• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===-- ARMInstrThumb.td - Thumb support for ARM -----------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Thumb instruction set.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Thumb specific DAG Nodes.
16//
17
18def ARMtcall : SDNode<"ARMISD::tCALL", SDT_ARMcall,
19                      [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
20                       SDNPVariadic]>;
21
22def imm_sr_XFORM: SDNodeXForm<imm, [{
23  unsigned Imm = N->getZExtValue();
24  return CurDAG->getTargetConstant((Imm == 32 ? 0 : Imm), MVT::i32);
25}]>;
26def ThumbSRImmAsmOperand: AsmOperandClass { let Name = "ImmThumbSR"; }
27def imm_sr : Operand<i32>, PatLeaf<(imm), [{
28  uint64_t Imm = N->getZExtValue();
29  return Imm > 0 && Imm <= 32;
30}], imm_sr_XFORM> {
31  let PrintMethod = "printThumbSRImm";
32  let ParserMatchClass = ThumbSRImmAsmOperand;
33}
34
35def imm_comp_XFORM : SDNodeXForm<imm, [{
36  return CurDAG->getTargetConstant(~((uint32_t)N->getZExtValue()), MVT::i32);
37}]>;
38
39def imm0_7_neg : PatLeaf<(i32 imm), [{
40  return (uint32_t)-N->getZExtValue() < 8;
41}], imm_neg_XFORM>;
42
43def imm0_255_comp : PatLeaf<(i32 imm), [{
44  return ~((uint32_t)N->getZExtValue()) < 256;
45}]>;
46
47def imm8_255 : ImmLeaf<i32, [{
48  return Imm >= 8 && Imm < 256;
49}]>;
50def imm8_255_neg : PatLeaf<(i32 imm), [{
51  unsigned Val = -N->getZExtValue();
52  return Val >= 8 && Val < 256;
53}], imm_neg_XFORM>;
54
55// Break imm's up into two pieces: an immediate + a left shift. This uses
56// thumb_immshifted to match and thumb_immshifted_val and thumb_immshifted_shamt
57// to get the val/shift pieces.
58def thumb_immshifted : PatLeaf<(imm), [{
59  return ARM_AM::isThumbImmShiftedVal((unsigned)N->getZExtValue());
60}]>;
61
62def thumb_immshifted_val : SDNodeXForm<imm, [{
63  unsigned V = ARM_AM::getThumbImmNonShiftedVal((unsigned)N->getZExtValue());
64  return CurDAG->getTargetConstant(V, MVT::i32);
65}]>;
66
67def thumb_immshifted_shamt : SDNodeXForm<imm, [{
68  unsigned V = ARM_AM::getThumbImmValShift((unsigned)N->getZExtValue());
69  return CurDAG->getTargetConstant(V, MVT::i32);
70}]>;
71
72// Scaled 4 immediate.
73def t_imm0_1020s4_asmoperand: AsmOperandClass { let Name = "Imm0_1020s4"; }
74def t_imm0_1020s4 : Operand<i32> {
75  let PrintMethod = "printThumbS4ImmOperand";
76  let ParserMatchClass = t_imm0_1020s4_asmoperand;
77  let OperandType = "OPERAND_IMMEDIATE";
78}
79
80def t_imm0_508s4_asmoperand: AsmOperandClass { let Name = "Imm0_508s4"; }
81def t_imm0_508s4 : Operand<i32> {
82  let PrintMethod = "printThumbS4ImmOperand";
83  let ParserMatchClass = t_imm0_508s4_asmoperand;
84  let OperandType = "OPERAND_IMMEDIATE";
85}
86// Alias use only, so no printer is necessary.
87def t_imm0_508s4_neg_asmoperand: AsmOperandClass { let Name = "Imm0_508s4Neg"; }
88def t_imm0_508s4_neg : Operand<i32> {
89  let ParserMatchClass = t_imm0_508s4_neg_asmoperand;
90  let OperandType = "OPERAND_IMMEDIATE";
91}
92
93// Define Thumb specific addressing modes.
94
95// unsigned 8-bit, 2-scaled memory offset
96class OperandUnsignedOffset_b8s2 : AsmOperandClass {
97  let Name = "UnsignedOffset_b8s2";
98  let PredicateMethod = "isUnsignedOffset<8, 2>";
99}
100
101def UnsignedOffset_b8s2 : OperandUnsignedOffset_b8s2;
102
103// thumb style PC relative operand. signed, 8 bits magnitude,
104// two bits shift. can be represented as either [pc, #imm], #imm,
105// or relocatable expression...
106def ThumbMemPC : AsmOperandClass {
107  let Name = "ThumbMemPC";
108}
109
110let OperandType = "OPERAND_PCREL" in {
111def t_brtarget : Operand<OtherVT> {
112  let EncoderMethod = "getThumbBRTargetOpValue";
113  let DecoderMethod = "DecodeThumbBROperand";
114}
115
116// ADR instruction labels.
