1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/InstrTypes.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/ValueSymbolTable.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/GetElementPtrTypeIterator.h"
29 #include "llvm/Support/LeakDetector.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Support/ValueHandle.h"
32 #include <algorithm>
33 using namespace llvm;
34
35 //===----------------------------------------------------------------------===//
36 // Value Class
37 //===----------------------------------------------------------------------===//
38
checkType(Type * Ty)39 static inline Type *checkType(Type *Ty) {
40 assert(Ty && "Value defined with a null type: Error!");
41 return const_cast<Type*>(Ty);
42 }
43
Value(Type * ty,unsigned scid)44 Value::Value(Type *ty, unsigned scid)
45 : SubclassID(scid), HasValueHandle(0),
46 SubclassOptionalData(0), SubclassData(0), VTy((Type*)checkType(ty)),
47 UseList(0), Name(0) {
48 // FIXME: Why isn't this in the subclass gunk??
49 // Note, we cannot call isa<CallInst> before the CallInst has been
50 // constructed.
51 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
52 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
53 "invalid CallInst type!");
54 else if (SubclassID != BasicBlockVal &&
55 (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
56 assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
57 "Cannot create non-first-class values except for constants!");
58 }
59
~Value()60 Value::~Value() {
61 // Notify all ValueHandles (if present) that this value is going away.
62 if (HasValueHandle)
63 ValueHandleBase::ValueIsDeleted(this);
64
65 #ifndef NDEBUG // Only in -g mode...
66 // Check to make sure that there are no uses of this value that are still
67 // around when the value is destroyed. If there are, then we have a dangling
68 // reference and something is wrong. This code is here to print out what is
69 // still being referenced. The value in question should be printed as
70 // a <badref>
71 //
72 if (!use_empty()) {
73 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
74 for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
75 dbgs() << "Use still stuck around after Def is destroyed:"
76 << **I << "\n";
77 }
78 #endif
79 assert(use_empty() && "Uses remain when a value is destroyed!");
80
81 // If this value is named, destroy the name. This should not be in a symtab
82 // at this point.
83 if (Name && SubclassID != MDStringVal)
84 Name->Destroy();
85
86 // There should be no uses of this object anymore, remove it.
87 LeakDetector::removeGarbageObject(this);
88 }
89
90 /// hasNUses - Return true if this Value has exactly N users.
91 ///
hasNUses(unsigned N) const92 bool Value::hasNUses(unsigned N) const {
93 const_use_iterator UI = use_begin(), E = use_end();
94
95 for (; N; --N, ++UI)
96 if (UI == E) return false; // Too few.
97 return UI == E;
98 }
99
100 /// hasNUsesOrMore - Return true if this value has N users or more. This is
101 /// logically equivalent to getNumUses() >= N.
102 ///
hasNUsesOrMore(unsigned N) const103 bool Value::hasNUsesOrMore(unsigned N) const {
104 const_use_iterator UI = use_begin(), E = use_end();
105
106 for (; N; --N, ++UI)
107 if (UI == E) return false; // Too few.
108
109 return true;
110 }
111
112 /// isUsedInBasicBlock - Return true if this value is used in the specified
113 /// basic block.
isUsedInBasicBlock(const BasicBlock * BB) const114 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
115 // This can be computed either by scanning the instructions in BB, or by
116 // scanning the use list of this Value. Both lists can be very long, but
117 // usually one is quite short.
118 //
119 // Scan both lists simultaneously until one is exhausted. This limits the
120 // search to the shorter list.
121 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
122 const_use_iterator UI = use_begin(), UE = use_end();
123 for (; BI != BE && UI != UE; ++BI, ++UI) {
124 // Scan basic block: Check if this Value is used by the instruction at BI.
125 if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
126 return true;
127 // Scan use list: Check if the use at UI is in BB.
128 const Instruction *User = dyn_cast<Instruction>(*UI);
129 if (User && User->getParent() == BB)
130 return true;
131 }
132 return false;
133 }
134
135
136 /// getNumUses - This method computes the number of uses of this Value. This
137 /// is a linear time operation. Use hasOneUse or hasNUses to check for specific
138 /// values.
getNumUses() const139 unsigned Value::getNumUses() const {
140 return (unsigned)std::distance(use_begin(), use_end());
141 }
142
getSymTab(Value * V,ValueSymbolTable * & ST)143 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
144 ST = 0;
145 if (Instruction *I = dyn_cast<Instruction>(V)) {
146 if (BasicBlock *P = I->getParent())
147 if (Function *PP = P->getParent())
148 ST = &PP->getValueSymbolTable();
149 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
150 if (Function *P = BB->getParent())
151 ST = &P->getValueSymbolTable();
152 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
153 if (Module *P = GV->getParent())
154 ST = &P->getValueSymbolTable();
155 } else if (Argument *A = dyn_cast<Argument>(V)) {
156 if (Function *P = A->getParent())
157 ST = &P->getValueSymbolTable();
158 } else if (isa<MDString>(V))
159 return true;
160 else {
161 assert(isa<Constant>(V) && "Unknown value type!");
162 return true; // no name is setable for this.
