JITResolverState.
259 std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
260 assert(I != Map.begin() && "This is not a known stub!");
261 --I;
262 return I->second;
263 }
264 /// True if any stubs refer to the given resolver. Only used in an assert().
265 /// O(N)
ResolverHasStubs(JITResolver * Resolver) const266 bool ResolverHasStubs(JITResolver* Resolver) const {
267 MutexGuard guard(Lock);
268 for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
269 E = Map.end(); I != E; ++I) {
270 if (I->second == Resolver)
271 return true;
272 }
273 return false;
274 }
275 };
276 /// This needs to be static so that a lazy call stub can access it with no
277 /// context except the address of the stub.
278 ManagedStatic<StubToResolverMapTy> StubToResolverMap;
279
280 /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
281 /// used to output functions to memory for execution.
282 class JITEmitter : public JITCodeEmitter {
283 JITMemoryManager *MemMgr;
284
285 // When outputting a function stub in the context of some other function, we
286 // save BufferBegin/BufferEnd/CurBufferPtr here.
287 uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
288
289 // When reattempting to JIT a function after running out of space, we store
290 // the estimated size of the function we're trying to JIT here, so we can
291 // ask the memory manager for at least this much space. When we
292 // successfully emit the function, we reset this back to zero.
293 uintptr_t SizeEstimate;
294
295 /// Relocations - These are the relocations that the function needs, as
296 /// emitted.
297 std::vector<MachineRelocation> Relocations;
298
299 /// MBBLocations - This vector is a mapping from MBB ID's to their address.
300 /// It is filled in by the StartMachineBasicBlock callback and queried by
301 /// the getMachineBasicBlockAddress callback.
302 std::vector<uintptr_t> MBBLocations;
303
304 /// ConstantPool - The constant pool for the current function.
305 ///
306 MachineConstantPool *ConstantPool;
307
308 /// ConstantPoolBase - A pointer to the first entry in the constant pool.
309 ///
310 void *ConstantPoolBase;
311
312 /// ConstPoolAddresses - Addresses of individual constant pool entries.
313 ///
314 SmallVector<uintptr_t, 8> ConstPoolAddresses;
315
316 /// JumpTable - The jump tables for the current function.
317 ///
318 MachineJumpTableInfo *JumpTable;
319
320 /// JumpTableBase - A pointer to the first entry in the jump table.
321 ///
322 void *JumpTableBase;
323
324 /// Resolver - This contains info about the currently resolved functions.
325 JITResolver Resolver;
326
327 /// LabelLocations - This vector is a mapping from Label ID's to their
328 /// address.
329 DenseMap<MCSymbol*, uintptr_t> LabelLocations;
330
331 /// MMI - Machine module info for exception informations
332 MachineModuleInfo* MMI;
333
334 // CurFn - The llvm function being emitted. Only valid during
335 // finishFunction().
336 const Function *CurFn;
337
338 /// Information about emitted code, which is passed to the
339 /// JITEventListeners. This is reset in startFunction and used in
340 /// finishFunction.
341 JITEvent_EmittedFunctionDetails EmissionDetails;
342
343 struct EmittedCode {
344 void *FunctionBody; // Beginning of the function's allocation.
345 void *Code; // The address the function's code actually starts at.
346 void *ExceptionTable;
EmittedCode__anona95759ac0111::JITEmitter::EmittedCode347 EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
348 };
349 struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
350 typedef JITEmitter *ExtraData;
351 static void onDelete(JITEmitter *, const Function*);
352 static void onRAUW(JITEmitter *, const Function*, const Function*);
353 };
354 ValueMap<const Function *, EmittedCode,
355 EmittedFunctionConfig> EmittedFunctions;
356
357 DebugLoc PrevDL;
358
359 /// Instance of the JIT
360 JIT *TheJIT;
361
362 public:
JITEmitter(JIT & jit,JITMemoryManager * JMM,TargetMachine & TM)363 JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
364 : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
365 EmittedFunctions(this), TheJIT(&jit) {
366 MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
367 if (jit.getJITInfo().needsGOT()) {
368 MemMgr->AllocateGOT();
369 DEBUG(dbgs() << "JIT is managing a GOT\n");
370 }
371
372 }
~JITEmitter()373 ~JITEmitter() {
374 delete MemMgr;
375 }
376
getJITResolver()377 JITResolver &getJITResolver() { return Resolver; }
378
379 virtual void startFunction(MachineFunction &F);
380 virtual bool finishFunction(MachineFunction &F);
381
382 void emitConstantPool(MachineConstantPool *MCP);
383 void initJumpTableInfo(MachineJumpTableInfo *MJTI);
384 void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
385
386 void startGVStub(const GlobalValue* GV,
387 unsigned StubSize, unsigned Alignment = 1);
388 void startGVStub(void *Buffer, unsigned StubSize);
389 void finishGVStub();
390 virtual void *allocIndirectGV(const GlobalValue *GV,
391 const uint8_t *Buffer, size_t Size,
392 unsigned Alignment);
393
394 /// allocateSpace - Reserves space in the current block if any, or
395 /// allocate a new one of the given size.