117def t_adrlabel : Operand<i32> {
118  let EncoderMethod = "getThumbAdrLabelOpValue";
119  let PrintMethod = "printAdrLabelOperand<2>";
120  let ParserMatchClass = UnsignedOffset_b8s2;
121}
122
123def t_bcctarget : Operand<i32> {
124  let EncoderMethod = "getThumbBCCTargetOpValue";
125  let DecoderMethod = "DecodeThumbBCCTargetOperand";
126}
127
128def t_cbtarget : Operand<i32> {
129  let EncoderMethod = "getThumbCBTargetOpValue";
130  let DecoderMethod = "DecodeThumbCmpBROperand";
131}
132
133def t_bltarget : Operand<i32> {
134  let EncoderMethod = "getThumbBLTargetOpValue";
135  let DecoderMethod = "DecodeThumbBLTargetOperand";
136}
137
138def t_blxtarget : Operand<i32> {
139  let EncoderMethod = "getThumbBLXTargetOpValue";
140  let DecoderMethod = "DecodeThumbBLXOffset";
141}
142
143// t_addrmode_pc := <label> => pc + imm8 * 4
144//
145def t_addrmode_pc : Operand<i32> {
146  let EncoderMethod = "getAddrModePCOpValue";
147  let DecoderMethod = "DecodeThumbAddrModePC";
148  let PrintMethod = "printThumbLdrLabelOperand";
149  let ParserMatchClass = ThumbMemPC;
150}
151}
152
153// t_addrmode_rr := reg + reg
154//
155def t_addrmode_rr_asm_operand : AsmOperandClass { let Name = "MemThumbRR"; }
156def t_addrmode_rr : Operand<i32>,
157                    ComplexPattern<i32, 2, "SelectThumbAddrModeRR", []> {
158  let EncoderMethod = "getThumbAddrModeRegRegOpValue";
159  let PrintMethod = "printThumbAddrModeRROperand";
160  let DecoderMethod = "DecodeThumbAddrModeRR";
161  let ParserMatchClass = t_addrmode_rr_asm_operand;
162  let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
163}
164
165// t_addrmode_rrs := reg + reg
166//
167// We use separate scaled versions because the Select* functions need
168// to explicitly check for a matching constant and return false here so that
169// the reg+imm forms will match instead. This is a horrible way to do that,
170// as it forces tight coupling between the methods, but it's how selectiondag
171// currently works.
172def t_addrmode_rrs1 : Operand<i32>,
173                      ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S1", []> {
174  let EncoderMethod = "getThumbAddrModeRegRegOpValue";
175  let PrintMethod = "printThumbAddrModeRROperand";
176  let DecoderMethod = "DecodeThumbAddrModeRR";
177  let ParserMatchClass = t_addrmode_rr_asm_operand;
178  let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
179}
180def t_addrmode_rrs2 : Operand<i32>,
181                      ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S2", []> {
182  let EncoderMethod = "getThumbAddrModeRegRegOpValue";
183  let DecoderMethod = "DecodeThumbAddrModeRR";
184  let PrintMethod = "printThumbAddrModeRROperand";
185  let ParserMatchClass = t_addrmode_rr_asm_operand;
186  let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
187}
188def t_addrmode_rrs4 : Operand<i32>,
189                      ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S4", []> {
190  let EncoderMethod = "getThumbAddrModeRegRegOpValue";
191  let DecoderMethod = "DecodeThumbAddrModeRR";
192  let PrintMethod = "printThumbAddrModeRROperand";
193  let ParserMatchClass = t_addrmode_rr_asm_operand;
194  let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
195}
196
197// t_addrmode_is4 := reg + imm5 * 4
198//
199def t_addrmode_is4_asm_operand : AsmOperandClass { let Name = "MemThumbRIs4"; }
200def t_addrmode_is4 : Operand<i32>,
201                     ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S4", []> {
202  let EncoderMethod = "getAddrModeISOpValue";
203  let DecoderMethod = "DecodeThumbAddrModeIS";
204  let PrintMethod = "printThumbAddrModeImm5S4Operand";
205  let ParserMatchClass = t_addrmode_is4_asm_operand;
206  let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
207}
208
209// t_addrmode_is2 := reg + imm5 * 2
210//
211def t_addrmode_is2_asm_operand : AsmOperandClass { let Name = "MemThumbRIs2"; }
212def t_addrmode_is2 : Operand<i32>,
213                     ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S2", []> {
214  let EncoderMethod = "getAddrModeISOpValue";
215  let DecoderMethod = "DecodeThumbAddrModeIS";
216  let PrintMethod = "printThumbAddrModeImm5S2Operand";
217  let ParserMatchClass = t_addrmode_is2_asm_operand;
218  let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
219}
220
221// t_addrmode_is1 := reg + imm5
222//
223def t_addrmode_is1_asm_operand : AsmOperandClass { let Name = "MemThumbRIs1"; }
224def t_addrmode_is1 : Operand<i32>,
225                     ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S1", []> {
226  let EncoderMethod = "getAddrModeISOpValue";
227  let DecoderMethod = "DecodeThumbAddrModeIS";
228  let PrintMethod = "printThumbAddrModeImm5S1Operand";
229  let ParserMatchClass = t_addrmode_is1_asm_operand;
230  let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
231}
232
233// t_addrmode_sp := sp + imm8 * 4
234//
235// FIXME: This really shouldn't have an explicit SP operand at all. It should
236// be implicit, just like in the instruction encoding itself.
237def t_addrmode_sp_asm_operand : AsmOperandClass { let Name = "MemThumbSPI"; }
238def t_addrmode_sp : Operand<i32>,
239                    ComplexPattern<i32, 2, "SelectThumbAddrModeSP", []> {
240  let EncoderMethod = "getAddrModeThumbSPOpValue";
241  let DecoderMethod = "DecodeThumbAddrModeSP";
242  let PrintMethod = "printThumbAddrModeSPOperand";
243  let ParserMatchClass = t_addrmode_sp_asm_operand;
244  let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
245}
246
247//===----------------------------------------------------------------------===//
248//  Miscellaneous Instructions.
