1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
11 //
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "AsmWriter.h"
18
19 #include "llvm/Assembly/Writer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/Assembly/AssemblyAnnotationWriter.h"
25 #include "llvm/Assembly/PrintModulePass.h"
26 #include "llvm/DebugInfo.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/TypeFinder.h"
36 #include "llvm/IR/ValueSymbolTable.h"
37 #include "llvm/Support/CFG.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/Dwarf.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/FormattedStream.h"
42 #include "llvm/Support/MathExtras.h"
43
44 #include <algorithm>
45 #include <cctype>
46 using namespace llvm;
47
48 // Make virtual table appear in this compilation unit.
~AssemblyAnnotationWriter()49 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
50
51 //===----------------------------------------------------------------------===//
52 // Helper Functions
53 //===----------------------------------------------------------------------===//
54
getModuleFromVal(const Value * V)55 static const Module *getModuleFromVal(const Value *V) {
56 if (const Argument *MA = dyn_cast<Argument>(V))
57 return MA->getParent() ? MA->getParent()->getParent() : 0;
58
59 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
60 return BB->getParent() ? BB->getParent()->getParent() : 0;
61
62 if (const Instruction *I = dyn_cast<Instruction>(V)) {
63 const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
64 return M ? M->getParent() : 0;
65 }
66
67 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
68 return GV->getParent();
69 return 0;
70 }
71
PrintCallingConv(unsigned cc,raw_ostream & Out)72 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
73 switch (cc) {
74 default: Out << "cc" << cc; break;
75 case CallingConv::Fast: Out << "fastcc"; break;
76 case CallingConv::Cold: Out << "coldcc"; break;
77 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
78 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
79 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
80 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
81 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
82 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
83 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
84 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
85 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
86 case CallingConv::PTX_Device: Out << "ptx_device"; break;
87 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
88 case CallingConv::X86_64_Win64: Out << "x86_64_win64cc"; break;
89 }
90 }
91
92 // PrintEscapedString - Print each character of the specified string, escaping
93 // it if it is not printable or if it is an escape char.
PrintEscapedString(StringRef Name,raw_ostream & Out)94 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
95 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
96 unsigned char C = Name[i];
97 if (isprint(C) && C != '\\' && C != '"')
98 Out << C;
99 else
100 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
101 }
102 }
103
104 enum PrefixType {
105 GlobalPrefix,
106 LabelPrefix,
107 LocalPrefix,
108 NoPrefix
109 };
110
111 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
112 /// prefixed with % (if the string only contains simple characters) or is
113 /// surrounded with ""'s (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,StringRef Name,PrefixType Prefix)114 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
115 assert(!Name.empty() && "Cannot get empty name!");
116 switch (Prefix) {
117 case NoPrefix: break;
118 case GlobalPrefix: OS << '@'; break;
119 case LabelPrefix: break;
120 case LocalPrefix: OS << '%'; break;
121 }
122
123 // Scan the name to see if it needs quotes first.
124 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
125 if (!NeedsQuotes) {
126 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
127 // By making this unsigned, the value passed in to isalnum will always be
128 // in the range 0-255. This is important when building with MSVC because
129 // its implementation will assert. This situation can arise when dealing
130 // with UTF-8 multibyte characters.
131 unsigned char C = Name[i];
132 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
133 C != '_') {
134 NeedsQuotes = true;
135 break;
136 }
137 }
138 }
139
140 // If we didn't need any quotes, just write out the name in one blast.
141 if (!NeedsQuotes) {
142 OS << Name;
143 return;
144 }
145
146 // Okay, we need quotes. Output the quotes and escape any scary characters as
147 // needed.
148 OS << '"';
149 PrintEscapedString(Name, OS);
150 OS << '"';
151 }
152
153 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
154 /// prefixed with % (if the string only contains simple characters) or is
155 /// surrounded with ""'s (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,const Value * V)156 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
157 PrintLLVMName(OS, V->getName(),
158 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
159 }
160
161
162 namespace llvm {
163
incorporateTypes(const Module & M)164 void TypePrinting::incorporateTypes(const Module &M) {
165 NamedTypes.run(M, false);
166
167 // The list of struct types we got back includes all the struct types, split
168 // the unnamed ones out to a numbering and remove the anonymous structs.
169 unsigned NextNumber = 0;
170
171 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
172 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
173 StructType *STy = *I;
174
175 // Ignore anonymous types.
176 if (STy->isLiteral())
177 continue;
178
179 if (STy->getName().empty())
180 NumberedTypes[STy] = NextNumber++;
181 else
182 *NextToUse++ = STy;
183 }
184
185 NamedTypes.erase(NextToUse, NamedTypes.end());
186 }
187
188
189 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
190 /// use of type names or up references to shorten the type name where possible.
print(Type * Ty,raw_ostream & OS)191 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
192 switch (Ty->getTypeID()) {
193 case Type::VoidTyID: OS << "void"; break;
194 case Type::HalfTyID: OS << "half"; break;
195 case Type::FloatTyID: OS << "float"; break;
196 case Type::DoubleTyID: OS << "double"; break;
197 case Type::X86_FP80TyID: OS << "x86_fp80"; break;
198 case Type::FP128TyID: OS << "fp128"; break;
199 case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
200 case Type::LabelTyID: OS << "label"; break;
201 case Type::MetadataTyID: OS << "metadata"; break;
202 case Type::X86_MMXTyID: OS << "x86_mmx"; break;
203 case Type::IntegerTyID:
204 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
205 return;
206
207 case Type::FunctionTyID: {
208 FunctionType *FTy = cast<FunctionType>(Ty);
209 print(FTy->getReturnType(), OS);
210 OS << " (";
211 for (FunctionType::param_iterator I = FTy->param_begin(),
212 E = FTy->param_end(); I != E; ++I) {
213 if (I != FTy->param_begin())
214 OS << ", ";
215 print(*I, OS);
216 }
217 if (FTy->isVarArg()) {
218 if (FTy->getNumParams()) OS << ", ";
219 OS << "...";
220 }
221 OS << ')';
222 return;
223 }
224 case Type::StructTyID: {
225 StructType *STy = cast<StructType>(Ty);
226
227 if (STy->isLiteral())
228 return printStructBody(STy, OS);
229
230 if (!STy->getName().empty())
231 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
232
233 DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
234 if (I != NumberedTypes.end())
235 OS << '%' << I->second;
236 else // Not enumerated, print the hex address.
237 OS << "%\"type " << STy << '\"';
238 return;
239 }
240 case Type::PointerTyID: {
241 PointerType *PTy = cast<PointerType>(Ty);
242 print(PTy->getElementType(), OS);
243 if (unsigned AddressSpace = PTy->getAddressSpace())
244 OS << " addrspace(" << AddressSpace << ')';
245 OS << '*';
246 return;
247 }
248 case Type::ArrayTyID: {
249 ArrayType *ATy = cast<ArrayType>(Ty);
250 OS << '[' << ATy->getNumElements() << " x ";
251 print(ATy->getElementType(), OS);
252 OS << ']';
253 return;
254 }
255 case Type::VectorTyID: {
256 VectorType *PTy = cast<VectorType>(Ty);
257 OS << "<" << PTy->getNumElements() << " x ";
258 print(PTy->getElementType(), OS);
259 OS << '>';
260 return;
261 }
262 default:
263 OS << "<unrecognized-type>";
264 return;
265 }
266 }
267
printStructBody(StructType * STy,raw_ostream & OS)268 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
269 if (STy->isOpaque()) {
270 OS << "opaque";
271 return;
272 }
273
274 if (STy->isPacked())
275 OS << '<';
276
277 if (STy->getNumElements() == 0) {
278 OS << "{}";
279 } else {
280 StructType::element_iterator I = STy->element_begin();
281 OS << "{ ";
282 print(*I++, OS);
283 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
284 OS << ", ";
285 print(*I, OS);
286 }
287
288 OS << " }";
289 }
290 if (STy->isPacked())
291 OS << '>';
292 }
293
294 //===----------------------------------------------------------------------===//
295 // SlotTracker Class: Enumerate slot numbers for unnamed values
296 //===----------------------------------------------------------------------===//
297 /// This class provides computation of slot numbers for LLVM Assembly writing.
298 ///
299 class SlotTracker {
300 public:
301 /// ValueMap - A mapping of Values to slot numbers.
302 typedef DenseMap<const Value*, unsigned> ValueMap;
303
304 private:
305 /// TheModule - The module for which we are holding slot numbers.
306 const Module* TheModule;
307
308 /// TheFunction - The function for which we are holding slot numbers.
309 const Function* TheFunction;
310 bool FunctionProcessed;
311
312 /// mMap - The slot map for the module level data.
313 ValueMap mMap;
314 unsigned mNext;
315
316 /// fMap - The slot map for the function level data.
317 ValueMap fMap;
318 unsigned fNext;
319
320 /// mdnMap - Map for MDNodes.
321 DenseMap<const MDNode*, unsigned> mdnMap;
322 unsigned mdnNext;
323
324 /// asMap - The slot map for attribute sets.
