1 //===- llvm/ADT/SmallPtrSet.cpp - 'Normally small' pointer set ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SmallPtrSet class. See SmallPtrSet.h for an
11 // overview of the algorithm.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/Support/MathExtras.h"
18 #include <algorithm>
19 #include <cstdlib>
20
21 using namespace llvm;
22
shrink_and_clear()23 void SmallPtrSetImpl::shrink_and_clear() {
24 assert(!isSmall() && "Can't shrink a small set!");
25 free(CurArray);
26
27 // Reduce the number of buckets.
28 CurArraySize = NumElements > 16 ? 1 << (Log2_32_Ceil(NumElements) + 1) : 32;
29 NumElements = NumTombstones = 0;
30
31 // Install the new array. Clear all the buckets to empty.
32 CurArray = (const void**)malloc(sizeof(void*) * CurArraySize);
33 assert(CurArray && "Failed to allocate memory?");
34 memset(CurArray, -1, CurArraySize*sizeof(void*));
35 }
36
insert_imp(const void * Ptr)37 bool SmallPtrSetImpl::insert_imp(const void * Ptr) {
38 if (isSmall()) {
39 // Check to see if it is already in the set.
40 for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
41 APtr != E; ++APtr)
42 if (*APtr == Ptr)
43 return false;
44
45 // Nope, there isn't. If we stay small, just 'pushback' now.
46 if (NumElements < CurArraySize-1) {
47 SmallArray[NumElements++] = Ptr;
48 return true;
49 }
50 // Otherwise, hit the big set case, which will call grow.
51 }
52
53 if (NumElements*4 >= CurArraySize*3) {
54 // If more than 3/4 of the array is full, grow.
55 Grow(CurArraySize < 64 ? 128 : CurArraySize*2);
56 } else if (CurArraySize-(NumElements+NumTombstones) < CurArraySize/8) {
57 // If fewer of 1/8 of the array is empty (meaning that many are filled with
58 // tombstones), rehash.
59 Grow(CurArraySize);
60 }
61
62 // Okay, we know we have space. Find a hash bucket.
63 const void **Bucket = const_cast<const void**>(FindBucketFor(Ptr));
64 if (*Bucket == Ptr) return false; // Already inserted, good.
65
66 // Otherwise, insert it!
67 if (*Bucket == getTombstoneMarker())
68 --NumTombstones;
69 *Bucket = Ptr;
70 ++NumElements; // Track density.
71 return true;
72 }
73
erase_imp(const void * Ptr)74 bool SmallPtrSetImpl::erase_imp(const void * Ptr) {
75 if (isSmall()) {
76 // Check to see if it is in the set.
77 for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
78 APtr != E; ++APtr)
79 if (*APtr == Ptr) {
80 // If it is in the set, replace this element.
81 *APtr = E[-1];
82 E[-1] = getEmptyMarker();
83 --NumElements;
84 return true;
85 }
86
87 return false;
88 }
89
90 // Okay, we know we have space. Find a hash bucket.
91 void **Bucket = const_cast<void**>(FindBucketFor(Ptr));
92 if (*Bucket != Ptr) return false; // Not in the set?
93
94 // Set this as a tombstone.
95 *Bucket = getTombstoneMarker();
96 --NumElements;
97 ++NumTombstones;
98 return true;
99 }
100
FindBucketFor(const void * Ptr) const101 const void * const *SmallPtrSetImpl::FindBucketFor(const void *Ptr) const {
102 unsigned Bucket = DenseMapInfo<void *>::getHashValue(Ptr) & (CurArraySize-1);
103 unsigned ArraySize = CurArraySize;
104 unsigned ProbeAmt = 1;
105 const void *const *Array = CurArray;
106 const void *const *Tombstone = 0;
107 while (1) {
108 // Found Ptr's bucket?
109 if (Array[Bucket] == Ptr)
110 return Array+Bucket;
111
112 // If we found an empty bucket, the pointer doesn't exist in the set.
113 // Return a tombstone if we've seen one so far, or the empty bucket if
114 // not.
115 if (Array[Bucket] == getEmptyMarker())
116 return Tombstone ? Tombstone : Array+Bucket;
117
118 // If this is a tombstone, remember it. If Ptr ends up not in the set, we
119 // prefer to return it than something that would require more probing.
120 if (Array[Bucket] == getTombstoneMarker() && !Tombstone)
121 Tombstone = Array+Bucket; // Remember the first tombstone found.
122
123 // It's a hash collision or a tombstone. Reprobe.
124 Bucket = (Bucket + ProbeAmt++) & (ArraySize-1);
125 }
126 }
127
128 /// Grow - Allocate a larger backing store for the buckets and move it over.
129 ///
Grow(unsigned NewSize)130 void SmallPtrSetImpl::Grow(unsigned NewSize) {
131 // Allocate at twice as many buckets, but at least 128.
132 unsigned OldSize = CurArraySize;
133
134 const void **OldBuckets = CurArray;
135 bool WasSmall = isSmall();
136
137 // Install the new array. Clear all the buckets to empty.
138 CurArray = (const void**)malloc(sizeof(void*) * NewSize);
139 assert(CurArray && "Failed to allocate memory?");
140 CurArraySize = NewSize;
141 memset(CurArray, -1, NewSize*sizeof(void*));
142
143 // Copy over all the elements.
144 if (WasSmall) {
145 // Small sets store their elements in order.