249//
250
251// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
252// from removing one half of the matched pairs. That breaks PEI, which assumes
253// these will always be in pairs, and asserts if it finds otherwise. Better way?
254let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
255def tADJCALLSTACKUP :
256  PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), NoItinerary,
257             [(ARMcallseq_end imm:$amt1, imm:$amt2)]>,
258            Requires<[IsThumb, IsThumb1Only]>;
259
260def tADJCALLSTACKDOWN :
261  PseudoInst<(outs), (ins i32imm:$amt), NoItinerary,
262             [(ARMcallseq_start imm:$amt)]>,
263            Requires<[IsThumb, IsThumb1Only]>;
264}
265
266class T1SystemEncoding<bits<8> opc>
267  : T1Encoding<0b101111> {
268  let Inst{9-8} = 0b11;
269  let Inst{7-0} = opc;
270}
271
272def tNOP : T1pI<(outs), (ins), NoItinerary, "nop", "", []>,
273           T1SystemEncoding<0x00>, // A8.6.110
274        Requires<[IsThumb2]>;
275
276def tYIELD : T1pI<(outs), (ins), NoItinerary, "yield", "", []>,
277           T1SystemEncoding<0x10>, // A8.6.410
278           Requires<[IsThumb2]>;
279
280def tWFE : T1pI<(outs), (ins), NoItinerary, "wfe", "", []>,
281           T1SystemEncoding<0x20>, // A8.6.408
282           Requires<[IsThumb2]>;
283
284def tWFI : T1pI<(outs), (ins), NoItinerary, "wfi", "", []>,
285           T1SystemEncoding<0x30>, // A8.6.409
286           Requires<[IsThumb2]>;
287
288def tSEV : T1pI<(outs), (ins), NoItinerary, "sev", "", []>,
289           T1SystemEncoding<0x40>, // A8.6.157
290           Requires<[IsThumb2]>;
291
292// The imm operand $val can be used by a debugger to store more information
293// about the breakpoint.
294def tBKPT : T1I<(outs), (ins imm0_255:$val), NoItinerary, "bkpt\t$val",
295                []>,
296           T1Encoding<0b101111> {
297  let Inst{9-8} = 0b10;
298  // A8.6.22
299  bits<8> val;
300  let Inst{7-0} = val;
301}
302
303def tSETEND : T1I<(outs), (ins setend_op:$end), NoItinerary, "setend\t$end",
304                  []>, T1Encoding<0b101101> {
305  bits<1> end;
306  // A8.6.156
307  let Inst{9-5} = 0b10010;
308  let Inst{4}   = 1;
309  let Inst{3}   = end;
310  let Inst{2-0} = 0b000;
311}
312
313// Change Processor State is a system instruction -- for disassembly only.
314def tCPS : T1I<(outs), (ins imod_op:$imod, iflags_op:$iflags),
315                NoItinerary, "cps$imod $iflags", []>,
316           T1Misc<0b0110011> {
317  // A8.6.38 & B6.1.1
318  bit imod;
319  bits<3> iflags;
320
321  let Inst{4}   = imod;
322  let Inst{3}   = 0;
323  let Inst{2-0} = iflags;
324  let DecoderMethod = "DecodeThumbCPS";
325}
326
327// For both thumb1 and thumb2.
328let isNotDuplicable = 1, isCodeGenOnly = 1 in
329def tPICADD : TIt<(outs GPR:$dst), (ins GPR:$lhs, pclabel:$cp), IIC_iALUr, "",
330                  [(set GPR:$dst, (ARMpic_add GPR:$lhs, imm:$cp))]>,
331              T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
332  // A8.6.6
333  bits<3> dst;
334  let Inst{6-3} = 0b1111; // Rm = pc
335  let Inst{2-0} = dst;
336}
337
338// ADD <Rd>, sp, #<imm8>
339// FIXME: This should not be marked as having side effects, and it should be
340// rematerializable. Clearing the side effect bit causes miscompilations,
341// probably because the instruction can be moved around.
342def tADDrSPi : T1pI<(outs tGPR:$dst), (ins GPRsp:$sp, t_imm0_1020s4:$imm),
343                    IIC_iALUi, "add", "\t$dst, $sp, $imm", []>,
344               T1Encoding<{1,0,1,0,1,?}>, Sched<[WriteALU]> {
345  // A6.2 & A8.6.8
346  bits<3> dst;
347  bits<8> imm;
348  let Inst{10-8} = dst;
349  let Inst{7-0}  = imm;
350  let DecoderMethod = "DecodeThumbAddSpecialReg";
351}
352
353// ADD sp, sp, #<imm7>
354def tADDspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm),
355                     IIC_iALUi, "add", "\t$Rdn, $imm", []>,
356              T1Misc<{0,0,0,0,0,?,?}>, Sched<[WriteALU]> {
357  // A6.2.5 & A8.6.8
358  bits<7> imm;
359  let Inst{6-0} = imm;
360  let DecoderMethod = "DecodeThumbAddSPImm";
361}
362
363// SUB sp, sp, #<imm7>
364// FIXME: The encoding and the ASM string don't match up.
365def tSUBspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm),
366                    IIC_iALUi, "sub", "\t$Rdn, $imm", []>,
367              T1Misc<{0,0,0,0,1,?,?}>, Sched<[WriteALU]> {
368  // A6.2.5 & A8.6.214
369  bits<7> imm;
370  let Inst{6-0} = imm;
371  let DecoderMethod = "DecodeThumbAddSPImm";
372}
373
374def : tInstAlias<"add${p} sp, $imm",
375                 (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>;
376def : tInstAlias<"add${p} sp, sp, $imm",
377                 (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>;
378
379// Can optionally specify SP as a three operand instruction.