396 virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
397
398 /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace,
399 /// this method does not allocate memory in the current output buffer,
400 /// because a global may live longer than the current function.
401 virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
402
addRelocation(const MachineRelocation & MR)403 virtual void addRelocation(const MachineRelocation &MR) {
404 Relocations.push_back(MR);
405 }
406
StartMachineBasicBlock(MachineBasicBlock * MBB)407 virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
408 if (MBBLocations.size() <= (unsigned)MBB->getNumber())
409 MBBLocations.resize((MBB->getNumber()+1)*2);
410 MBBLocations[MBB->getNumber()] = getCurrentPCValue();
411 if (MBB->hasAddressTaken())
412 TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
413 (void*)getCurrentPCValue());
414 DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
415 << (void*) getCurrentPCValue() << "]\n");
416 }
417
418 virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
419 virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
420
getMachineBasicBlockAddress(MachineBasicBlock * MBB) const421 virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
422 assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
423 MBBLocations[MBB->getNumber()] && "MBB not emitted!");
424 return MBBLocations[MBB->getNumber()];
425 }
426
427 /// retryWithMoreMemory - Log a retry and deallocate all memory for the
428 /// given function. Increase the minimum allocation size so that we get
429 /// more memory next time.
430 void retryWithMoreMemory(MachineFunction &F);
431
432 /// deallocateMemForFunction - Deallocate all memory for the specified
433 /// function body.
434 void deallocateMemForFunction(const Function *F);
435
436 virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
437
emitLabel(MCSymbol * Label)438 virtual void emitLabel(MCSymbol *Label) {
439 LabelLocations[Label] = getCurrentPCValue();
440 }
441
getLabelLocations()442 virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
443 return &LabelLocations;
444 }
445
getLabelAddress(MCSymbol * Label) const446 virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
447 assert(LabelLocations.count(Label) && "Label not emitted!");
448 return LabelLocations.find(Label)->second;
449 }
450
setModuleInfo(MachineModuleInfo * Info)451 virtual void setModuleInfo(MachineModuleInfo* Info) {
452 MMI = Info;
453 }
454
455 private:
456 void *getPointerToGlobal(GlobalValue *GV, void *Reference,
457 bool MayNeedFarStub);
458 void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
459 };
460 }
461
onDelete(JITResolverState * JRS,Function * F)462 void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
463 JRS->EraseAllCallSitesForPrelocked(F);
464 }
465
EraseAllCallSitesForPrelocked(Function * F)466 void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
467 FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
468 if (F2C == FunctionToCallSitesMap.end())
469 return;
470 StubToResolverMapTy &S2RMap = *StubToResolverMap;
471 for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
472 E = F2C->second.end(); I != E; ++I) {
473 S2RMap.UnregisterStubResolver(*I);
474 bool Erased = CallSiteToFunctionMap.erase(*I);
475 (void)Erased;
476 assert(Erased && "Missing call site->function mapping");
477 }
478 FunctionToCallSitesMap.erase(F2C);
479 }
480
EraseAllCallSitesPrelocked()481 void JITResolverState::EraseAllCallSitesPrelocked() {
482 StubToResolverMapTy &S2RMap = *StubToResolverMap;
483 for (CallSiteToFunctionMapTy::const_iterator
484 I = CallSiteToFunctionMap.begin(),
485 E = CallSiteToFunctionMap.end(); I != E; ++I) {
486 S2RMap.UnregisterStubResolver(I->first);
487 }
488 CallSiteToFunctionMap.clear();
489 FunctionToCallSitesMap.clear();
490 }
491
~JITResolver()492 JITResolver::~JITResolver() {
493 // No need to lock because we're in the destructor, and state isn't shared.