163 }
164 return false;
165 }
166
getName() const167 StringRef Value::getName() const {
168 // Make sure the empty string is still a C string. For historical reasons,
169 // some clients want to call .data() on the result and expect it to be null
170 // terminated.
171 if (!Name) return StringRef("", 0);
172 return Name->getKey();
173 }
174
setName(const Twine & NewName)175 void Value::setName(const Twine &NewName) {
176 assert(SubclassID != MDStringVal &&
177 "Cannot set the name of MDString with this method!");
178
179 // Fast path for common IRBuilder case of setName("") when there is no name.
180 if (NewName.isTriviallyEmpty() && !hasName())
181 return;
182
183 SmallString<256> NameData;
184 StringRef NameRef = NewName.toStringRef(NameData);
185
186 // Name isn't changing?
187 if (getName() == NameRef)
188 return;
189
190 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
191
192 // Get the symbol table to update for this object.
193 ValueSymbolTable *ST;
194 if (getSymTab(this, ST))
195 return; // Cannot set a name on this value (e.g. constant).
196
197 if (Function *F = dyn_cast<Function>(this))
198 getContext().pImpl->IntrinsicIDCache.erase(F);
199
200 if (!ST) { // No symbol table to update? Just do the change.
201 if (NameRef.empty()) {
202 // Free the name for this value.
203 Name->Destroy();
204 Name = 0;
205 return;
206 }
207
208 if (Name)
209 Name->Destroy();
210
211 // NOTE: Could optimize for the case the name is shrinking to not deallocate
212 // then reallocated.
213
214 // Create the new name.
215 Name = ValueName::Create(NameRef.begin(), NameRef.end());
216 Name->setValue(this);
217 return;
218 }
219
220 // NOTE: Could optimize for the case the name is shrinking to not deallocate
221 // then reallocated.
222 if (hasName()) {
223 // Remove old name.
224 ST->removeValueName(Name);
225 Name->Destroy();
226 Name = 0;
227
228 if (NameRef.empty())
229 return;
230 }
231
232 // Name is changing to something new.
233 Name = ST->createValueName(NameRef, this);
234 }
235
236
237 /// takeName - transfer the name from V to this value, setting V's name to
238 /// empty. It is an error to call V->takeName(V).
takeName(Value * V)239 void Value::takeName(Value *V) {
240 assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!");
241
242 ValueSymbolTable *ST = 0;
243 // If this value has a name, drop it.
244 if (hasName()) {
245 // Get the symtab this is in.
246 if (getSymTab(this, ST)) {
247 // We can't set a name on this value, but we need to clear V's name if
248 // it has one.
249 if (V->hasName()) V->setName("");
250 return; // Cannot set a name on this value (e.g. constant).
251 }
252
253 // Remove old name.
254 if (ST)
255 ST->removeValueName(Name);
256 Name->Destroy();
257 Name = 0;
258 }
259
260 // Now we know that this has no name.
261
262 // If V has no name either, we're done.
263 if (!V->hasName()) return;
264
265 // Get this's symtab if we didn't before.
266 if (!ST) {
267 if (getSymTab(this, ST)) {
268 // Clear V's name.
269 V->setName("");
270 return; // Cannot set a name on this value (e.g. constant).
271 }
272 }
273
274 // Get V's ST, this should always succed, because V has a name.
275 ValueSymbolTable *VST;
276 bool Failure = getSymTab(V, VST);
277 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
278
279 // If these values are both in the same symtab, we can do this very fast.
280 // This works even if both values have no symtab yet.
281 if (ST == VST) {
282 // Take the name!
283 Name = V->Name;
284 V->Name = 0;
285 Name->setValue(this);
286 return;
287 }
288
289 // Otherwise, things are slightly more complex. Remove V's name from VST and
290 // then reinsert it into ST.
291
292 if (VST)
293 VST->removeValueName(V->Name);
294 Name = V->Name;
295 V->Name = 0;
296 Name->setValue(this);
297
298 if (ST)
299 ST->reinsertValue(this);
300 }
301
302
replaceAllUsesWith(Value * New)303 void Value::replaceAllUsesWith(Value *New) {
304 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
305 assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
306 assert(New->getType() == getType() &&
307 "replaceAllUses of value with new value of different type!");
308
309 // Notify all ValueHandles (if present) that this value is going away.