380def : tInstAlias<"add${p} sp, sp, $imm",
381                 (tADDspi SP, t_imm0_508s4:$imm, pred:$p)>;
382def : tInstAlias<"sub${p} sp, sp, $imm",
383                 (tSUBspi SP, t_imm0_508s4:$imm, pred:$p)>;
384
385// ADD <Rm>, sp
386def tADDrSP : T1pI<(outs GPR:$Rdn), (ins GPRsp:$sp, GPR:$Rn), IIC_iALUr,
387                   "add", "\t$Rdn, $sp, $Rn", []>,
388              T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
389  // A8.6.9 Encoding T1
390  bits<4> Rdn;
391  let Inst{7}   = Rdn{3};
392  let Inst{6-3} = 0b1101;
393  let Inst{2-0} = Rdn{2-0};
394  let DecoderMethod = "DecodeThumbAddSPReg";
395}
396
397// ADD sp, <Rm>
398def tADDspr : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, GPR:$Rm), IIC_iALUr,
399                  "add", "\t$Rdn, $Rm", []>,
400              T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
401  // A8.6.9 Encoding T2
402  bits<4> Rm;
403  let Inst{7} = 1;
404  let Inst{6-3} = Rm;
405  let Inst{2-0} = 0b101;
406  let DecoderMethod = "DecodeThumbAddSPReg";
407}
408
409//===----------------------------------------------------------------------===//
410//  Control Flow Instructions.
411//
412
413// Indirect branches
414let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
415  def tBX : TI<(outs), (ins GPR:$Rm, pred:$p), IIC_Br, "bx${p}\t$Rm", []>,
416            T1Special<{1,1,0,?}>, Sched<[WriteBr]> {
417    // A6.2.3 & A8.6.25
418    bits<4> Rm;
419    let Inst{6-3} = Rm;
420    let Inst{2-0} = 0b000;
421    let Unpredictable{2-0} = 0b111;
422  }
423}
424
425let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
426  def tBX_RET : tPseudoExpand<(outs), (ins pred:$p), 2, IIC_Br,
427                   [(ARMretflag)], (tBX LR, pred:$p)>, Sched<[WriteBr]>;
428
429  // Alternative return instruction used by vararg functions.
430  def tBX_RET_vararg : tPseudoExpand<(outs), (ins tGPR:$Rm, pred:$p),
431                   2, IIC_Br, [],
432                   (tBX GPR:$Rm, pred:$p)>, Sched<[WriteBr]>;
433}
434
435// All calls clobber the non-callee saved registers. SP is marked as a use to
436// prevent stack-pointer assignments that appear immediately before calls from
437// potentially appearing dead.
438let isCall = 1,
439  Defs = [LR], Uses = [SP] in {
440  // Also used for Thumb2
441  def tBL  : TIx2<0b11110, 0b11, 1,
442                  (outs), (ins pred:$p, t_bltarget:$func), IIC_Br,
443                  "bl${p}\t$func",
444                  [(ARMtcall tglobaladdr:$func)]>,
445             Requires<[IsThumb]>, Sched<[WriteBrL]> {
446    bits<24> func;
447    let Inst{26} = func{23};
448    let Inst{25-16} = func{20-11};
449    let Inst{13} = func{22};
450    let Inst{11} = func{21};
451    let Inst{10-0} = func{10-0};
452  }
453
454  // ARMv5T and above, also used for Thumb2
455  def tBLXi : TIx2<0b11110, 0b11, 0,
456                 (outs), (ins pred:$p, t_blxtarget:$func), IIC_Br,
457                   "blx${p}\t$func",
458                   [(ARMcall tglobaladdr:$func)]>,
459              Requires<[IsThumb, HasV5T]>, Sched<[WriteBrL]> {
460    bits<24> func;
461    let Inst{26} = func{23};
462    let Inst{25-16} = func{20-11};
463    let Inst{13} = func{22};
464    let Inst{11} = func{21};
465    let Inst{10-1} = func{10-1};
466    let Inst{0} = 0; // func{0} is assumed zero
467  }
468
469  // Also used for Thumb2
470  def tBLXr : TI<(outs), (ins pred:$p, GPR:$func), IIC_Br,
471                  "blx${p}\t$func",
472                  [(ARMtcall GPR:$func)]>,
473              Requires<[IsThumb, HasV5T]>,
474              T1Special<{1,1,1,?}>, Sched<[WriteBrL]> { // A6.2.3 & A8.6.24;
475    bits<4> func;
476    let Inst{6-3} = func;
477    let Inst{2-0} = 0b000;
478  }
479
480  // ARMv4T
481  def tBX_CALL : tPseudoInst<(outs), (ins tGPR:$func),
482                  4, IIC_Br,
483                  [(ARMcall_nolink tGPR:$func)]>,
484            Requires<[IsThumb, IsThumb1Only]>, Sched<[WriteBr]>;
485}
486
487let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
488  let isPredicable = 1 in
489  def tB   : T1pI<(outs), (ins t_brtarget:$target), IIC_Br,
490                 "b", "\t$target", [(br bb:$target)]>,
491             T1Encoding<{1,1,1,0,0,?}>, Sched<[WriteBr]> {
492    bits<11> target;
493    let Inst{10-0} = target;
494  }
495
496  // Far jump
497  // Just a pseudo for a tBL instruction. Needed to let regalloc know about
498  // the clobber of LR.