494 state.EraseAllCallSitesPrelocked();
495 assert(!StubToResolverMap->ResolverHasStubs(this) &&
496 "Resolver destroyed with stubs still alive.");
497 }
498
499 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
500 /// if it has already been created.
getLazyFunctionStubIfAvailable(Function * F)501 void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
502 MutexGuard locked(TheJIT->lock);
503
504 // If we already have a stub for this function, recycle it.
505 return state.getFunctionToLazyStubMap(locked).lookup(F);
506 }
507
508 /// getFunctionStub - This returns a pointer to a function stub, creating
509 /// one on demand as needed.
getLazyFunctionStub(Function * F)510 void *JITResolver::getLazyFunctionStub(Function *F) {
511 MutexGuard locked(TheJIT->lock);
512
513 // If we already have a lazy stub for this function, recycle it.
514 void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
515 if (Stub) return Stub;
516
517 // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we
518 // must resolve the symbol now.
519 void *Actual = TheJIT->isCompilingLazily()
520 ? (void *)(intptr_t)LazyResolverFn : (void *)0;
521
522 // If this is an external declaration, attempt to resolve the address now
523 // to place in the stub.
524 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
525 Actual = TheJIT->getPointerToFunction(F);
526
527 // If we resolved the symbol to a null address (eg. a weak external)
528 // don't emit a stub. Return a null pointer to the application.
529 if (!Actual) return 0;
530 }
531
532 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
533 JE.startGVStub(F, SL.Size, SL.Alignment);
534 // Codegen a new stub, calling the lazy resolver or the actual address of the
535 // external function, if it was resolved.
536 Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
537 JE.finishGVStub();
538
539 if (Actual != (void*)(intptr_t)LazyResolverFn) {
540 // If we are getting the stub for an external function, we really want the
541 // address of the stub in the GlobalAddressMap for the JIT, not the address
542 // of the external function.
543 TheJIT->updateGlobalMapping(F, Stub);
544 }
545
546 DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
547 << F->getName() << "'\n");
548
549 if (TheJIT->isCompilingLazily()) {
550 // Register this JITResolver as the one corresponding to this call site so
551 // JITCompilerFn will be able to find it.
552 StubToResolverMap->RegisterStubResolver(Stub, this);
553
554 // Finally, keep track of the stub-to-Function mapping so that the
555 // JITCompilerFn knows which function to compile!
556 state.AddCallSite(locked, Stub, F);
557 } else if (!Actual) {
558 // If we are JIT'ing non-lazily but need to call a function that does not
559 // exist yet, add it to the JIT's work list so that we can fill in the
560 // stub address later.
561 assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
562 "'Actual' should have been set above.");
563 TheJIT->addPendingFunction(F);
564 }
565
566 return Stub;
567 }
568
569 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
570 /// GV address.
getGlobalValueIndirectSym(GlobalValue * GV,void * GVAddress)571 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
572 MutexGuard locked(TheJIT->lock);
573
574 // If we already have a stub for this global variable, recycle it.
575 void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
576 if (IndirectSym) return IndirectSym;
577
578 // Otherwise, codegen a new indirect symbol.
579 IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
580 JE);
581
582 DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
583 << "] for GV '" << GV->getName() << "'\n");
584
585 return IndirectSym;
586 }
587
588 /// getExternalFunctionStub - Return a stub for the function at the
589 /// specified address, created lazily on demand.
getExternalFunctionStub(void * FnAddr)590 void *JITResolver::getExternalFunctionStub(void *FnAddr) {
591 // If we already have a stub for this function, recycle it.
592 void *&Stub = ExternalFnToStubMap[FnAddr];
593 if (Stub) return Stub;
594
595 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
596 JE.startGVStub(0, SL.Size, SL.Alignment);
597 Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
598 JE.finishGVStub();
599
600 DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
601 << "] for external function at '" << FnAddr << "'\n");
602 return Stub;
603 }
604
getGOTIndexForAddr(void * addr)605 unsigned JITResolver::getGOTIndexForAddr(void* addr) {
606 unsigned idx = revGOTMap[addr];
607 if (!idx) {
608 idx = ++nextGOTIndex;
609 revGOTMap[addr] = idx;
610 DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
611 << addr << "]\n");
612 }
613 return idx;
614 }
615
616 /// JITCompilerFn - This function is called when a lazy compilation stub has
617 /// been entered. It looks up which function this stub corresponds to, compiles
618 /// it if necessary, then returns the resultant function pointer.