325 DenseMap<AttributeSet, unsigned> asMap;
326 unsigned asNext;
327 public:
328 /// Construct from a module
329 explicit SlotTracker(const Module *M);
330 /// Construct from a function, starting out in incorp state.
331 explicit SlotTracker(const Function *F);
332
333 /// Return the slot number of the specified value in it's type
334 /// plane. If something is not in the SlotTracker, return -1.
335 int getLocalSlot(const Value *V);
336 int getGlobalSlot(const GlobalValue *V);
337 int getMetadataSlot(const MDNode *N);
338 int getAttributeGroupSlot(AttributeSet AS);
339
340 /// If you'd like to deal with a function instead of just a module, use
341 /// this method to get its data into the SlotTracker.
incorporateFunction(const Function * F)342 void incorporateFunction(const Function *F) {
343 TheFunction = F;
344 FunctionProcessed = false;
345 }
346
347 /// After calling incorporateFunction, use this method to remove the
348 /// most recently incorporated function from the SlotTracker. This
349 /// will reset the state of the machine back to just the module contents.
350 void purgeFunction();
351
352 /// MDNode map iterators.
353 typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
mdn_begin()354 mdn_iterator mdn_begin() { return mdnMap.begin(); }
mdn_end()355 mdn_iterator mdn_end() { return mdnMap.end(); }
mdn_size() const356 unsigned mdn_size() const { return mdnMap.size(); }
mdn_empty() const357 bool mdn_empty() const { return mdnMap.empty(); }
358
359 /// AttributeSet map iterators.
360 typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
as_begin()361 as_iterator as_begin() { return asMap.begin(); }
as_end()362 as_iterator as_end() { return asMap.end(); }
as_size() const363 unsigned as_size() const { return asMap.size(); }
as_empty() const364 bool as_empty() const { return asMap.empty(); }
365
366 /// This function does the actual initialization.
367 inline void initialize();
368
369 // Implementation Details
370 private:
371 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
372 void CreateModuleSlot(const GlobalValue *V);
373
374 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
375 void CreateMetadataSlot(const MDNode *N);
376
377 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
378 void CreateFunctionSlot(const Value *V);
379
380 /// \brief Insert the specified AttributeSet into the slot table.
381 void CreateAttributeSetSlot(AttributeSet AS);
382
383 /// Add all of the module level global variables (and their initializers)
384 /// and function declarations, but not the contents of those functions.
385 void processModule();
386
387 /// Add all of the functions arguments, basic blocks, and instructions.
388 void processFunction();
389
390 SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
391 void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
392 };
393
createSlotTracker(const Module * M)394 SlotTracker *createSlotTracker(const Module *M) {
395 return new SlotTracker(M);
396 }
397
createSlotTracker(const Value * V)398 static SlotTracker *createSlotTracker(const Value *V) {
399 if (const Argument *FA = dyn_cast<Argument>(V))
400 return new SlotTracker(FA->getParent());
401
402 if (const Instruction *I = dyn_cast<Instruction>(V))
403 if (I->getParent())
404 return new SlotTracker(I->getParent()->getParent());
405
406 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
407 return new SlotTracker(BB->getParent());
408
409 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
410 return new SlotTracker(GV->getParent());
411
412 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
413 return new SlotTracker(GA->getParent());
414
415 if (const Function *Func = dyn_cast<Function>(V))
416 return new SlotTracker(Func);
417
418 if (const MDNode *MD = dyn_cast<MDNode>(V)) {
419 if (!MD->isFunctionLocal())
420 return new SlotTracker(MD->getFunction());
421
422 return new SlotTracker((Function *)0);
423 }
424
425 return 0;
426 }
427
428 #if 0
429 #define ST_DEBUG(X) dbgs() << X
430 #else
431 #define ST_DEBUG(X)
432 #endif
433
434 // Module level constructor. Causes the contents of the Module (sans functions)
435 // to be added to the slot table.
SlotTracker(const Module * M)436 SlotTracker::SlotTracker(const Module *M)
437 : TheModule(M), TheFunction(0), FunctionProcessed(false),
438 mNext(0), fNext(0), mdnNext(0), asNext(0) {
439 }
440
441 // Function level constructor. Causes the contents of the Module and the one
442 // function provided to be added to the slot table.
SlotTracker(const Function * F)443 SlotTracker::SlotTracker(const Function *F)
444 : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
445 mNext(0), fNext(0), mdnNext(0), asNext(0) {
446 }
447
initialize()448 inline void SlotTracker::initialize() {
449 if (TheModule) {
450 processModule();
451 TheModule = 0; ///< Prevent re-processing next time we're called.
452 }
453
454 if (TheFunction && !FunctionProcessed)
455 processFunction();
456 }
457
458 // Iterate through all the global variables, functions, and global
459 // variable initializers and create slots for them.
processModule()460 void SlotTracker::processModule() {
461 ST_DEBUG("begin processModule!\n");
462
463 // Add all of the unnamed global variables to the value table.
464 for (Module::const_global_iterator I = TheModule->global_begin(),
465 E = TheModule->global_end(); I != E; ++I) {
466 if (!I->hasName())
467 CreateModuleSlot(I);
468 }
469
470 // Add metadata used by named metadata.
471 for (Module::const_named_metadata_iterator
472 I = TheModule->named_metadata_begin(),
473 E = TheModule->named_metadata_end(); I != E; ++I) {
474 const NamedMDNode *NMD = I;
475 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
476 CreateMetadataSlot(NMD->getOperand(i));
477 }
478
479 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
480 I != E; ++I) {
481 if (!I->hasName())
482 // Add all the unnamed functions to the table.
483 CreateModuleSlot(I);
484
485 // Add all the function attributes to the table.
486 // FIXME: Add attributes of other objects?
487 AttributeSet FnAttrs = I->getAttributes().getFnAttributes();
488 if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
489 CreateAttributeSetSlot(FnAttrs);
490 }
491
492 ST_DEBUG("end processModule!\n");
493 }
494
495 // Process the arguments, basic blocks, and instructions of a function.
processFunction()496 void SlotTracker::processFunction() {
497 ST_DEBUG("begin processFunction!\n");
498 fNext = 0;
499
500 // Add all the function arguments with no names.
501 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
502 AE = TheFunction->arg_end(); AI != AE; ++AI)
503 if (!AI->hasName())
504 CreateFunctionSlot(AI);
505
506 ST_DEBUG("Inserting Instructions:\n");
507
508 SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
509
510 // Add all of the basic blocks and instructions with no names.
511 for (Function::const_iterator BB = TheFunction->begin(),
512 E = TheFunction->end(); BB != E; ++BB) {
513 if (!BB->hasName())
514 CreateFunctionSlot(BB);
515
516 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
517 ++I) {
518 if (!I->getType()->isVoidTy() && !I->hasName())
519 CreateFunctionSlot(I);
520
521 // Intrinsics can directly use metadata. We allow direct calls to any
522 // llvm.foo function here, because the target may not be linked into the
523 // optimizer.
524 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
525 if (Function *F = CI->getCalledFunction())
526 if (F->getName().startswith("llvm."))
527 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
528 if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
529 CreateMetadataSlot(N);
530
531 // Add all the call attributes to the table.
532 AttributeSet Attrs = CI->getAttributes().getFnAttributes();
533 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
534 CreateAttributeSetSlot(Attrs);
535 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
536 // Add all the call attributes to the table.
537 AttributeSet Attrs = II->getAttributes().getFnAttributes();
538 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
539 CreateAttributeSetSlot(Attrs);
540 }
541
542 // Process metadata attached with this instruction.
543 I->getAllMetadata(MDForInst);
544 for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
545 CreateMetadataSlot(MDForInst[i].second);
546 MDForInst.clear();
547 }
548 }
549
550 FunctionProcessed = true;
551
552 ST_DEBUG("end processFunction!\n");
553 }
554
555 /// Clean up after incorporating a function. This is the only way to get out of
556 /// the function incorporation state that affects get*Slot/Create*Slot. Function
557 /// incorporation state is indicated by TheFunction != 0.
purgeFunction()558 void SlotTracker::purgeFunction() {
559 ST_DEBUG("begin purgeFunction!\n");
560 fMap.clear(); // Simply discard the function level map
561 TheFunction = 0;
562 FunctionProcessed = false;
563 ST_DEBUG("end purgeFunction!\n");
564 }
565
566 /// getGlobalSlot - Get the slot number of a global value.
getGlobalSlot(const GlobalValue * V)567 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
568 // Check for uninitialized state and do lazy initialization.
569 initialize();
570
571 // Find the value in the module map
572 ValueMap::iterator MI = mMap.find(V);
573 return MI == mMap.end() ? -1 : (int)MI->second;
574 }
575
576 /// getMetadataSlot - Get the slot number of a MDNode.
getMetadataSlot(const MDNode * N)577 int SlotTracker::getMetadataSlot(const MDNode *N) {
578 // Check for uninitialized state and do lazy initialization.