499  let Defs = [LR] in
500  def tBfar : tPseudoExpand<(outs), (ins t_bltarget:$target, pred:$p),
501                          4, IIC_Br, [], (tBL pred:$p, t_bltarget:$target)>,
502                          Sched<[WriteBrTbl]>;
503
504  def tBR_JTr : tPseudoInst<(outs),
505                      (ins tGPR:$target, i32imm:$jt, i32imm:$id),
506                      0, IIC_Br,
507                      [(ARMbrjt tGPR:$target, tjumptable:$jt, imm:$id)]>,
508                      Sched<[WriteBrTbl]> {
509    list<Predicate> Predicates = [IsThumb, IsThumb1Only];
510  }
511}
512
513// FIXME: should be able to write a pattern for ARMBrcond, but can't use
514// a two-value operand where a dag node expects two operands. :(
515let isBranch = 1, isTerminator = 1 in
516  def tBcc : T1I<(outs), (ins t_bcctarget:$target, pred:$p), IIC_Br,
517                 "b${p}\t$target",
518                 [/*(ARMbrcond bb:$target, imm:$cc)*/]>,
519             T1BranchCond<{1,1,0,1}>, Sched<[WriteBr]> {
520  bits<4> p;
521  bits<8> target;
522  let Inst{11-8} = p;
523  let Inst{7-0} = target;
524}
525
526
527// Tail calls
528let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
529  // IOS versions.
530  let Uses = [SP] in {
531    def tTAILJMPr : tPseudoExpand<(outs), (ins tcGPR:$dst),
532                     4, IIC_Br, [],
533                     (tBX GPR:$dst, (ops 14, zero_reg))>,
534                     Requires<[IsThumb]>, Sched<[WriteBr]>;
535  }
536  // tTAILJMPd: IOS version uses a Thumb2 branch (no Thumb1 tail calls
537  // on IOS), so it's in ARMInstrThumb2.td.
538  // Non-IOS version:
539  let Uses = [SP] in {
540    def tTAILJMPdND : tPseudoExpand<(outs),
541                   (ins t_brtarget:$dst, pred:$p),
542                   4, IIC_Br, [],
543                   (tB t_brtarget:$dst, pred:$p)>,
544                 Requires<[IsThumb, IsNotIOS]>, Sched<[WriteBr]>;
545  }
546}
547
548
549// A8.6.218 Supervisor Call (Software Interrupt)
550// A8.6.16 B: Encoding T1
551// If Inst{11-8} == 0b1111 then SEE SVC
552let isCall = 1, Uses = [SP] in
553def tSVC : T1pI<(outs), (ins imm0_255:$imm), IIC_Br,
554                "svc", "\t$imm", []>, Encoding16, Sched<[WriteBr]> {
555  bits<8> imm;
556  let Inst{15-12} = 0b1101;
557  let Inst{11-8}  = 0b1111;
558  let Inst{7-0}   = imm;
559}
560
561// The assembler uses 0xDEFE for a trap instruction.
562let isBarrier = 1, isTerminator = 1 in
563def tTRAP : TI<(outs), (ins), IIC_Br,
564               "trap", [(trap)]>, Encoding16, Sched<[WriteBr]> {
565  let Inst = 0xdefe;
566}
567
568//===----------------------------------------------------------------------===//
569//  Load Store Instructions.
570//
571
572// Loads: reg/reg and reg/imm5
573let canFoldAsLoad = 1, isReMaterializable = 1 in
574multiclass thumb_ld_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc,
575                              Operand AddrMode_r, Operand AddrMode_i,
576                              AddrMode am, InstrItinClass itin_r,
577                              InstrItinClass itin_i, string asm,
578                              PatFrag opnode> {
579  def r : // reg/reg
580    T1pILdStEncode<reg_opc,
581                   (outs tGPR:$Rt), (ins AddrMode_r:$addr),
582                   am, itin_r, asm, "\t$Rt, $addr",
583                   [(set tGPR:$Rt, (opnode AddrMode_r:$addr))]>;
584  def i : // reg/imm5
585    T1pILdStEncodeImm<imm_opc, 1 /* Load */,
586                      (outs tGPR:$Rt), (ins AddrMode_i:$addr),
587                      am, itin_i, asm, "\t$Rt, $addr",
588                      [(set tGPR:$Rt, (opnode AddrMode_i:$addr))]>;
589}
590// Stores: reg/reg and reg/imm5
591multiclass thumb_st_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc,
592                              Operand AddrMode_r, Operand AddrMode_i,
593                              AddrMode am, InstrItinClass itin_r,
594                              InstrItinClass itin_i, string asm,
595                              PatFrag opnode> {
596  def r : // reg/reg
597    T1pILdStEncode<reg_opc,
598                   (outs), (ins tGPR:$Rt, AddrMode_r:$addr),
599                   am, itin_r, asm, "\t$Rt, $addr",
600                   [(opnode tGPR:$Rt, AddrMode_r:$addr)]>;
601  def i : // reg/imm5
602    T1pILdStEncodeImm<imm_opc, 0 /* Store */,
603                      (outs), (ins tGPR:$Rt, AddrMode_i:$addr),
604                      am, itin_i, asm, "\t$Rt, $addr",
605                      [(opnode tGPR:$Rt, AddrMode_i:$addr)]>;
606}
607
608// A8.6.57 & A8.6.60