JITCompilerFn(void * Stub)619 void *JITResolver::JITCompilerFn(void *Stub) {
620 JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
621 assert(JR && "Unable to find the corresponding JITResolver to the call site");
622
623 Function* F = 0;
624 void* ActualPtr = 0;
625
626 {
627 // Only lock for getting the Function. The call getPointerToFunction made
628 // in this function might trigger function materializing, which requires
629 // JIT lock to be unlocked.
630 MutexGuard locked(JR->TheJIT->lock);
631
632 // The address given to us for the stub may not be exactly right, it might
633 // be a little bit after the stub. As such, use upper_bound to find it.
634 std::pair<void*, Function*> I =
635 JR->state.LookupFunctionFromCallSite(locked, Stub);
636 F = I.second;
637 ActualPtr = I.first;
638 }
639
640 // If we have already code generated the function, just return the address.
641 void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
642
643 if (!Result) {
644 // Otherwise we don't have it, do lazy compilation now.
645
646 // If lazy compilation is disabled, emit a useful error message and abort.
647 if (!JR->TheJIT->isCompilingLazily()) {
648 report_fatal_error("LLVM JIT requested to do lazy compilation of"
649 " function '"
650 + F->getName() + "' when lazy compiles are disabled!");
651 }
652
653 DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
654 << "' In stub ptr = " << Stub << " actual ptr = "
655 << ActualPtr << "\n");
656 (void)ActualPtr;
657
658 Result = JR->TheJIT->getPointerToFunction(F);
659 }
660
661 // Reacquire the lock to update the GOT map.
662 MutexGuard locked(JR->TheJIT->lock);
663
664 // We might like to remove the call site from the CallSiteToFunction map, but
665 // we can't do that! Multiple threads could be stuck, waiting to acquire the
666 // lock above. As soon as the 1st function finishes compiling the function,
667 // the next one will be released, and needs to be able to find the function it
668 // needs to call.
669
670 // FIXME: We could rewrite all references to this stub if we knew them.
671
672 // What we will do is set the compiled function address to map to the
673 // same GOT entry as the stub so that later clients may update the GOT
674 // if they see it still using the stub address.
675 // Note: this is done so the Resolver doesn't have to manage GOT memory
676 // Do this without allocating map space if the target isn't using a GOT
677 if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
678 JR->revGOTMap[Result] = JR->revGOTMap[Stub];
679
680 return Result;
681 }
682
683 //===----------------------------------------------------------------------===//
684 // JITEmitter code.
685 //
getPointerToGlobal(GlobalValue * V,void * Reference,bool MayNeedFarStub)686 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
687 bool MayNeedFarStub) {
688 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
689 return TheJIT->getOrEmitGlobalVariable(GV);
690
691 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
692 return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
693
694 // If we have already compiled the function, return a pointer to its body.
695 Function *F = cast<Function>(V);
696
697 void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
698 if (FnStub) {
699 // Return the function stub if it's already created. We do this first so
700 // that we're returning the same address for the function as any previous
701 // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
702 // close enough to call.
703 return FnStub;
704 }
705
706 // If we know the target can handle arbitrary-distance calls, try to
707 // return a direct pointer.
708 if (!MayNeedFarStub) {
709 // If we have code, go ahead and return that.
710 void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
711 if (ResultPtr) return ResultPtr;
712
713 // If this is an external function pointer, we can force the JIT to
714 // 'compile' it, which really just adds it to the map.
715 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
716 return TheJIT->getPointerToFunction(F);
717 }
718
719 // Otherwise, we may need a to emit a stub, and, conservatively, we always do
720 // so. Note that it's possible to return null from getLazyFunctionStub in the
721 // case of a weak extern that fails to resolve.
722 return Resolver.getLazyFunctionStub(F);
723 }
724
getPointerToGVIndirectSym(GlobalValue * V,void * Reference)725 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
726 // Make sure GV is emitted first, and create a stub containing the fully
727 // resolved address.