579 initialize();
580
581 // Find the MDNode in the module map
582 mdn_iterator MI = mdnMap.find(N);
583 return MI == mdnMap.end() ? -1 : (int)MI->second;
584 }
585
586
587 /// getLocalSlot - Get the slot number for a value that is local to a function.
getLocalSlot(const Value * V)588 int SlotTracker::getLocalSlot(const Value *V) {
589 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
590
591 // Check for uninitialized state and do lazy initialization.
592 initialize();
593
594 ValueMap::iterator FI = fMap.find(V);
595 return FI == fMap.end() ? -1 : (int)FI->second;
596 }
597
getAttributeGroupSlot(AttributeSet AS)598 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
599 // Check for uninitialized state and do lazy initialization.
600 initialize();
601
602 // Find the AttributeSet in the module map.
603 as_iterator AI = asMap.find(AS);
604 return AI == asMap.end() ? -1 : (int)AI->second;
605 }
606
607 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
CreateModuleSlot(const GlobalValue * V)608 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
609 assert(V && "Can't insert a null Value into SlotTracker!");
610 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
611 assert(!V->hasName() && "Doesn't need a slot!");
612
613 unsigned DestSlot = mNext++;
614 mMap[V] = DestSlot;
615
616 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
617 DestSlot << " [");
618 // G = Global, F = Function, A = Alias, o = other
619 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
620 (isa<Function>(V) ? 'F' :
621 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
622 }
623
624 /// CreateSlot - Create a new slot for the specified value if it has no name.
CreateFunctionSlot(const Value * V)625 void SlotTracker::CreateFunctionSlot(const Value *V) {
626 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
627
628 unsigned DestSlot = fNext++;
629 fMap[V] = DestSlot;
630
631 // G = Global, F = Function, o = other
632 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
633 DestSlot << " [o]\n");
634 }
635
636 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
CreateMetadataSlot(const MDNode * N)637 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
638 assert(N && "Can't insert a null Value into SlotTracker!");
639
640 // Don't insert if N is a function-local metadata, these are always printed
641 // inline.
642 if (!N->isFunctionLocal()) {
643 mdn_iterator I = mdnMap.find(N);
644 if (I != mdnMap.end())
645 return;
646
647 unsigned DestSlot = mdnNext++;
648 mdnMap[N] = DestSlot;
649 }
650
651 // Recursively add any MDNodes referenced by operands.
652 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
653 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
654 CreateMetadataSlot(Op);
655 }
656
CreateAttributeSetSlot(AttributeSet AS)657 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
658 assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
659 "Doesn't need a slot!");
660
661 as_iterator I = asMap.find(AS);
662 if (I != asMap.end())
663 return;
664
665 unsigned DestSlot = asNext++;
666 asMap[AS] = DestSlot;
667 }
668
669 //===----------------------------------------------------------------------===//
670 // AsmWriter Implementation
671 //===----------------------------------------------------------------------===//
672
673 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
674 TypePrinting *TypePrinter,
675 SlotTracker *Machine,
676 const Module *Context);
677
678
679
getPredicateText(unsigned predicate)680 static const char *getPredicateText(unsigned predicate) {
681 const char * pred = "unknown";
682 switch (predicate) {
683 case FCmpInst::FCMP_FALSE: pred = "false"; break;
684 case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
685 case FCmpInst::FCMP_OGT: pred = "ogt"; break;
686 case FCmpInst::FCMP_OGE: pred = "oge"; break;
687 case FCmpInst::FCMP_OLT: pred = "olt"; break;
688 case FCmpInst::FCMP_OLE: pred = "ole"; break;
689 case FCmpInst::FCMP_ONE: pred = "one"; break;
690 case FCmpInst::FCMP_ORD: pred = "ord"; break;
691 case FCmpInst::FCMP_UNO: pred = "uno"; break;
692 case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
693 case FCmpInst::FCMP_UGT: pred = "ugt"; break;
694 case FCmpInst::FCMP_UGE: pred = "uge"; break;
695 case FCmpInst::FCMP_ULT: pred = "ult"; break;
696 case FCmpInst::FCMP_ULE: pred = "ule"; break;
697 case FCmpInst::FCMP_UNE: pred = "une"; break;
698 case FCmpInst::FCMP_TRUE: pred = "true"; break;
699 case ICmpInst::ICMP_EQ: pred = "eq"; break;
700 case ICmpInst::ICMP_NE: pred = "ne"; break;
701 case ICmpInst::ICMP_SGT: pred = "sgt"; break;
702 case ICmpInst::ICMP_SGE: pred = "sge"; break;
703 case ICmpInst::ICMP_SLT: pred = "slt"; break;
704 case ICmpInst::ICMP_SLE: pred = "sle"; break;
705 case ICmpInst::ICMP_UGT: pred = "ugt"; break;
706 case ICmpInst::ICMP_UGE: pred = "uge"; break;
707 case ICmpInst::ICMP_ULT: pred = "ult"; break;
708 case ICmpInst::ICMP_ULE: pred = "ule"; break;
709 }
710 return pred;
711 }
712
writeAtomicRMWOperation(raw_ostream & Out,AtomicRMWInst::BinOp Op)713 static void writeAtomicRMWOperation(raw_ostream &Out,
714 AtomicRMWInst::BinOp Op) {
715 switch (Op) {
716 default: Out << " <unknown operation " << Op << ">"; break;
717 case AtomicRMWInst::Xchg: Out << " xchg"; break;
718 case AtomicRMWInst::Add: Out << " add"; break;
719 case AtomicRMWInst::Sub: Out << " sub"; break;
720 case AtomicRMWInst::And: Out << " and"; break;
721 case AtomicRMWInst::Nand: Out << " nand"; break;
722 case AtomicRMWInst::Or: Out << " or"; break;
723 case AtomicRMWInst::Xor: Out << " xor"; break;
724 case AtomicRMWInst::Max: Out << " max"; break;
725 case AtomicRMWInst::Min: Out << " min"; break;
726 case AtomicRMWInst::UMax: Out << " umax"; break;
727 case AtomicRMWInst::UMin: Out << " umin"; break;
728 }
729 }
730
WriteOptimizationInfo(raw_ostream & Out,const User * U)731 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
732 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
733 // Unsafe algebra implies all the others, no need to write them all out
734 if (FPO->hasUnsafeAlgebra())
735 Out << " fast";
736 else {
737 if (FPO->hasNoNaNs())
738 Out << " nnan";
739 if (FPO->hasNoInfs())
740 Out << " ninf";
741 if (FPO->hasNoSignedZeros())
742 Out << " nsz";
743 if (FPO->hasAllowReciprocal())
744 Out << " arcp";
745 }
746 }
747
748 if (const OverflowingBinaryOperator *OBO =
749 dyn_cast<OverflowingBinaryOperator>(U)) {
750 if (OBO->hasNoUnsignedWrap())
751 Out << " nuw";
752 if (OBO->hasNoSignedWrap())
753 Out << " nsw";
754 } else if (const PossiblyExactOperator *Div =
755 dyn_cast<PossiblyExactOperator>(U)) {
756 if (Div->isExact())
757 Out << " exact";
758 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
759 if (GEP->isInBounds())
760 Out << " inbounds";
761 }
762 }
763
WriteConstantInternal(raw_ostream & Out,const Constant * CV,TypePrinting & TypePrinter,SlotTracker * Machine,const Module * Context)764 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
765 TypePrinting &TypePrinter,
766 SlotTracker *Machine,
767 const Module *Context) {
768 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
769 if (CI->getType()->isIntegerTy(1)) {
770 Out << (CI->getZExtValue() ? "true" : "false");
771 return;
772 }
773 Out << CI->getValue();
774 return;
775 }
776
777 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
778 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
779 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
780 // We would like to output the FP constant value in exponential notation,
781 // but we cannot do this if doing so will lose precision. Check here to
782 // make sure that we only output it in exponential format if we can parse
783 // the value back and get the same value.
784 //
785 bool ignored;
786 bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
787 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
788 bool isInf = CFP->getValueAPF().isInfinity();
789 bool isNaN = CFP->getValueAPF().isNaN();
790 if (!isHalf && !isInf && !isNaN) {
791 double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
792 CFP->getValueAPF().convertToFloat();
793 SmallString<128> StrVal;
794 raw_svector_ostream(StrVal) << Val;
795
796 // Check to make sure that the stringized number is not some string like
797 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
798 // that the string matches the "[-+]?[0-9]" regex.
799 //
800 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
801 ((StrVal[0] == '-' || StrVal[0] == '+') &&
802 (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
803 // Reparse stringized version!
804 if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
805 Out << StrVal.str();
806 return;
807 }
808 }
809 }
810 // Otherwise we could not reparse it to exactly the same value, so we must
811 // output the string in hexadecimal format! Note that loading and storing
812 // floating point types changes the bits of NaNs on some hosts, notably
813 // x86, so we must not use these types.