609defm tLDR  : thumb_ld_rr_ri_enc<0b100, 0b0110, t_addrmode_rrs4,
610                                t_addrmode_is4, AddrModeT1_4,
611                                IIC_iLoad_r, IIC_iLoad_i, "ldr",
612                                UnOpFrag<(load node:$Src)>>;
613
614// A8.6.64 & A8.6.61
615defm tLDRB : thumb_ld_rr_ri_enc<0b110, 0b0111, t_addrmode_rrs1,
616                                t_addrmode_is1, AddrModeT1_1,
617                                IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrb",
618                                UnOpFrag<(zextloadi8 node:$Src)>>;
619
620// A8.6.76 & A8.6.73
621defm tLDRH : thumb_ld_rr_ri_enc<0b101, 0b1000, t_addrmode_rrs2,
622                                t_addrmode_is2, AddrModeT1_2,
623                                IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrh",
624                                UnOpFrag<(zextloadi16 node:$Src)>>;
625
626let AddedComplexity = 10 in
627def tLDRSB :                    // A8.6.80
628  T1pILdStEncode<0b011, (outs tGPR:$Rt), (ins t_addrmode_rr:$addr),
629                 AddrModeT1_1, IIC_iLoad_bh_r,
630                 "ldrsb", "\t$Rt, $addr",
631                 [(set tGPR:$Rt, (sextloadi8 t_addrmode_rr:$addr))]>;
632
633let AddedComplexity = 10 in
634def tLDRSH :                    // A8.6.84
635  T1pILdStEncode<0b111, (outs tGPR:$Rt), (ins t_addrmode_rr:$addr),
636                 AddrModeT1_2, IIC_iLoad_bh_r,
637                 "ldrsh", "\t$Rt, $addr",
638                 [(set tGPR:$Rt, (sextloadi16 t_addrmode_rr:$addr))]>;
639
640let canFoldAsLoad = 1 in
641def tLDRspi : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_sp:$addr), IIC_iLoad_i,
642                    "ldr", "\t$Rt, $addr",
643                    [(set tGPR:$Rt, (load t_addrmode_sp:$addr))]>,
644              T1LdStSP<{1,?,?}> {
645  bits<3> Rt;
646  bits<8> addr;
647  let Inst{10-8} = Rt;
648  let Inst{7-0} = addr;
649}
650
651let canFoldAsLoad = 1, isReMaterializable = 1 in
652def tLDRpci : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_pc:$addr), IIC_iLoad_i,
653                  "ldr", "\t$Rt, $addr",
654                  [(set tGPR:$Rt, (load (ARMWrapper tconstpool:$addr)))]>,
655              T1Encoding<{0,1,0,0,1,?}> {
656  // A6.2 & A8.6.59
657  bits<3> Rt;
658  bits<8> addr;
659  let Inst{10-8} = Rt;
660  let Inst{7-0}  = addr;
661}
662
663def : tInstAlias<"ldr${p}.n $Rt, $addr",
664                 (tLDRpci tGPR:$Rt, t_addrmode_pc:$addr, pred:$p), 0>;
665
666// A8.6.194 & A8.6.192
667defm tSTR  : thumb_st_rr_ri_enc<0b000, 0b0110, t_addrmode_rrs4,
668                                t_addrmode_is4, AddrModeT1_4,
669                                IIC_iStore_r, IIC_iStore_i, "str",
670                                BinOpFrag<(store node:$LHS, node:$RHS)>>;
671
672// A8.6.197 & A8.6.195
673defm tSTRB : thumb_st_rr_ri_enc<0b010, 0b0111, t_addrmode_rrs1,
674                                t_addrmode_is1, AddrModeT1_1,
675                                IIC_iStore_bh_r, IIC_iStore_bh_i, "strb",
676                                BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>;
677
678// A8.6.207 & A8.6.205
679defm tSTRH : thumb_st_rr_ri_enc<0b001, 0b1000, t_addrmode_rrs2,
680                               t_addrmode_is2, AddrModeT1_2,
681                               IIC_iStore_bh_r, IIC_iStore_bh_i, "strh",
682                               BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>;
683
684
685def tSTRspi : T1pIs<(outs), (ins tGPR:$Rt, t_addrmode_sp:$addr), IIC_iStore_i,
686                    "str", "\t$Rt, $addr",
687                    [(store tGPR:$Rt, t_addrmode_sp:$addr)]>,
688              T1LdStSP<{0,?,?}> {
689  bits<3> Rt;
690  bits<8> addr;
691  let Inst{10-8} = Rt;
692  let Inst{7-0} = addr;
693}
694
695//===----------------------------------------------------------------------===//
696//  Load / store multiple Instructions.
697//
698
699// These require base address to be written back or one of the loaded regs.
700let neverHasSideEffects = 1 in {
701
702let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
703def tLDMIA : T1I<(outs), (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops),
704        IIC_iLoad_m, "ldm${p}\t$Rn, $regs", []>, T1Encoding<{1,1,0,0,1,?}> {
705  bits<3> Rn;
706  bits<8> regs;
707  let Inst{10-8} = Rn;
708  let Inst{7-0}  = regs;
709}
710
711// Writeback version is just a pseudo, as there's no encoding difference.
712// Writeback happens iff the base register is not in the destination register
713// list.