728 void *GVAddress = getPointerToGlobal(V, Reference, false);
729 void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
730 return StubAddr;
731 }
732
processDebugLoc(DebugLoc DL,bool BeforePrintingInsn)733 void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
734 if (DL.isUnknown()) return;
735 if (!BeforePrintingInsn) return;
736
737 const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
738
739 if (DL.getScope(Context) != 0 && PrevDL != DL) {
740 JITEvent_EmittedFunctionDetails::LineStart NextLine;
741 NextLine.Address = getCurrentPCValue();
742 NextLine.Loc = DL;
743 EmissionDetails.LineStarts.push_back(NextLine);
744 }
745
746 PrevDL = DL;
747 }
748
GetConstantPoolSizeInBytes(MachineConstantPool * MCP,const DataLayout * TD)749 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
750 const DataLayout *TD) {
751 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
752 if (Constants.empty()) return 0;
753
754 unsigned Size = 0;
755 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
756 MachineConstantPoolEntry CPE = Constants[i];
757 unsigned AlignMask = CPE.getAlignment() - 1;
758 Size = (Size + AlignMask) & ~AlignMask;
759 Type *Ty = CPE.getType();
760 Size += TD->getTypeAllocSize(Ty);
761 }
762 return Size;
763 }
764
startFunction(MachineFunction & F)765 void JITEmitter::startFunction(MachineFunction &F) {
766 DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
767 << F.getName() << "\n");
768
769 uintptr_t ActualSize = 0;
770 // Set the memory writable, if it's not already
771 MemMgr->setMemoryWritable();
772
773 if (SizeEstimate > 0) {
774 // SizeEstimate will be non-zero on reallocation attempts.
775 ActualSize = SizeEstimate;
776 }
777
778 BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
779 ActualSize);
780 BufferEnd = BufferBegin+ActualSize;
781 EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
782
783 // Ensure the constant pool/jump table info is at least 4-byte aligned.
784 emitAlignment(16);
785
786 emitConstantPool(F.getConstantPool());
787 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
788 initJumpTableInfo(MJTI);
789
790 // About to start emitting the machine code for the function.
791 emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
792 TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
793 EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
794
795 MBBLocations.clear();
796
797 EmissionDetails.MF = &F;
798 EmissionDetails.LineStarts.clear();
799 }
800
finishFunction(MachineFunction & F)801 bool JITEmitter::finishFunction(MachineFunction &F) {
802 if (CurBufferPtr == BufferEnd) {
803 // We must call endFunctionBody before retrying, because
804 // deallocateMemForFunction requires it.
805 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
806 retryWithMoreMemory(F);
807 return true;
808 }
809
810 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
811 emitJumpTableInfo(MJTI);
812
813 // FnStart is the start of the text, not the start of the constant pool and
814 // other per-function data.
815 uint8_t *FnStart =
816 (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
817
818 // FnEnd is the end of the function's machine code.
819 uint8_t *FnEnd = CurBufferPtr;
820
821 if (!Relocations.empty()) {
822 CurFn = F.getFunction();
823 NumRelos += Relocations.size();
824
825 // Resolve the relocations to concrete pointers.
826 for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
827 MachineRelocation &MR = Relocations[i];
828 void *ResultPtr = 0;
829 if (!MR.letTargetResolve()) {
830 if (MR.isExternalSymbol()) {
831 ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
832 false);
833 DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
834 << ResultPtr << "]\n");
835
836 // If the target REALLY wants a stub for this function, emit it now.
837 if (MR.mayNeedFarStub()) {
838 ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
839 }
840 } else if (MR.isGlobalValue()) {
841 ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
842 BufferBegin+MR.getMachineCodeOffset(),
843 MR.mayNeedFarStub());
844 } else if (MR.isIndirectSymbol()) {
845 ResultPtr = getPointerToGVIndirectSym(
846 MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
847 } else if (MR.isBasicBlock()) {
848 ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
849 } else if (MR.isConstantPoolIndex()) {
850 ResultPtr =
851 (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
852 } else {
853 assert(MR.isJumpTableIndex());
854 ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
855 }
856
857 MR.setResultPointer(ResultPtr);
858 }
859
860 // if we are managing the GOT and the relocation wants an index,
861 // give it one
862 if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
863 unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
864 MR.setGOTIndex(idx);
865 if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
866 DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
867 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
868 << "\n");
869 ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
870 }
871 }
872 }
873
874 CurFn = 0;
875 TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
876 Relocations.size(), MemMgr->getGOTBase());
877 }
878
879 // Update the GOT entry for F to point to the new code.