814 assert(sizeof(double) == sizeof(uint64_t) &&
815 "assuming that double is 64 bits!");
816 char Buffer[40];
817 APFloat apf = CFP->getValueAPF();
818 // Halves and floats are represented in ASCII IR as double, convert.
819 if (!isDouble)
820 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
821 &ignored);
822 Out << "0x" <<
823 utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
824 Buffer+40);
825 return;
826 }
827
828 // Either half, or some form of long double.
829 // These appear as a magic letter identifying the type, then a
830 // fixed number of hex digits.
831 Out << "0x";
832 // Bit position, in the current word, of the next nibble to print.
833 int shiftcount;
834
835 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
836 Out << 'K';
837 // api needed to prevent premature destruction
838 APInt api = CFP->getValueAPF().bitcastToAPInt();
839 const uint64_t* p = api.getRawData();
840 uint64_t word = p[1];
841 shiftcount = 12;
842 int width = api.getBitWidth();
843 for (int j=0; j<width; j+=4, shiftcount-=4) {
844 unsigned int nibble = (word>>shiftcount) & 15;
845 if (nibble < 10)
846 Out << (unsigned char)(nibble + '0');
847 else
848 Out << (unsigned char)(nibble - 10 + 'A');
849 if (shiftcount == 0 && j+4 < width) {
850 word = *p;
851 shiftcount = 64;
852 if (width-j-4 < 64)
853 shiftcount = width-j-4;
854 }
855 }
856 return;
857 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
858 shiftcount = 60;
859 Out << 'L';
860 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
861 shiftcount = 60;
862 Out << 'M';
863 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
864 shiftcount = 12;
865 Out << 'H';
866 } else
867 llvm_unreachable("Unsupported floating point type");
868 // api needed to prevent premature destruction
869 APInt api = CFP->getValueAPF().bitcastToAPInt();
870 const uint64_t* p = api.getRawData();
871 uint64_t word = *p;
872 int width = api.getBitWidth();
873 for (int j=0; j<width; j+=4, shiftcount-=4) {
874 unsigned int nibble = (word>>shiftcount) & 15;
875 if (nibble < 10)
876 Out << (unsigned char)(nibble + '0');
877 else
878 Out << (unsigned char)(nibble - 10 + 'A');
879 if (shiftcount == 0 && j+4 < width) {
880 word = *(++p);
881 shiftcount = 64;
882 if (width-j-4 < 64)
883 shiftcount = width-j-4;
884 }
885 }
886 return;
887 }
888
889 if (isa<ConstantAggregateZero>(CV)) {
890 Out << "zeroinitializer";
891 return;
892 }
893
894 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
895 Out << "blockaddress(";
896 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
897 Context);
898 Out << ", ";
899 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
900 Context);
901 Out << ")";
902 return;
903 }
904
905 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
906 Type *ETy = CA->getType()->getElementType();
907 Out << '[';
908 TypePrinter.print(ETy, Out);
909 Out << ' ';
910 WriteAsOperandInternal(Out, CA->getOperand(0),
911 &TypePrinter, Machine,
912 Context);
913 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
914 Out << ", ";
915 TypePrinter.print(ETy, Out);
916 Out << ' ';
917 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
918 Context);
919 }
920 Out << ']';
921 return;
922 }
923
924 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
925 // As a special case, print the array as a string if it is an array of
926 // i8 with ConstantInt values.
927 if (CA->isString()) {
928 Out << "c\"";
929 PrintEscapedString(CA->getAsString(), Out);
930 Out << '"';
931 return;
932 }
933
934 Type *ETy = CA->getType()->getElementType();
935 Out << '[';
936 TypePrinter.print(ETy, Out);
937 Out << ' ';
938 WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
939 &TypePrinter, Machine,
940 Context);
941 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
942 Out << ", ";
943 TypePrinter.print(ETy, Out);
944 Out << ' ';
945 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
946 Machine, Context);
947 }
948 Out << ']';
949 return;
950 }
951
952
953 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
954 if (CS->getType()->isPacked())
955 Out << '<';
956 Out << '{';
957 unsigned N = CS->getNumOperands();
958 if (N) {
959 Out << ' ';
960 TypePrinter.print(CS->getOperand(0)->getType(), Out);
961 Out << ' ';
962
963 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
964 Context);
965
966 for (unsigned i = 1; i < N; i++) {
967 Out << ", ";
968 TypePrinter.print(CS->getOperand(i)->getType(), Out);
969 Out << ' ';
970
971 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
972 Context);
973 }
974 Out << ' ';
975 }
976
977 Out << '}';
978 if (CS->getType()->isPacked())
979 Out << '>';
980 return;
981 }
982
983 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
984 Type *ETy = CV->getType()->getVectorElementType();
985 Out << '<';
986 TypePrinter.print(ETy, Out);
987 Out << ' ';
988 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
989 Machine, Context);
990 for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
991 Out << ", ";
992 TypePrinter.print(ETy, Out);
993 Out << ' ';
994 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
995 Machine, Context);
996 }
997 Out << '>';
998 return;
999 }
1000
1001 if (isa<ConstantPointerNull>(CV)) {
1002 Out << "null";
1003 return;
1004 }
1005
1006 if (isa<UndefValue>(CV)) {
1007 Out << "undef";
1008 return;
1009 }
1010
1011 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1012 Out << CE->getOpcodeName();
1013 WriteOptimizationInfo(Out, CE);
1014 if (CE->isCompare())
1015 Out << ' ' << getPredicateText(CE->getPredicate());
1016 Out << " (";
1017
1018 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1019 TypePrinter.print((*OI)->getType(), Out);
1020 Out << ' ';
1021 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1022 if (OI+1 != CE->op_end())
1023 Out << ", ";
1024 }
1025
1026 if (CE->hasIndices()) {
1027 ArrayRef<unsigned> Indices = CE->getIndices();
1028 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1029 Out << ", " << Indices[i];
1030 }
1031
1032 if (CE->isCast()) {
1033 Out << " to ";
1034 TypePrinter.print(CE->getType(), Out);
1035 }
1036
1037 Out << ')';
1038 return;
1039 }
1040
1041 Out << "<placeholder or erroneous Constant>";
1042 }
1043
WriteMDNodeBodyInternal(raw_ostream & Out,const MDNode * Node,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1044 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1045 TypePrinting *TypePrinter,
1046 SlotTracker *Machine,
1047 const Module *Context) {
1048 Out << "!{";
1049 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1050 const Value *V = Node->getOperand(mi);
1051 if (V == 0)
1052 Out << "null";
1053 else {
1054 TypePrinter->print(V->getType(), Out);
1055 Out << ' ';
1056 WriteAsOperandInternal(Out, Node->getOperand(mi),
1057 TypePrinter, Machine, Context);
1058 }
1059 if (mi + 1 != me)
1060 Out << ", ";
1061 }
1062
1063 Out << "}";
1064 }
1065
1066
1067 /// WriteAsOperand - Write the name of the specified value out to the specified
1068 /// ostream. This can be useful when you just want to print int %reg126, not
1069 /// the whole instruction that generated it.
1070 ///
WriteAsOperandInternal(raw_ostream & Out,const Value * V,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1071 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1072 TypePrinting *TypePrinter,
1073 SlotTracker *Machine,
1074 const Module *Context) {
1075 if (V->hasName()) {
1076 PrintLLVMName(Out, V);
1077 return;
1078 }
1079
1080 const Constant *CV = dyn_cast<Constant>(V);
1081 if (CV && !isa<GlobalValue>(CV)) {
1082 assert(TypePrinter && "Constants require TypePrinting!");
1083 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1084 return;
1085 }
1086
1087 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1088 Out << "asm ";
1089 if (IA->hasSideEffects())
1090 Out << "sideeffect ";
1091 if (IA->isAlignStack())
1092 Out << "alignstack ";
1093 // We don't emit the AD_ATT dialect as it's the assumed default.
1094 if (IA->getDialect() == InlineAsm::AD_Intel)
1095 Out << "inteldialect ";
1096 Out << '"';
1097 PrintEscapedString(IA->getAsmString(), Out);
1098 Out << "\", \"";
1099 PrintEscapedString(IA->getConstraintString(), Out);
1100 Out << '"';
1101 return;
1102 }
1103
1104 if (const MDNode *N = dyn_cast<MDNode>(V)) {
1105 if (N->isFunctionLocal()) {
1106 // Print metadata inline, not via slot reference number.
1107 WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
1108 return;
1109 }
1110
1111 if (!Machine) {
1112 if (N->isFunctionLocal())
1113 Machine = new SlotTracker(N->getFunction());
1114 else
1115 Machine = new SlotTracker(Context);
1116 }
1117 int Slot = Machine->getMetadataSlot(N);
1118 if (Slot == -1)
1119 Out << "<badref>";
1120 else
1121 Out << '!' << Slot;
1122 return;
1123 }
1124
1125 if (const MDString *MDS = dyn_cast<MDString>(V)) {
1126 Out << "!\"";
1127 PrintEscapedString(MDS->getString(), Out);
1128 Out << '"';
1129 return;
1130 }
1131
1132 if (V->getValueID() == Value::PseudoSourceValueVal ||
1133 V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1134 V->print(Out);
1135 return;
1136 }
1137
1138 char Prefix = '%';
1139 int Slot;
1140 // If we have a SlotTracker, use it.