714def tLDMIA_UPD :
715    InstTemplate<AddrModeNone, 0, IndexModeNone, Pseudo, GenericDomain,
716                 "$Rn = $wb", IIC_iLoad_mu>,
717    PseudoInstExpansion<(tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)> {
718  let Size = 2;
719  let OutOperandList = (outs GPR:$wb);
720  let InOperandList = (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops);
721  let Pattern = [];
722  let isCodeGenOnly = 1;
723  let isPseudo = 1;
724  list<Predicate> Predicates = [IsThumb];
725}
726
727// There is no non-writeback version of STM for Thumb.
728let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
729def tSTMIA_UPD : Thumb1I<(outs GPR:$wb),
730                         (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops),
731                         AddrModeNone, 2, IIC_iStore_mu,
732                         "stm${p}\t$Rn!, $regs", "$Rn = $wb", []>,
733                     T1Encoding<{1,1,0,0,0,?}> {
734  bits<3> Rn;
735  bits<8> regs;
736  let Inst{10-8} = Rn;
737  let Inst{7-0}  = regs;
738}
739
740} // neverHasSideEffects
741
742def : InstAlias<"ldm${p} $Rn!, $regs",
743                (tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)>,
744        Requires<[IsThumb, IsThumb1Only]>;
745
746let mayLoad = 1, Uses = [SP], Defs = [SP], hasExtraDefRegAllocReq = 1 in
747def tPOP : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
748               IIC_iPop,
749               "pop${p}\t$regs", []>,
750           T1Misc<{1,1,0,?,?,?,?}> {
751  bits<16> regs;
752  let Inst{8}   = regs{15};
753  let Inst{7-0} = regs{7-0};
754}
755
756let mayStore = 1, Uses = [SP], Defs = [SP], hasExtraSrcRegAllocReq = 1 in
757def tPUSH : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
758                IIC_iStore_m,
759                "push${p}\t$regs", []>,
760            T1Misc<{0,1,0,?,?,?,?}> {
761  bits<16> regs;
762  let Inst{8}   = regs{14};
763  let Inst{7-0} = regs{7-0};
764}
765
766//===----------------------------------------------------------------------===//
767//  Arithmetic Instructions.
768//
769
770// Helper classes for encoding T1pI patterns:
771class T1pIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
772                   string opc, string asm, list<dag> pattern>
773    : T1pI<oops, iops, itin, opc, asm, pattern>,
774      T1DataProcessing<opA> {
775  bits<3> Rm;
776  bits<3> Rn;
777  let Inst{5-3} = Rm;
778  let Inst{2-0} = Rn;
779}
780class T1pIMiscEncode<bits<7> opA, dag oops, dag iops, InstrItinClass itin,
781                     string opc, string asm, list<dag> pattern>
782    : T1pI<oops, iops, itin, opc, asm, pattern>,
783      T1Misc<opA> {
784  bits<3> Rm;
785  bits<3> Rd;
786  let Inst{5-3} = Rm;
787  let Inst{2-0} = Rd;
788}
789
790// Helper classes for encoding T1sI patterns:
791class T1sIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
792                   string opc, string asm, list<dag> pattern>
793    : T1sI<oops, iops, itin, opc, asm, pattern>,
794      T1DataProcessing<opA> {
795  bits<3> Rd;
796  bits<3> Rn;
797  let Inst{5-3} = Rn;
798  let Inst{2-0} = Rd;
799}
800class T1sIGenEncode<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
801                    string opc, string asm, list<dag> pattern>
802    : T1sI<oops, iops, itin, opc, asm, pattern>,
803      T1General<opA> {
804  bits<3> Rm;
805  bits<3> Rn;
806  bits<3> Rd;
807  let Inst{8-6} = Rm;
808  let Inst{5-3} = Rn;
809  let Inst{2-0} = Rd;
810}
811class T1sIGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
812                       string opc, string asm, list<dag> pattern>
813    : T1sI<oops, iops, itin, opc, asm, pattern>,
814      T1General<opA> {
815  bits<3> Rd;
816  bits<3> Rm;
817  let Inst{5-3} = Rm;
818  let Inst{2-0} = Rd;
819}
820
821// Helper classes for encoding T1sIt patterns:
822class T1sItDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
823                    string opc, string asm, list<dag> pattern>
824    : T1sIt<oops, iops, itin, opc, asm, pattern>,
825      T1DataProcessing<opA> {
826  bits<3> Rdn;
827  bits<3> Rm;
828  let Inst{5-3} = Rm;
829  let Inst{2-0} = Rdn;
830}
831class T1sItGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
832                        string opc, string asm, list<dag> pattern>
833    : T1sIt<oops, iops, itin, opc, asm, pattern>,
834      T1General<opA> {
835  bits<3> Rdn;
836  bits<8> imm8;
837  let Inst{10-8} = Rdn;
838  let Inst{7-0}  = imm8;
839}
840
841// Add with carry register
842let isCommutable = 1, Uses = [CPSR] in
843def tADC :                      // A8.6.2
844  T1sItDPEncode<0b0101, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr,
845                "adc", "\t$Rdn, $Rm",
846                [(set tGPR:$Rdn, (adde tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
847
848// Add immediate
849def tADDi3 :                    // A8.6.4 T1
850  T1sIGenEncodeImm<0b01110, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
851                   IIC_iALUi,
852                   "add", "\t$Rd, $Rm, $imm3",
853                   [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7:$imm3))]>,