310 if (HasValueHandle)
311 ValueHandleBase::ValueIsRAUWd(this, New);
312
313 while (!use_empty()) {
314 Use &U = *UseList;
315 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
316 // constant because they are uniqued.
317 if (Constant *C = dyn_cast<Constant>(U.getUser())) {
318 if (!isa<GlobalValue>(C)) {
319 C->replaceUsesOfWithOnConstant(this, New, &U);
320 continue;
321 }
322 }
323
324 U.set(New);
325 }
326
327 if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
328 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
329 }
330
331 namespace {
332 // Various metrics for how much to strip off of pointers.
333 enum PointerStripKind {
334 PSK_ZeroIndices,
335 PSK_ZeroIndicesAndAliases,
336 PSK_InBoundsConstantIndices,
337 PSK_InBounds
338 };
339
340 template <PointerStripKind StripKind>
stripPointerCastsAndOffsets(Value * V)341 static Value *stripPointerCastsAndOffsets(Value *V) {
342 if (!V->getType()->isPointerTy())
343 return V;
344
345 // Even though we don't look through PHI nodes, we could be called on an
346 // instruction in an unreachable block, which may be on a cycle.
347 SmallPtrSet<Value *, 4> Visited;
348
349 Visited.insert(V);
350 do {
351 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
352 switch (StripKind) {
353 case PSK_ZeroIndicesAndAliases:
354 case PSK_ZeroIndices:
355 if (!GEP->hasAllZeroIndices())
356 return V;
357 break;
358 case PSK_InBoundsConstantIndices:
359 if (!GEP->hasAllConstantIndices())
360 return V;
361 // fallthrough
362 case PSK_InBounds:
363 if (!GEP->isInBounds())
364 return V;
365 break;
366 }
367 V = GEP->getPointerOperand();
368 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
369 V = cast<Operator>(V)->getOperand(0);
370 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
371 if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden())
372 return V;
373 V = GA->getAliasee();
374 } else {
375 return V;
376 }
377 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
378 } while (Visited.insert(V));
379
380 return V;
381 }
382 } // namespace
383
stripPointerCasts()384 Value *Value::stripPointerCasts() {
385 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
386 }
387
stripPointerCastsNoFollowAliases()388 Value *Value::stripPointerCastsNoFollowAliases() {
389 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
390 }
391
stripInBoundsConstantOffsets()392 Value *Value::stripInBoundsConstantOffsets() {
393 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
394 }
395
stripInBoundsOffsets()396 Value *Value::stripInBoundsOffsets() {
397 return stripPointerCastsAndOffsets<PSK_InBounds>(this);
398 }
399
400 /// isDereferenceablePointer - Test if this value is always a pointer to
401 /// allocated and suitably aligned memory for a simple load or store.
isDereferenceablePointer(const Value * V,SmallPtrSet<const Value *,32> & Visited)402 static bool isDereferenceablePointer(const Value *V,
403 SmallPtrSet<const Value *, 32> &Visited) {
404 // Note that it is not safe to speculate into a malloc'd region because
405 // malloc may return null.
406 // It's also not always safe to follow a bitcast, for example:
407 // bitcast i8* (alloca i8) to i32*
408 // would result in a 4-byte load from a 1-byte alloca. Some cases could
409 // be handled using DataLayout to check sizes and alignments though.
410
411 // These are obviously ok.
412 if (isa<AllocaInst>(V)) return true;
413
414 // Global variables which can't collapse to null are ok.
415 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
416 return !GV->hasExternalWeakLinkage();
417
418 // byval arguments are ok.
419 if (const Argument *A = dyn_cast<Argument>(V))
420 return A->hasByValAttr();
421
422 // For GEPs, determine if the indexing lands within the allocated object.
423 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
424 // Conservatively require that the base pointer be fully dereferenceable.
425 if (!Visited.insert(GEP->getOperand(0)))
426 return false;
427 if (!isDereferenceablePointer(GEP->getOperand(0), Visited))
428 return false;
429 // Check the indices.
430 gep_type_iterator GTI = gep_type_begin(GEP);
431 for (User::const_op_iterator I = GEP->op_begin()+1,
432 E = GEP->op_end(); I != E; ++I) {
433 Value *Index = *I;
434 Type *Ty = *GTI++;
435 // Struct indices can't be out of bounds.