146 for (const void **BucketPtr = OldBuckets, **E = OldBuckets+NumElements;
147 BucketPtr != E; ++BucketPtr) {
148 const void *Elt = *BucketPtr;
149 *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
150 }
151 } else {
152 // Copy over all valid entries.
153 for (const void **BucketPtr = OldBuckets, **E = OldBuckets+OldSize;
154 BucketPtr != E; ++BucketPtr) {
155 // Copy over the element if it is valid.
156 const void *Elt = *BucketPtr;
157 if (Elt != getTombstoneMarker() && Elt != getEmptyMarker())
158 *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
159 }
160
161 free(OldBuckets);
162 NumTombstones = 0;
163 }
164 }
165
SmallPtrSetImpl(const void ** SmallStorage,const SmallPtrSetImpl & that)166 SmallPtrSetImpl::SmallPtrSetImpl(const void **SmallStorage,
167 const SmallPtrSetImpl& that) {
168 SmallArray = SmallStorage;
169
170 // If we're becoming small, prepare to insert into our stack space
171 if (that.isSmall()) {
172 CurArray = SmallArray;
173 // Otherwise, allocate new heap space (unless we were the same size)
174 } else {
175 CurArray = (const void**)malloc(sizeof(void*) * that.CurArraySize);
176 assert(CurArray && "Failed to allocate memory?");
177 }
178
179 // Copy over the new array size
180 CurArraySize = that.CurArraySize;
181
182 // Copy over the contents from the other set
183 memcpy(CurArray, that.CurArray, sizeof(void*)*CurArraySize);
184
185 NumElements = that.NumElements;
186 NumTombstones = that.NumTombstones;
187 }
188
189 /// CopyFrom - implement operator= from a smallptrset that has the same pointer
190 /// type, but may have a different small size.
CopyFrom(const SmallPtrSetImpl & RHS)191 void SmallPtrSetImpl::CopyFrom(const SmallPtrSetImpl &RHS) {
192 if (isSmall() && RHS.isSmall())
193 assert(CurArraySize == RHS.CurArraySize &&
194 "Cannot assign sets with different small sizes");
195
196 // If we're becoming small, prepare to insert into our stack space
197 if (RHS.isSmall()) {
198 if (!isSmall())
199 free(CurArray);
200 CurArray = SmallArray;
201 // Otherwise, allocate new heap space (unless we were the same size)
202 } else if (CurArraySize != RHS.CurArraySize) {
203 if (isSmall())
204 CurArray = (const void**)malloc(sizeof(void*) * RHS.CurArraySize);
205 else
206 CurArray = (const void**)realloc(CurArray, sizeof(void*)*RHS.CurArraySize);
207 assert(CurArray && "Failed to allocate memory?");
208 }
209
210 // Copy over the new array size
211 CurArraySize = RHS.CurArraySize;
212
213 // Copy over the contents from the other set
214 memcpy(CurArray, RHS.CurArray, sizeof(void*)*CurArraySize);
215
216 NumElements = RHS.NumElements;
217 NumTombstones = RHS.NumTombstones;
218 }
219
swap(SmallPtrSetImpl & RHS)220 void SmallPtrSetImpl::swap(SmallPtrSetImpl &RHS) {
221 if (this == &RHS) return;
222
223 // We can only avoid copying elements if neither set is small.
224 if (!this->isSmall() && !RHS.isSmall()) {
225 std::swap(this->CurArray, RHS.CurArray);
226 std::swap(this->CurArraySize, RHS.CurArraySize);
227 std::swap(this->NumElements, RHS.NumElements);
228 std::swap(this->NumTombstones, RHS.NumTombstones);
229 return;
230 }
231
232 // FIXME: From here on we assume that both sets have the same small size.
233
234 // If only RHS is small, copy the small elements into LHS and move the pointer
235 // from LHS to RHS.
236 if (!this->isSmall() && RHS.isSmall()) {
237 std::copy(RHS.SmallArray, RHS.SmallArray+RHS.CurArraySize,
238 this->SmallArray);
239 std::swap(this->NumElements, RHS.NumElements);
240 std::swap(this->CurArraySize, RHS.CurArraySize);
241 RHS.CurArray = this->CurArray;
242 RHS.NumTombstones = this->NumTombstones;
243 this->CurArray = this->SmallArray;
244 this->NumTombstones = 0;
245 return;
246 }
247
248 // If only LHS is small, copy the small elements into RHS and move the pointer
249 // from RHS to LHS.
250 if (this->isSmall() && !RHS.isSmall()) {
251 std::copy(this->SmallArray, this->SmallArray+this->CurArraySize,
252 RHS.SmallArray);
253 std::swap(RHS.NumElements, this->NumElements);
254 std::swap(RHS.CurArraySize, this->CurArraySize);
255 this->CurArray = RHS.CurArray;
256 this->NumTombstones = RHS.NumTombstones;
257 RHS.CurArray = RHS.SmallArray;
258 RHS.NumTombstones = 0;
259 return;
260 }
261
262 // Both a small, just swap the small elements.
263 assert(this->isSmall() && RHS.isSmall());
264 assert(this->CurArraySize == RHS.CurArraySize);
265 std::swap_ranges(this->SmallArray, this->SmallArray+this->CurArraySize,
266 RHS.SmallArray);
267 std::swap(this->NumElements, RHS.NumElements);
268 }
269
~SmallPtrSetImpl()270 SmallPtrSetImpl::~SmallPtrSetImpl() {
271 if (!isSmall())
272 free(CurArray);
273 }
274