1141 if (Machine) {
1142 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1143 Slot = Machine->getGlobalSlot(GV);
1144 Prefix = '@';
1145 } else {
1146 Slot = Machine->getLocalSlot(V);
1147
1148 // If the local value didn't succeed, then we may be referring to a value
1149 // from a different function. Translate it, as this can happen when using
1150 // address of blocks.
1151 if (Slot == -1)
1152 if ((Machine = createSlotTracker(V))) {
1153 Slot = Machine->getLocalSlot(V);
1154 delete Machine;
1155 }
1156 }
1157 } else if ((Machine = createSlotTracker(V))) {
1158 // Otherwise, create one to get the # and then destroy it.
1159 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1160 Slot = Machine->getGlobalSlot(GV);
1161 Prefix = '@';
1162 } else {
1163 Slot = Machine->getLocalSlot(V);
1164 }
1165 delete Machine;
1166 Machine = 0;
1167 } else {
1168 Slot = -1;
1169 }
1170
1171 if (Slot != -1)
1172 Out << Prefix << Slot;
1173 else
1174 Out << "<badref>";
1175 }
1176
WriteAsOperand(raw_ostream & Out,const Value * V,bool PrintType,const Module * Context)1177 void WriteAsOperand(raw_ostream &Out, const Value *V,
1178 bool PrintType, const Module *Context) {
1179
1180 // Fast path: Don't construct and populate a TypePrinting object if we
1181 // won't be needing any types printed.
1182 if (!PrintType &&
1183 ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
1184 V->hasName() || isa<GlobalValue>(V))) {
1185 WriteAsOperandInternal(Out, V, 0, 0, Context);
1186 return;
1187 }
1188
1189 if (Context == 0) Context = getModuleFromVal(V);
1190
1191 TypePrinting TypePrinter;
1192 if (Context)
1193 TypePrinter.incorporateTypes(*Context);
1194 if (PrintType) {
1195 TypePrinter.print(V->getType(), Out);
1196 Out << ' ';
1197 }
1198
1199 WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
1200 }
1201
init()1202 void AssemblyWriter::init() {
1203 if (TheModule)
1204 TypePrinter.incorporateTypes(*TheModule);
1205 }
1206
1207
AssemblyWriter(formatted_raw_ostream & o,SlotTracker & Mac,const Module * M,AssemblyAnnotationWriter * AAW)1208 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1209 const Module *M,
1210 AssemblyAnnotationWriter *AAW)
1211 : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW) {
1212 init();
1213 }
1214
AssemblyWriter(formatted_raw_ostream & o,const Module * M,AssemblyAnnotationWriter * AAW)1215 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M,
1216 AssemblyAnnotationWriter *AAW)
1217 : Out(o), TheModule(M), ModuleSlotTracker(createSlotTracker(M)),
1218 Machine(*ModuleSlotTracker), AnnotationWriter(AAW) {
1219 init();
1220 }
1221
~AssemblyWriter()1222 AssemblyWriter::~AssemblyWriter() { }
1223
writeOperand(const Value * Operand,bool PrintType)1224 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1225 if (Operand == 0) {
1226 Out << "<null operand!>";
1227 return;
1228 }
1229 if (PrintType) {
1230 TypePrinter.print(Operand->getType(), Out);
1231 Out << ' ';
1232 }
1233 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1234 }
1235
writeAtomic(AtomicOrdering Ordering,SynchronizationScope SynchScope)1236 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
1237 SynchronizationScope SynchScope) {
1238 if (Ordering == NotAtomic)
1239 return;
1240
1241 switch (SynchScope) {
1242 case SingleThread: Out << " singlethread"; break;
1243 case CrossThread: break;
1244 }
1245
1246 switch (Ordering) {
1247 default: Out << " <bad ordering " << int(Ordering) << ">"; break;
1248 case Unordered: Out << " unordered"; break;
1249 case Monotonic: Out << " monotonic"; break;
1250 case Acquire: Out << " acquire"; break;
1251 case Release: Out << " release"; break;
1252 case AcquireRelease: Out << " acq_rel"; break;
1253 case SequentiallyConsistent: Out << " seq_cst"; break;
1254 }
1255 }
1256
writeParamOperand(const Value * Operand,AttributeSet Attrs,unsigned Idx)1257 void AssemblyWriter::writeParamOperand(const Value *Operand,
1258 AttributeSet Attrs, unsigned Idx) {
1259 if (Operand == 0) {
1260 Out << "<null operand!>";
1261 return;
1262 }
1263
1264 // Print the type
1265 TypePrinter.print(Operand->getType(), Out);
1266 // Print parameter attributes list
1267 if (Attrs.hasAttributes(Idx))
1268 Out << ' ' << Attrs.getAsString(Idx);
1269 Out << ' ';
1270 // Print the operand
1271 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1272 }
1273
printModule(const Module * M)1274 void AssemblyWriter::printModule(const Module *M) {
1275 Machine.initialize();
1276
1277 if (!M->getModuleIdentifier().empty() &&
1278 // Don't print the ID if it will start a new line (which would
1279 // require a comment char before it).
1280 M->getModuleIdentifier().find('\n') == std::string::npos)
1281 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1282
1283 if (!M->getDataLayout().empty())
1284 Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1285 if (!M->getTargetTriple().empty())
1286 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1287
1288 if (!M->getModuleInlineAsm().empty()) {
1289 // Split the string into lines, to make it easier to read the .ll file.
1290 std::string Asm = M->getModuleInlineAsm();
1291 size_t CurPos = 0;
1292 size_t NewLine = Asm.find_first_of('\n', CurPos);
1293 Out << '\n';
1294 while (NewLine != std::string::npos) {
1295 // We found a newline, print the portion of the asm string from the
1296 // last newline up to this newline.
1297 Out << "module asm \"";
1298 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1299 Out);
1300 Out << "\"\n";
1301 CurPos = NewLine+1;
1302 NewLine = Asm.find_first_of('\n', CurPos);
1303 }
1304 std::string rest(Asm.begin()+CurPos, Asm.end());
1305 if (!rest.empty()) {
1306 Out << "module asm \"";
1307 PrintEscapedString(rest, Out);
1308 Out << "\"\n";
1309 }
1310 }
1311
1312 printTypeIdentities();
1313
1314 // Output all globals.
1315 if (!M->global_empty()) Out << '\n';
1316 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1317 I != E; ++I) {
1318 printGlobal(I); Out << '\n';
1319 }
1320
1321 // Output all aliases.
1322 if (!M->alias_empty()) Out << "\n";
1323 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1324 I != E; ++I)
1325 printAlias(I);
1326
1327 // Output all of the functions.
1328 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1329 printFunction(I);
1330
1331 // Output all attribute groups.
1332 if (!Machine.as_empty()) {
1333 Out << '\n';
1334 writeAllAttributeGroups();
1335 }
1336
1337 // Output named metadata.
1338 if (!M->named_metadata_empty()) Out << '\n';
1339
1340 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1341 E = M->named_metadata_end(); I != E; ++I)
1342 printNamedMDNode(I);
1343
1344 // Output metadata.