880 if (MemMgr->isManagingGOT()) {
881 unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
882 if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
883 DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
884 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
885 << "\n");
886 ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
887 }
888 }
889
890 // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
891 // global variables that were referenced in the relocations.
892 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
893
894 if (CurBufferPtr == BufferEnd) {
895 retryWithMoreMemory(F);
896 return true;
897 } else {
898 // Now that we've succeeded in emitting the function, reset the
899 // SizeEstimate back down to zero.
900 SizeEstimate = 0;
901 }
902
903 BufferBegin = CurBufferPtr = 0;
904 NumBytes += FnEnd-FnStart;
905
906 // Invalidate the icache if necessary.
907 sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
908
909 TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
910 EmissionDetails);
911
912 // Reset the previous debug location.
913 PrevDL = DebugLoc();
914
915 DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
916 << "] Function: " << F.getName()
917 << ": " << (FnEnd-FnStart) << " bytes of text, "
918 << Relocations.size() << " relocations\n");
919
920 Relocations.clear();
921 ConstPoolAddresses.clear();
922
923 // Mark code region readable and executable if it's not so already.
924 MemMgr->setMemoryExecutable();
925
926 DEBUG({
927 if (sys::hasDisassembler()) {
928 dbgs() << "JIT: Disassembled code:\n";
929 dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
930 (uintptr_t)FnStart);
931 } else {
932 dbgs() << "JIT: Binary code:\n";
933 uint8_t* q = FnStart;
934 for (int i = 0; q < FnEnd; q += 4, ++i) {
935 if (i == 4)
936 i = 0;
937 if (i == 0)
938 dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
939 bool Done = false;
940 for (int j = 3; j >= 0; --j) {
941 if (q + j >= FnEnd)
942 Done = true;
943 else
944 dbgs() << (unsigned short)q[j];
945 }
946 if (Done)
947 break;
948 dbgs() << ' ';
949 if (i == 3)
950 dbgs() << '\n';
951 }
952 dbgs()<< '\n';
953 }
954 });
955
956 if (MMI)
957 MMI->EndFunction();
958
959 return false;
960 }
961
retryWithMoreMemory(MachineFunction & F)962 void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
963 DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n");
964 Relocations.clear(); // Clear the old relocations or we'll reapply them.
965 ConstPoolAddresses.clear();
966 ++NumRetries;
967 deallocateMemForFunction(F.getFunction());
968 // Try again with at least twice as much free space.
969 SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
970
971 for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
972 if (MBB->hasAddressTaken())
973 TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
974 }
975 }
976
977 /// deallocateMemForFunction - Deallocate all memory for the specified
978 /// function body. Also drop any references the function has to stubs.
979 /// May be called while the Function is being destroyed inside ~Value().
deallocateMemForFunction(const Function * F)980 void JITEmitter::deallocateMemForFunction(const Function *F) {
981 ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
982 Emitted = EmittedFunctions.find(F);
983 if (Emitted != EmittedFunctions.end()) {
984 MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
985 TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
986
987 EmittedFunctions.erase(Emitted);
988 }
989 }
990
991
allocateSpace(uintptr_t Size,unsigned Alignment)992 void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
993 if (BufferBegin)
994 return JITCodeEmitter::allocateSpace(Size, Alignment);
995
996 // create a new memory block if there is no active one.
997 // care must be taken so that BufferBegin is invalidated when a
998 // block is trimmed
999 BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1000 BufferEnd = BufferBegin+Size;
1001 return CurBufferPtr;
1002 }
1003
allocateGlobal(uintptr_t Size,unsigned Alignment)1004 void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1005 // Delegate this call through the memory manager.
1006 return MemMgr->allocateGlobal(Size, Alignment);
1007 }
1008
emitConstantPool(MachineConstantPool * MCP)1009 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1010 if (TheJIT->getJITInfo().hasCustomConstantPool())
1011 return;
1012
1013 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1014 if (Constants.empty()) return;
1015
1016 unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout());
1017 unsigned Align = MCP->getConstantPoolAlignment();
1018 ConstantPoolBase = allocateSpace(Size, Align);
1019 ConstantPool = MCP;
1020
1021 if (ConstantPoolBase == 0) return; // Buffer overflow.