436 if (isa<StructType>(Ty))
437 continue;
438 ConstantInt *CI = dyn_cast<ConstantInt>(Index);
439 if (!CI)
440 return false;
441 // Zero is always ok.
442 if (CI->isZero())
443 continue;
444 // Check to see that it's within the bounds of an array.
445 ArrayType *ATy = dyn_cast<ArrayType>(Ty);
446 if (!ATy)
447 return false;
448 if (CI->getValue().getActiveBits() > 64)
449 return false;
450 if (CI->getZExtValue() >= ATy->getNumElements())
451 return false;
452 }
453 // Indices check out; this is dereferenceable.
454 return true;
455 }
456
457 // If we don't know, assume the worst.
458 return false;
459 }
460
461 /// isDereferenceablePointer - Test if this value is always a pointer to
462 /// allocated and suitably aligned memory for a simple load or store.
isDereferenceablePointer() const463 bool Value::isDereferenceablePointer() const {
464 SmallPtrSet<const Value *, 32> Visited;
465 return ::isDereferenceablePointer(this, Visited);
466 }
467
468 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
469 /// return the value in the PHI node corresponding to PredBB. If not, return
470 /// ourself. This is useful if you want to know the value something has in a
471 /// predecessor block.
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)472 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
473 const BasicBlock *PredBB) {
474 PHINode *PN = dyn_cast<PHINode>(this);
475 if (PN && PN->getParent() == CurBB)
476 return PN->getIncomingValueForBlock(PredBB);
477 return this;
478 }
479
getContext() const480 LLVMContext &Value::getContext() const { return VTy->getContext(); }
481
482 //===----------------------------------------------------------------------===//
483 // ValueHandleBase Class
484 //===----------------------------------------------------------------------===//
485
486 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
487 /// List is known to point into the existing use list.
AddToExistingUseList(ValueHandleBase ** List)488 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
489 assert(List && "Handle list is null?");
490
491 // Splice ourselves into the list.
492 Next = *List;
493 *List = this;
494 setPrevPtr(List);
495 if (Next) {
496 Next->setPrevPtr(&Next);
497 assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?");
498 }
499 }
500
AddToExistingUseListAfter(ValueHandleBase * List)501 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
502 assert(List && "Must insert after existing node");
503
504 Next = List->Next;
505 setPrevPtr(&List->Next);
506 List->Next = this;
507 if (Next)
508 Next->setPrevPtr(&Next);
509 }
510
511 /// AddToUseList - Add this ValueHandle to the use list for VP.
AddToUseList()512 void ValueHandleBase::AddToUseList() {
513 assert(VP.getPointer() && "Null pointer doesn't have a use list!");
514
515 LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
516
517 if (VP.getPointer()->HasValueHandle) {
518 // If this value already has a ValueHandle, then it must be in the
519 // ValueHandles map already.
520 ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()];
521 assert(Entry != 0 && "Value doesn't have any handles?");
522 AddToExistingUseList(&Entry);
523 return;
524 }
525
526 // Ok, it doesn't have any handles yet, so we must insert it into the
527 // DenseMap. However, doing this insertion could cause the DenseMap to
528 // reallocate itself, which would invalidate all of the PrevP pointers that
529 // point into the old table. Handle this by checking for reallocation and
530 // updating the stale pointers only if needed.
531 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
532 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
533
534 ValueHandleBase *&Entry = Handles[VP.getPointer()];
535 assert(Entry == 0 && "Value really did already have handles?");
536 AddToExistingUseList(&Entry);
537 VP.getPointer()->HasValueHandle = true;
538
539 // If reallocation didn't happen or if this was the first insertion, don't
540 // walk the table.
541 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
542 Handles.size() == 1) {
543 return;
544 }
545
546 // Okay, reallocation did happen. Fix the Prev Pointers.
547 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
548 E = Handles.end(); I != E; ++I) {
549 assert(I->second && I->first == I->second->VP.getPointer() &&
550 "List invariant broken!");
551 I->second->setPrevPtr(&I->second);
552 }
553 }
554
555 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
RemoveFromUseList()556 void ValueHandleBase::RemoveFromUseList() {
557 assert(VP.getPointer() && VP.getPointer()->HasValueHandle &&
558 "Pointer doesn't have a use list!");
559
560 // Unlink this from its use list.
561 ValueHandleBase **PrevPtr = getPrevPtr();
562 assert(*PrevPtr == this && "List invariant broken");
563
564 *PrevPtr = Next;
565 if (Next) {
566 assert(Next->getPrevPtr() == &Next && "List invariant broken");
567 Next->setPrevPtr(PrevPtr);
568 return;
569 }
570
571 // If the Next pointer was null, then it is possible that this was the last
572 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
573 // map.