1345 if (!Machine.mdn_empty()) {
1346 Out << '\n';
1347 writeAllMDNodes();
1348 }
1349 }
1350
printNamedMDNode(const NamedMDNode * NMD)1351 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1352 Out << '!';
1353 StringRef Name = NMD->getName();
1354 if (Name.empty()) {
1355 Out << "<empty name> ";
1356 } else {
1357 if (isalpha(static_cast<unsigned char>(Name[0])) ||
1358 Name[0] == '-' || Name[0] == '$' ||
1359 Name[0] == '.' || Name[0] == '_')
1360 Out << Name[0];
1361 else
1362 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
1363 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
1364 unsigned char C = Name[i];
1365 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
1366 C == '.' || C == '_')
1367 Out << C;
1368 else
1369 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
1370 }
1371 }
1372 Out << " = !{";
1373 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1374 if (i) Out << ", ";
1375 int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
1376 if (Slot == -1)
1377 Out << "<badref>";
1378 else
1379 Out << '!' << Slot;
1380 }
1381 Out << "}\n";
1382 }
1383
1384
PrintLinkage(GlobalValue::LinkageTypes LT,formatted_raw_ostream & Out)1385 static void PrintLinkage(GlobalValue::LinkageTypes LT,
1386 formatted_raw_ostream &Out) {
1387 switch (LT) {
1388 case GlobalValue::ExternalLinkage: break;
1389 case GlobalValue::PrivateLinkage: Out << "private "; break;
1390 case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1391 case GlobalValue::LinkerPrivateWeakLinkage:
1392 Out << "linker_private_weak ";
1393 break;
1394 case GlobalValue::InternalLinkage: Out << "internal "; break;
1395 case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
1396 case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
1397 case GlobalValue::LinkOnceODRAutoHideLinkage:
1398 Out << "linkonce_odr_auto_hide ";
1399 break;
1400 case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
1401 case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
1402 case GlobalValue::CommonLinkage: Out << "common "; break;
1403 case GlobalValue::AppendingLinkage: Out << "appending "; break;
1404 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
1405 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
1406 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1407 case GlobalValue::AvailableExternallyLinkage:
1408 Out << "available_externally ";
1409 break;
1410 }
1411 }
1412
1413
PrintVisibility(GlobalValue::VisibilityTypes Vis,formatted_raw_ostream & Out)1414 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1415 formatted_raw_ostream &Out) {
1416 switch (Vis) {
1417 case GlobalValue::DefaultVisibility: break;
1418 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1419 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1420 }
1421 }
1422
PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,formatted_raw_ostream & Out)1423 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
1424 formatted_raw_ostream &Out) {
1425 switch (TLM) {
1426 case GlobalVariable::NotThreadLocal:
1427 break;
1428 case GlobalVariable::GeneralDynamicTLSModel:
1429 Out << "thread_local ";
1430 break;
1431 case GlobalVariable::LocalDynamicTLSModel:
1432 Out << "thread_local(localdynamic) ";
1433 break;
1434 case GlobalVariable::InitialExecTLSModel:
1435 Out << "thread_local(initialexec) ";
1436 break;
1437 case GlobalVariable::LocalExecTLSModel:
1438 Out << "thread_local(localexec) ";
1439 break;
1440 }
1441 }
1442
printGlobal(const GlobalVariable * GV)1443 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1444 if (GV->isMaterializable())
1445 Out << "; Materializable\n";
1446
1447 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
1448 Out << " = ";
1449
1450 if (!GV->hasInitializer() && GV->hasExternalLinkage())
1451 Out << "external ";
1452
1453 PrintLinkage(GV->getLinkage(), Out);
1454 PrintVisibility(GV->getVisibility(), Out);
1455 PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
1456
1457 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1458 Out << "addrspace(" << AddressSpace << ") ";
1459 if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
1460 if (GV->isExternallyInitialized()) Out << "externally_initialized ";
1461 Out << (GV->isConstant() ? "constant " : "global ");
1462 TypePrinter.print(GV->getType()->getElementType(), Out);
1463
1464 if (GV->hasInitializer()) {
1465 Out << ' ';
1466 writeOperand(GV->getInitializer(), false);
1467 }
1468
1469 if (GV->hasSection()) {
1470 Out << ", section \"";
1471 PrintEscapedString(GV->getSection(), Out);
1472 Out << '"';
1473 }
1474 if (GV->getAlignment())
1475 Out << ", align " << GV->getAlignment();
1476
1477 printInfoComment(*GV);
1478 }
1479
printAlias(const GlobalAlias * GA)1480 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1481 if (GA->isMaterializable())
1482 Out << "; Materializable\n";
1483
1484 // Don't crash when dumping partially built GA
1485 if (!GA->hasName())
1486 Out << "<<nameless>> = ";
1487 else {
1488 PrintLLVMName(Out, GA);
1489 Out << " = ";
1490 }
1491 PrintVisibility(GA->getVisibility(), Out);
1492
1493 Out << "alias ";
1494
1495 PrintLinkage(GA->getLinkage(), Out);
1496
1497 const Constant *Aliasee = GA->getAliasee();
1498
1499 if (Aliasee == 0) {
1500 TypePrinter.print(GA->getType(), Out);
1501 Out << " <<NULL ALIASEE>>";
1502 } else {
1503 writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
1504 }
1505
1506 printInfoComment(*GA);
1507 Out << '\n';
1508 }
1509
printTypeIdentities()1510 void AssemblyWriter::printTypeIdentities() {
1511 if (TypePrinter.NumberedTypes.empty() &&
1512 TypePrinter.NamedTypes.empty())
1513 return;
1514
1515 Out << '\n';
1516
1517 // We know all the numbers that each type is used and we know that it is a
1518 // dense assignment. Convert the map to an index table.
1519 std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
1520 for (DenseMap<StructType*, unsigned>::iterator I =
1521 TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
1522 I != E; ++I) {
1523 assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
1524 NumberedTypes[I->second] = I->first;
1525 }
1526
1527 // Emit all numbered types.
1528 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1529 Out << '%' << i << " = type ";
1530
1531 // Make sure we print out at least one level of the type structure, so
1532 // that we do not get %2 = type %2
1533 TypePrinter.printStructBody(NumberedTypes[i], Out);
1534 Out << '\n';
1535 }
1536
1537 for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
1538 PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
1539 Out << " = type ";
1540
1541 // Make sure we print out at least one level of the type structure, so
1542 // that we do not get %FILE = type %FILE
1543 TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
1544 Out << '\n';
1545 }
1546 }
1547
1548 /// printFunction - Print all aspects of a function.
1549 ///
printFunction(const Function * F)1550 void AssemblyWriter::printFunction(const Function *F) {
1551 // Print out the return type and name.
1552 Out << '\n';
1553
1554 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1555
1556 if (F->isMaterializable())
1557 Out << "; Materializable\n";
1558
1559 const AttributeSet &Attrs = F->getAttributes();
1560 if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
1561 AttributeSet AS = Attrs.getFnAttributes();
1562 std::string AttrStr;
1563
1564 unsigned Idx = 0;
1565 for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
1566 if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
1567 break;
1568
1569 for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
1570 I != E; ++I) {
1571 Attribute Attr = *I;
1572 if (!Attr.isStringAttribute()) {
1573 if (!AttrStr.empty()) AttrStr += ' ';
1574 AttrStr += Attr.getAsString();
1575 }
1576 }
1577
1578 if (!AttrStr.empty())
1579 Out << "; Function Attrs: " << AttrStr << '\n';
1580 }
1581
1582 if (F->isDeclaration())
1583 Out << "declare ";
1584 else
1585 Out << "define ";
1586
1587 PrintLinkage(F->getLinkage(), Out);
1588 PrintVisibility(F->getVisibility(), Out);
1589
1590 // Print the calling convention.
1591 if (F->getCallingConv() != CallingConv::C) {
1592 PrintCallingConv(F->getCallingConv(), Out);
1593 Out << " ";
1594 }
1595
1596 FunctionType *FT = F->getFunctionType();
1597 if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
1598 Out << Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
1599 TypePrinter.print(F->getReturnType(), Out);
1600 Out << ' ';
1601 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1602 Out << '(';
1603 Machine.incorporateFunction(F);
1604
1605 // Loop over the arguments, printing them...
1606
1607 unsigned Idx = 1;
1608 if (!F->isDeclaration()) {
1609 // If this isn't a declaration, print the argument names as well.
1610 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1611 I != E; ++I) {
1612 // Insert commas as we go... the first arg doesn't get a comma
1613 if (I != F->arg_begin()) Out << ", ";
1614 printArgument(I, Attrs, Idx);
1615 Idx++;
1616 }
1617 } else {
1618 // Otherwise, print the types from the function type.
1619 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1620 // Insert commas as we go... the first arg doesn't get a comma
1621 if (i) Out << ", ";
1622
1623 // Output type...
1624 TypePrinter.print(FT->getParamType(i), Out);
1625
1626 if (Attrs.hasAttributes(i+1))
1627 Out << ' ' << Attrs.getAsString(i+1);
1628 }
1629 }
1630
1631 // Finish printing arguments...
1632 if (FT->isVarArg()) {
1633 if (FT->getNumParams()) Out << ", ";
1634 Out << "..."; // Output varargs portion of signature!
1635 }
1636 Out << ')';
1637 if (F->hasUnnamedAddr())
1638 Out << " unnamed_addr";
1639 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
1640 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
1641 if (F->hasSection()) {
1642 Out << " section \"";
1643 PrintEscapedString(F->getSection(), Out);
1644 Out << '"';
1645 }
1646 if (F->getAlignment())
1647 Out << " align " << F->getAlignment();
1648 if (F->hasGC())
1649 Out << " gc \"" << F->getGC() << '"';
1650 if (F->isDeclaration()) {
1651 Out << '\n';
1652 } else {
1653 Out << " {";
1654 // Output all of the function's basic blocks.
1655 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1656 printBasicBlock(I);
1657
1658 Out << "}\n";
1659 }
1660
1661 Machine.purgeFunction();
1662 }
1663
1664 /// printArgument - This member is called for every argument that is passed into
1665 /// the function. Simply print it out
1666 ///
printArgument(const Argument * Arg,AttributeSet Attrs,unsigned Idx)1667 void AssemblyWriter::printArgument(const Argument *Arg,
1668 AttributeSet Attrs, unsigned Idx) {
1669 // Output type...
1670 TypePrinter.print(Arg->getType(), Out);
1671
1672 // Output parameter attributes list
1673 if (Attrs.hasAttributes(Idx))
1674 Out << ' ' << Attrs.getAsString(Idx);
1675
1676 // Output name, if available...