1022
1023 DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
1024 << "] (size: " << Size << ", alignment: " << Align << ")\n");
1025
1026 // Initialize the memory for all of the constant pool entries.
1027 unsigned Offset = 0;
1028 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1029 MachineConstantPoolEntry CPE = Constants[i];
1030 unsigned AlignMask = CPE.getAlignment() - 1;
1031 Offset = (Offset + AlignMask) & ~AlignMask;
1032
1033 uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1034 ConstPoolAddresses.push_back(CAddr);
1035 if (CPE.isMachineConstantPoolEntry()) {
1036 // FIXME: add support to lower machine constant pool values into bytes!
1037 report_fatal_error("Initialize memory with machine specific constant pool"
1038 "entry has not been implemented!");
1039 }
1040 TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1041 DEBUG(dbgs() << "JIT: CP" << i << " at [0x";
1042 dbgs().write_hex(CAddr) << "]\n");
1043
1044 Type *Ty = CPE.Val.ConstVal->getType();
1045 Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty);
1046 }
1047 }
1048
initJumpTableInfo(MachineJumpTableInfo * MJTI)1049 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1050 if (TheJIT->getJITInfo().hasCustomJumpTables())
1051 return;
1052 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
1053 return;
1054
1055 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1056 if (JT.empty()) return;
1057
1058 unsigned NumEntries = 0;
1059 for (unsigned i = 0, e = JT.size(); i != e; ++i)
1060 NumEntries += JT[i].MBBs.size();
1061
1062 unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout());
1063
1064 // Just allocate space for all the jump tables now. We will fix up the actual
1065 // MBB entries in the tables after we emit the code for each block, since then
1066 // we will know the final locations of the MBBs in memory.
1067 JumpTable = MJTI;
1068 JumpTableBase = allocateSpace(NumEntries * EntrySize,
1069 MJTI->getEntryAlignment(*TheJIT->getDataLayout()));
1070 }
1071
emitJumpTableInfo(MachineJumpTableInfo * MJTI)1072 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1073 if (TheJIT->getJITInfo().hasCustomJumpTables())
1074 return;
1075
1076 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1077 if (JT.empty() || JumpTableBase == 0) return;
1078
1079
1080 switch (MJTI->getEntryKind()) {
1081 case MachineJumpTableInfo::EK_Inline:
1082 return;
1083 case MachineJumpTableInfo::EK_BlockAddress: {
1084 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1085 // .word LBB123
1086 assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) &&
1087 "Cross JIT'ing?");
1088
1089 // For each jump table, map each target in the jump table to the address of
1090 // an emitted MachineBasicBlock.
1091 intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1092
1093 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1094 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1095 // Store the address of the basic block for this jump table slot in the
1096 // memory we allocated for the jump table in 'initJumpTableInfo'
1097 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1098 *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1099 }
1100 break;
1101 }
1102
1103 case MachineJumpTableInfo::EK_Custom32:
1104 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1105 case MachineJumpTableInfo::EK_LabelDifference32: {
1106 assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?");
1107 // For each jump table, place the offset from the beginning of the table
1108 // to the target address.
1109 int *SlotPtr = (int*)JumpTableBase;
1110
1111 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1112 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1113 // Store the offset of the basic block for this jump table slot in the
1114 // memory we allocated for the jump table in 'initJumpTableInfo'
1115 uintptr_t Base = (uintptr_t)SlotPtr;
1116 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1117 uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1118 /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
1119 *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1120 }
1121 }
1122 break;
1123 }
1124 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1125 llvm_unreachable(
1126 "JT Info emission not implemented for GPRel64BlockAddress yet.");
1127 }
1128 }
1129
startGVStub(const GlobalValue * GV,unsigned StubSize,unsigned Alignment)1130 void JITEmitter::startGVStub(const GlobalValue* GV,
1131 unsigned StubSize, unsigned Alignment) {
1132 SavedBufferBegin = BufferBegin;
1133 SavedBufferEnd = BufferEnd;
1134 SavedCurBufferPtr = CurBufferPtr;
1135
1136 BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1137 BufferEnd = BufferBegin+StubSize+1;
1138 }
1139
startGVStub(void * Buffer,unsigned StubSize)1140 void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
1141 SavedBufferBegin = BufferBegin;
1142 SavedBufferEnd = BufferEnd;
1143 SavedCurBufferPtr = CurBufferPtr;
1144
1145 BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1146 BufferEnd = BufferBegin+StubSize+1;
1147 }
1148
finishGVStub()1149 void JITEmitter::finishGVStub() {
1150 assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
1151 NumBytes += getCurrentPCOffset();
1152 BufferBegin = SavedBufferBegin;
1153 BufferEnd = SavedBufferEnd;
1154 CurBufferPtr = SavedCurBufferPtr;
1155 }
1156
allocIndirectGV(const GlobalValue * GV,const uint8_t * Buffer,size_t Size,unsigned Alignment)1157 void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
1158 const uint8_t *Buffer, size_t Size,
1159 unsigned Alignment) {
1160 uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
1161 memcpy(IndGV, Buffer, Size);
1162 return IndGV;
1163 }
1164
1165 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1166 // in the constant pool that was last emitted with the 'emitConstantPool'
1167 // method.