574 LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
575 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
576 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
577 Handles.erase(VP.getPointer());
578 VP.getPointer()->HasValueHandle = false;
579 }
580 }
581
582
ValueIsDeleted(Value * V)583 void ValueHandleBase::ValueIsDeleted(Value *V) {
584 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
585
586 // Get the linked list base, which is guaranteed to exist since the
587 // HasValueHandle flag is set.
588 LLVMContextImpl *pImpl = V->getContext().pImpl;
589 ValueHandleBase *Entry = pImpl->ValueHandles[V];
590 assert(Entry && "Value bit set but no entries exist");
591
592 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
593 // and remove themselves from the list without breaking our iteration. This
594 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
595 // Note that we deliberately do not the support the case when dropping a value
596 // handle results in a new value handle being permanently added to the list
597 // (as might occur in theory for CallbackVH's): the new value handle will not
598 // be processed and the checking code will mete out righteous punishment if
599 // the handle is still present once we have finished processing all the other
600 // value handles (it is fine to momentarily add then remove a value handle).
601 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
602 Iterator.RemoveFromUseList();
603 Iterator.AddToExistingUseListAfter(Entry);
604 assert(Entry->Next == &Iterator && "Loop invariant broken.");
605
606 switch (Entry->getKind()) {
607 case Assert:
608 break;
609 case Tracking:
610 // Mark that this value has been deleted by setting it to an invalid Value
611 // pointer.
612 Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
613 break;
614 case Weak:
615 // Weak just goes to null, which will unlink it from the list.
616 Entry->operator=(0);
617 break;
618 case Callback:
619 // Forward to the subclass's implementation.
620 static_cast<CallbackVH*>(Entry)->deleted();
621 break;
622 }
623 }
624
625 // All callbacks, weak references, and assertingVHs should be dropped by now.
626 if (V->HasValueHandle) {
627 #ifndef NDEBUG // Only in +Asserts mode...
628 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
629 << "\n";
630 if (pImpl->ValueHandles[V]->getKind() == Assert)
631 llvm_unreachable("An asserting value handle still pointed to this"
632 " value!");
633
634 #endif
635 llvm_unreachable("All references to V were not removed?");
636 }
637 }
638
639
ValueIsRAUWd(Value * Old,Value * New)640 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
641 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
642 assert(Old != New && "Changing value into itself!");
643
644 // Get the linked list base, which is guaranteed to exist since the
645 // HasValueHandle flag is set.
646 LLVMContextImpl *pImpl = Old->getContext().pImpl;
647 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
648
649 assert(Entry && "Value bit set but no entries exist");
650
651 // We use a local ValueHandleBase as an iterator so that
652 // ValueHandles can add and remove themselves from the list without
653 // breaking our iteration. This is not really an AssertingVH; we
654 // just have to give ValueHandleBase some kind.
655 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
656 Iterator.RemoveFromUseList();
657 Iterator.AddToExistingUseListAfter(Entry);
658 assert(Entry->Next == &Iterator && "Loop invariant broken.");
659
660 switch (Entry->getKind()) {
661 case Assert:
662 // Asserting handle does not follow RAUW implicitly.
663 break;
664 case Tracking:
665 // Tracking goes to new value like a WeakVH. Note that this may make it
666 // something incompatible with its templated type. We don't want to have a
667 // virtual (or inline) interface to handle this though, so instead we make
668 // the TrackingVH accessors guarantee that a client never sees this value.
669
670 // FALLTHROUGH
671 case Weak:
672 // Weak goes to the new value, which will unlink it from Old's list.
673 Entry->operator=(New);
674 break;
675 case Callback:
676 // Forward to the subclass's implementation.
677 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
678 break;
679 }
680 }
681
682 #ifndef NDEBUG
683 // If any new tracking or weak value handles were added while processing the
684 // list, then complain about it now.
685 if (Old->HasValueHandle)
686 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
687 switch (Entry->getKind()) {
688 case Tracking:
689 case Weak:
690 dbgs() << "After RAUW from " << *Old->getType() << " %"
691 << Old->getName() << " to " << *New->getType() << " %"
692 << New->getName() << "\n";
693 llvm_unreachable("A tracking or weak value handle still pointed to the"
694 " old value!\n");
695 default:
696 break;
697 }
698 #endif
699 }
700
701 // Default implementation for CallbackVH.
allUsesReplacedWith(Value *)702 void CallbackVH::allUsesReplacedWith(Value *) {}
703
deleted()704 void CallbackVH::deleted() {
705 setValPtr(NULL);
706 }
707