1677 if (Arg->hasName()) {
1678 Out << ' ';
1679 PrintLLVMName(Out, Arg);
1680 }
1681 }
1682
1683 /// printBasicBlock - This member is called for each basic block in a method.
1684 ///
printBasicBlock(const BasicBlock * BB)1685 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1686 if (BB->hasName()) { // Print out the label if it exists...
1687 Out << "\n";
1688 PrintLLVMName(Out, BB->getName(), LabelPrefix);
1689 Out << ':';
1690 } else if (!BB->use_empty()) { // Don't print block # of no uses...
1691 Out << "\n; <label>:";
1692 int Slot = Machine.getLocalSlot(BB);
1693 if (Slot != -1)
1694 Out << Slot;
1695 else
1696 Out << "<badref>";
1697 }
1698
1699 if (BB->getParent() == 0) {
1700 Out.PadToColumn(50);
1701 Out << "; Error: Block without parent!";
1702 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
1703 // Output predecessors for the block.
1704 Out.PadToColumn(50);
1705 Out << ";";
1706 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1707
1708 if (PI == PE) {
1709 Out << " No predecessors!";
1710 } else {
1711 Out << " preds = ";
1712 writeOperand(*PI, false);
1713 for (++PI; PI != PE; ++PI) {
1714 Out << ", ";
1715 writeOperand(*PI, false);
1716 }
1717 }
1718 }
1719
1720 Out << "\n";
1721
1722 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1723
1724 // Output all of the instructions in the basic block...
1725 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1726 printInstructionLine(*I);
1727 }
1728
1729 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1730 }
1731
1732 /// printInstructionLine - Print an instruction and a newline character.
printInstructionLine(const Instruction & I)1733 void AssemblyWriter::printInstructionLine(const Instruction &I) {
1734 printInstruction(I);
1735 Out << '\n';
1736 }
1737
1738 /// printInfoComment - Print a little comment after the instruction indicating
1739 /// which slot it occupies.
1740 ///
printInfoComment(const Value & V)1741 void AssemblyWriter::printInfoComment(const Value &V) {
1742 if (AnnotationWriter)
1743 AnnotationWriter->printInfoComment(V, Out);
1744 }
1745
1746 // This member is called for each Instruction in a function..
printInstruction(const Instruction & I)1747 void AssemblyWriter::printInstruction(const Instruction &I) {
1748 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1749
1750 // Print out indentation for an instruction.
1751 Out << " ";
1752
1753 // Print out name if it exists...
1754 if (I.hasName()) {
1755 PrintLLVMName(Out, &I);
1756 Out << " = ";
1757 } else if (!I.getType()->isVoidTy()) {
1758 // Print out the def slot taken.
1759 int SlotNum = Machine.getLocalSlot(&I);
1760 if (SlotNum == -1)
1761 Out << "<badref> = ";
1762 else
1763 Out << '%' << SlotNum << " = ";
1764 }
1765
1766 if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall())
1767 Out << "tail ";
1768
1769 // Print out the opcode...
1770 Out << I.getOpcodeName();
1771
1772 // If this is an atomic load or store, print out the atomic marker.
1773 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
1774 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
1775 Out << " atomic";
1776
1777 // If this is a volatile operation, print out the volatile marker.
1778 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
1779 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
1780 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
1781 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
1782 Out << " volatile";
1783
1784 // Print out optimization information.
1785 WriteOptimizationInfo(Out, &I);
1786
1787 // Print out the compare instruction predicates
1788 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1789 Out << ' ' << getPredicateText(CI->getPredicate());
1790
1791 // Print out the atomicrmw operation
1792 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
1793 writeAtomicRMWOperation(Out, RMWI->getOperation());
1794
1795 // Print out the type of the operands...
1796 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1797
1798 // Special case conditional branches to swizzle the condition out to the front
1799 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1800 const BranchInst &BI(cast<BranchInst>(I));
1801 Out << ' ';
1802 writeOperand(BI.getCondition(), true);
1803 Out << ", ";
1804 writeOperand(BI.getSuccessor(0), true);
1805 Out << ", ";
1806 writeOperand(BI.getSuccessor(1), true);
1807
1808 } else if (isa<SwitchInst>(I)) {
1809 const SwitchInst& SI(cast<SwitchInst>(I));
1810 // Special case switch instruction to get formatting nice and correct.
1811 Out << ' ';
1812 writeOperand(SI.getCondition(), true);
1813 Out << ", ";
1814 writeOperand(SI.getDefaultDest(), true);
1815 Out << " [";
1816 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1817 i != e; ++i) {
1818 Out << "\n ";
1819 writeOperand(i.getCaseValue(), true);
1820 Out << ", ";
1821 writeOperand(i.getCaseSuccessor(), true);
1822 }
1823 Out << "\n ]";
1824 } else if (isa<IndirectBrInst>(I)) {
1825 // Special case indirectbr instruction to get formatting nice and correct.
1826 Out << ' ';
1827 writeOperand(Operand, true);
1828 Out << ", [";
1829
1830 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1831 if (i != 1)
1832 Out << ", ";
1833 writeOperand(I.getOperand(i), true);
1834 }
1835 Out << ']';
1836 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
1837 Out << ' ';
1838 TypePrinter.print(I.getType(), Out);
1839 Out << ' ';
1840
1841 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
1842 if (op) Out << ", ";
1843 Out << "[ ";
1844 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
1845 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
1846 }
1847 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1848 Out << ' ';
1849 writeOperand(I.getOperand(0), true);
1850 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1851 Out << ", " << *i;
1852 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1853 Out << ' ';
1854 writeOperand(I.getOperand(0), true); Out << ", ";
1855 writeOperand(I.getOperand(1), true);
1856 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1857 Out << ", " << *i;
1858 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
1859 Out << ' ';
1860 TypePrinter.print(I.getType(), Out);
1861 Out << " personality ";
1862 writeOperand(I.getOperand(0), true); Out << '\n';
1863
1864 if (LPI->isCleanup())
1865 Out << " cleanup";
1866
1867 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
1868 if (i != 0 || LPI->isCleanup()) Out << "\n";
1869 if (LPI->isCatch(i))
1870 Out << " catch ";
1871 else
1872 Out << " filter ";
1873
1874 writeOperand(LPI->getClause(i), true);
1875 }
1876 } else if (isa<ReturnInst>(I) && !Operand) {
1877 Out << " void";
1878 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1879 // Print the calling convention being used.
1880 if (CI->getCallingConv() != CallingConv::C) {
1881 Out << " ";
1882 PrintCallingConv(CI->getCallingConv(), Out);
1883 }
1884
1885 Operand = CI->getCalledValue();
1886 PointerType *PTy = cast<PointerType>(Operand->getType());
1887 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1888 Type *RetTy = FTy->getReturnType();
1889 const AttributeSet &PAL = CI->getAttributes();
1890
1891 if (PAL.hasAttributes(AttributeSet::ReturnIndex))
1892 Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
1893
1894 // If possible, print out the short form of the call instruction. We can
1895 // only do this if the first argument is a pointer to a nonvararg function,
1896 // and if the return type is not a pointer to a function.
1897 //
1898 Out << ' ';
1899 if (!FTy->isVarArg() &&
1900 (!RetTy->isPointerTy() ||
1901 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1902 TypePrinter.print(RetTy, Out);
1903 Out << ' ';
1904 writeOperand(Operand, false);
1905 } else {
1906 writeOperand(Operand, true);
1907 }
1908 Out << '(';
1909 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
1910 if (op > 0)
1911 Out << ", ";
1912 writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
1913 }
1914 Out << ')';
1915 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
1916 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
1917 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1918 Operand = II->getCalledValue();
1919 PointerType *PTy = cast<PointerType>(Operand->getType());
1920 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1921 Type *RetTy = FTy->getReturnType();
1922 const AttributeSet &PAL = II->getAttributes();
1923
1924 // Print the calling convention being used.
1925 if (II->getCallingConv() != CallingConv::C) {
1926 Out << " ";
1927 PrintCallingConv(II->getCallingConv(), Out);
1928 }
1929
1930 if (PAL.hasAttributes(AttributeSet::ReturnIndex))
1931 Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
1932
1933 // If possible, print out the short form of the invoke instruction. We can
1934 // only do this if the first argument is a pointer to a nonvararg function,
1935 // and if the return type is not a pointer to a function.