1168 //
getConstantPoolEntryAddress(unsigned ConstantNum) const1169 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1170 assert(ConstantNum < ConstantPool->getConstants().size() &&
1171 "Invalid ConstantPoolIndex!");
1172 return ConstPoolAddresses[ConstantNum];
1173 }
1174
1175 // getJumpTableEntryAddress - Return the address of the JumpTable with index
1176 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1177 //
getJumpTableEntryAddress(unsigned Index) const1178 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1179 const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1180 assert(Index < JT.size() && "Invalid jump table index!");
1181
1182 unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout());
1183
1184 unsigned Offset = 0;
1185 for (unsigned i = 0; i < Index; ++i)
1186 Offset += JT[i].MBBs.size();
1187
1188 Offset *= EntrySize;
1189
1190 return (uintptr_t)((char *)JumpTableBase + Offset);
1191 }
1192
onDelete(JITEmitter * Emitter,const Function * F)1193 void JITEmitter::EmittedFunctionConfig::onDelete(
1194 JITEmitter *Emitter, const Function *F) {
1195 Emitter->deallocateMemForFunction(F);
1196 }
onRAUW(JITEmitter *,const Function *,const Function *)1197 void JITEmitter::EmittedFunctionConfig::onRAUW(
1198 JITEmitter *, const Function*, const Function*) {
1199 llvm_unreachable("The JIT doesn't know how to handle a"
1200 " RAUW on a value it has emitted.");
1201 }
1202
1203
1204 //===----------------------------------------------------------------------===//
1205 // Public interface to this file
1206 //===----------------------------------------------------------------------===//
1207
createEmitter(JIT & jit,JITMemoryManager * JMM,TargetMachine & tm)1208 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
1209 TargetMachine &tm) {
1210 return new JITEmitter(jit, JMM, tm);
1211 }
1212
1213 // getPointerToFunctionOrStub - If the specified function has been
1214 // code-gen'd, return a pointer to the function. If not, compile it, or use
1215 // a stub to implement lazy compilation if available.
1216 //
getPointerToFunctionOrStub(Function * F)1217 void *JIT::getPointerToFunctionOrStub(Function *F) {
1218 // If we have already code generated the function, just return the address.
1219 if (void *Addr = getPointerToGlobalIfAvailable(F))
1220 return Addr;
1221
1222 // Get a stub if the target supports it.
1223 JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
1224 return JE->getJITResolver().getLazyFunctionStub(F);
1225 }
1226
updateFunctionStub(Function * F)1227 void JIT::updateFunctionStub(Function *F) {
1228 // Get the empty stub we generated earlier.
1229 JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
1230 void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
1231 void *Addr = getPointerToGlobalIfAvailable(F);
1232 assert(Addr != Stub && "Function must have non-stub address to be updated.");
1233
1234 // Tell the target jit info to rewrite the stub at the specified address,
1235 // rather than creating a new one.
1236 TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
1237 JE->startGVStub(Stub, layout.Size);
1238 getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
1239 JE->finishGVStub();
1240 }
1241
1242 /// freeMachineCodeForFunction - release machine code memory for given Function.
1243 ///
freeMachineCodeForFunction(Function * F)1244 void JIT::freeMachineCodeForFunction(Function *F) {
1245 // Delete translation for this from the ExecutionEngine, so it will get
1246 // retranslated next time it is used.
1247 updateGlobalMapping(F, 0);
1248
1249 // Free the actual memory for the function body and related stuff.
1250 static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F);
1251 }
1252