1936 //
1937 Out << ' ';
1938 if (!FTy->isVarArg() &&
1939 (!RetTy->isPointerTy() ||
1940 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1941 TypePrinter.print(RetTy, Out);
1942 Out << ' ';
1943 writeOperand(Operand, false);
1944 } else {
1945 writeOperand(Operand, true);
1946 }
1947 Out << '(';
1948 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
1949 if (op)
1950 Out << ", ";
1951 writeParamOperand(II->getArgOperand(op), PAL, op + 1);
1952 }
1953
1954 Out << ')';
1955 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
1956 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
1957
1958 Out << "\n to ";
1959 writeOperand(II->getNormalDest(), true);
1960 Out << " unwind ";
1961 writeOperand(II->getUnwindDest(), true);
1962
1963 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1964 Out << ' ';
1965 TypePrinter.print(AI->getAllocatedType(), Out);
1966 if (!AI->getArraySize() || AI->isArrayAllocation()) {
1967 Out << ", ";
1968 writeOperand(AI->getArraySize(), true);
1969 }
1970 if (AI->getAlignment()) {
1971 Out << ", align " << AI->getAlignment();
1972 }
1973 } else if (isa<CastInst>(I)) {
1974 if (Operand) {
1975 Out << ' ';
1976 writeOperand(Operand, true); // Work with broken code
1977 }
1978 Out << " to ";
1979 TypePrinter.print(I.getType(), Out);
1980 } else if (isa<VAArgInst>(I)) {
1981 if (Operand) {
1982 Out << ' ';
1983 writeOperand(Operand, true); // Work with broken code
1984 }
1985 Out << ", ";
1986 TypePrinter.print(I.getType(), Out);
1987 } else if (Operand) { // Print the normal way.
1988
1989 // PrintAllTypes - Instructions who have operands of all the same type
1990 // omit the type from all but the first operand. If the instruction has
1991 // different type operands (for example br), then they are all printed.
1992 bool PrintAllTypes = false;
1993 Type *TheType = Operand->getType();
1994
1995 // Select, Store and ShuffleVector always print all types.
1996 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1997 || isa<ReturnInst>(I)) {
1998 PrintAllTypes = true;
1999 } else {
2000 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
2001 Operand = I.getOperand(i);
2002 // note that Operand shouldn't be null, but the test helps make dump()
2003 // more tolerant of malformed IR
2004 if (Operand && Operand->getType() != TheType) {
2005 PrintAllTypes = true; // We have differing types! Print them all!
2006 break;
2007 }
2008 }
2009 }
2010
2011 if (!PrintAllTypes) {
2012 Out << ' ';
2013 TypePrinter.print(TheType, Out);
2014 }
2015
2016 Out << ' ';
2017 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
2018 if (i) Out << ", ";
2019 writeOperand(I.getOperand(i), PrintAllTypes);
2020 }
2021 }
2022
2023 // Print atomic ordering/alignment for memory operations
2024 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
2025 if (LI->isAtomic())
2026 writeAtomic(LI->getOrdering(), LI->getSynchScope());
2027 if (LI->getAlignment())
2028 Out << ", align " << LI->getAlignment();
2029 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
2030 if (SI->isAtomic())
2031 writeAtomic(SI->getOrdering(), SI->getSynchScope());
2032 if (SI->getAlignment())
2033 Out << ", align " << SI->getAlignment();
2034 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
2035 writeAtomic(CXI->getOrdering(), CXI->getSynchScope());
2036 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
2037 writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
2038 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
2039 writeAtomic(FI->getOrdering(), FI->getSynchScope());
2040 }
2041
2042 // Print Metadata info.
2043 SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
2044 I.getAllMetadata(InstMD);
2045 if (!InstMD.empty()) {
2046 SmallVector<StringRef, 8> MDNames;
2047 I.getType()->getContext().getMDKindNames(MDNames);
2048 for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
2049 unsigned Kind = InstMD[i].first;
2050 if (Kind < MDNames.size()) {
2051 Out << ", !" << MDNames[Kind];
2052 } else {
2053 Out << ", !<unknown kind #" << Kind << ">";
2054 }
2055 Out << ' ';
2056 WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
2057 TheModule);
2058 }
2059 }
2060 printInfoComment(I);
2061 }
2062
WriteMDNodeComment(const MDNode * Node,formatted_raw_ostream & Out)2063 static void WriteMDNodeComment(const MDNode *Node,
2064 formatted_raw_ostream &Out) {
2065 if (Node->getNumOperands() < 1)
2066 return;
2067
2068 Value *Op = Node->getOperand(0);
2069 if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32)
2070 return;
2071
2072 DIDescriptor Desc(Node);
2073 if (!Desc.Verify())
2074 return;
2075
2076 unsigned Tag = Desc.getTag();
2077 Out.PadToColumn(50);
2078 if (dwarf::TagString(Tag)) {
2079 Out << "; ";
2080 Desc.print(Out);
2081 } else if (Tag == dwarf::DW_TAG_user_base) {
2082 Out << "; [ DW_TAG_user_base ]";
2083 }
2084 }
2085
writeMDNode(unsigned Slot,const MDNode * Node)2086 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
2087 Out << '!' << Slot << " = metadata ";
2088 printMDNodeBody(Node);
2089 }
2090
writeAllMDNodes()2091 void AssemblyWriter::writeAllMDNodes() {
2092 SmallVector<const MDNode *, 16> Nodes;
2093 Nodes.resize(Machine.mdn_size());
2094 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2095 I != E; ++I)
2096 Nodes[I->second] = cast<MDNode>(I->first);
2097
2098 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2099 writeMDNode(i, Nodes[i]);
2100 }
2101 }
2102
printMDNodeBody(const MDNode * Node)2103 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2104 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
2105 WriteMDNodeComment(Node, Out);
2106 Out << "\n";
2107 }
2108
writeAllAttributeGroups()2109 void AssemblyWriter::writeAllAttributeGroups() {
2110 std::vector<std::pair<AttributeSet, unsigned> > asVec;
2111 asVec.resize(Machine.as_size());
2112
2113 for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
2114 I != E; ++I)
2115 asVec[I->second] = *I;
2116
2117 for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
2118 I = asVec.begin(), E = asVec.end(); I != E; ++I)
2119 Out << "attributes #" << I->second << " = { "
2120 << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
2121 }
2122
2123 } // namespace llvm
2124
2125 //===----------------------------------------------------------------------===//
2126 // External Interface declarations
2127 //===----------------------------------------------------------------------===//
2128
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW) const2129 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2130 SlotTracker SlotTable(this);
2131 formatted_raw_ostream OS(ROS);
2132 AssemblyWriter W(OS, SlotTable, this, AAW);
2133 W.printModule(this);
2134 }
2135
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW) const2136 void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2137 SlotTracker SlotTable(getParent());
2138 formatted_raw_ostream OS(ROS);
2139 AssemblyWriter W(OS, SlotTable, getParent(), AAW);
2140 W.printNamedMDNode(this);
2141 }
2142
print(raw_ostream & OS) const2143 void Type::print(raw_ostream &OS) const {
2144 if (this == 0) {
2145 OS << "<null Type>";
2146 return;
2147 }
2148 TypePrinting TP;
2149 TP.print(const_cast<Type*>(this), OS);
2150
2151 // If the type is a named struct type, print the body as well.
2152 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
2153 if (!STy->isLiteral()) {
2154 OS << " = type ";
2155 TP.printStructBody(STy, OS);
2156 }
2157 }
2158
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW) const2159 void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2160 if (this == 0) {
2161 ROS << "printing a <null> value\n";
2162 return;
2163 }
2164 formatted_raw_ostream OS(ROS);
2165 if (const Instruction *I = dyn_cast<Instruction>(this)) {
2166 const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2167 SlotTracker SlotTable(F);
2168 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2169 W.printInstruction(*I);
2170 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2171 SlotTracker SlotTable(BB->getParent());
2172 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2173 W.printBasicBlock(BB);
2174 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2175 SlotTracker SlotTable(GV->getParent());
2176 AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2177 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2178 W.printGlobal(V);
2179 else if (const Function *F = dyn_cast<Function>(GV))
2180 W.printFunction(F);
2181 else
2182 W.printAlias(cast<GlobalAlias>(GV));
2183 } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2184 const Function *F = N->getFunction();
2185 SlotTracker SlotTable(F);
2186 AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2187 W.printMDNodeBody(N);
2188 } else if (const Constant *C = dyn_cast<Constant>(this)) {
2189 TypePrinting TypePrinter;
2190 TypePrinter.print(C->getType(), OS);
2191 OS << ' ';
2192 WriteConstantInternal(OS, C, TypePrinter, 0, 0);
2193 } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2194 isa<Argument>(this)) {
2195 WriteAsOperand(OS, this, true, 0);
2196 } else {
2197 // Otherwise we don't know what it is. Call the virtual function to
2198 // allow a subclass to print itself.
2199 printCustom(OS);
2200 }
2201 }
2202
2203 // Value::printCustom - subclasses should override this to implement printing.
printCustom(raw_ostream & OS) const2204 void Value::printCustom(raw_ostream &OS) const {
2205 llvm_unreachable("Unknown value to print out!");
2206 }
2207
2208 // Value::dump - allow easy printing of Values from the debugger.
dump() const2209 void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2210
2211 // Type::dump - allow easy printing of Types from the debugger.
dump() const2212 void Type::dump() const { print(dbgs()); }
2213
2214 // Module::dump() - Allow printing of Modules from the debugger.
dump() const2215 void Module::dump() const { print(dbgs(), 0); }
2216
2217 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
dump() const2218 void NamedMDNode::dump() const { print(dbgs(), 0); }
2219