854                   Sched<[WriteALU]> {
855  bits<3> imm3;
856  let Inst{8-6} = imm3;
857}
858
859def tADDi8 :                    // A8.6.4 T2
860  T1sItGenEncodeImm<{1,1,0,?,?}, (outs tGPR:$Rdn),
861                    (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi,
862                    "add", "\t$Rdn, $imm8",
863                    [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255:$imm8))]>,
864                    Sched<[WriteALU]>;
865
866// Add register
867let isCommutable = 1 in
868def tADDrr :                    // A8.6.6 T1
869  T1sIGenEncode<0b01100, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
870                IIC_iALUr,
871                "add", "\t$Rd, $Rn, $Rm",
872                [(set tGPR:$Rd, (add tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
873
874let neverHasSideEffects = 1 in
875def tADDhirr : T1pIt<(outs GPR:$Rdn), (ins GPR:$Rn, GPR:$Rm), IIC_iALUr,
876                     "add", "\t$Rdn, $Rm", []>,
877               T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
878  // A8.6.6 T2
879  bits<4> Rdn;
880  bits<4> Rm;
881  let Inst{7}   = Rdn{3};
882  let Inst{6-3} = Rm;
883  let Inst{2-0} = Rdn{2-0};
884}
885
886// AND register
887let isCommutable = 1 in
888def tAND :                      // A8.6.12
889  T1sItDPEncode<0b0000, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
890                IIC_iBITr,
891                "and", "\t$Rdn, $Rm",
892                [(set tGPR:$Rdn, (and tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
893
894// ASR immediate
895def tASRri :                    // A8.6.14
896  T1sIGenEncodeImm<{0,1,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5),
897                   IIC_iMOVsi,
898                   "asr", "\t$Rd, $Rm, $imm5",
899                   [(set tGPR:$Rd, (sra tGPR:$Rm, (i32 imm_sr:$imm5)))]>,
900                   Sched<[WriteALU]> {
901  bits<5> imm5;
902  let Inst{10-6} = imm5;
903}
904
905// ASR register
906def tASRrr :                    // A8.6.15
907  T1sItDPEncode<0b0100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
908                IIC_iMOVsr,
909                "asr", "\t$Rdn, $Rm",
910                [(set tGPR:$Rdn, (sra tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
911
912// BIC register
913def tBIC :                      // A8.6.20
914  T1sItDPEncode<0b1110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
915                IIC_iBITr,
916                "bic", "\t$Rdn, $Rm",
917                [(set tGPR:$Rdn, (and tGPR:$Rn, (not tGPR:$Rm)))]>,
918                Sched<[WriteALU]>;
919
920// CMN register
921let isCompare = 1, Defs = [CPSR] in {
922//FIXME: Disable CMN, as CCodes are backwards from compare expectations
923//       Compare-to-zero still works out, just not the relationals
924//def tCMN :                     // A8.6.33
925//  T1pIDPEncode<0b1011, (outs), (ins tGPR:$lhs, tGPR:$rhs),
926//               IIC_iCMPr,
927//               "cmn", "\t$lhs, $rhs",
928//               [(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>;
929
930def tCMNz :                     // A8.6.33
931  T1pIDPEncode<0b1011, (outs), (ins tGPR:$Rn, tGPR:$Rm),
932               IIC_iCMPr,
933               "cmn", "\t$Rn, $Rm",
934               [(ARMcmpZ tGPR:$Rn, (ineg tGPR:$Rm))]>, Sched<[WriteCMP]>;
935
936} // isCompare = 1, Defs = [CPSR]
937
938// CMP immediate
939let isCompare = 1, Defs = [CPSR] in {
940def tCMPi8 : T1pI<(outs), (ins tGPR:$Rn, imm0_255:$imm8), IIC_iCMPi,
941                  "cmp", "\t$Rn, $imm8",
942                  [(ARMcmp tGPR:$Rn, imm0_255:$imm8)]>,
943             T1General<{1,0,1,?,?}>, Sched<[WriteCMP]> {
944  // A8.6.35
945  bits<3> Rn;
946  bits<8> imm8;
947  let Inst{10-8} = Rn;
948  let Inst{7-0}  = imm8;
949}
950
951// CMP register
952def tCMPr :                     // A8.6.36 T1
953  T1pIDPEncode<0b1010, (outs), (ins tGPR:$Rn, tGPR:$Rm),
954               IIC_iCMPr,
955               "cmp", "\t$Rn, $Rm",
956               [(ARMcmp tGPR:$Rn, tGPR:$Rm)]>, Sched<[WriteCMP]>;
957
958def tCMPhir : T1pI<(outs), (ins GPR:$Rn, GPR:$Rm), IIC_iCMPr,
959                   "cmp", "\t$Rn, $Rm", []>,
960              T1Special<{0,1,?,?}>, Sched<[WriteCMP]> {
961  // A8.6.36 T2
962  bits<4> Rm;
963  bits<4> Rn;
964  let Inst{7}   = Rn{3};
965  let Inst{6-3} = Rm;
966  let Inst{2-0} = Rn{2-0};
967}
968} // isCompare = 1, Defs = [CPSR]
969
970
971// XOR register
972let isCommutable = 1 in
973def tEOR :                      // A8.6.45
974  T1sItDPEncode<0b0001, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
975                IIC_iBITr,
976                "eor", "\t$Rdn, $Rm",
977                [(set tGPR:$Rdn, (xor tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
978
979// LSL immediate
980def tLSLri :                    // A8.6.88
981  T1sIGenEncodeImm<{0,0,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_31:$imm5),
982                   IIC_iMOVsi,
983                   "lsl", "\t$Rd, $Rm, $imm5",
984                   [(set tGPR:$Rd, (shl tGPR:$Rm, (i32 imm:$imm5)))]>,
985                   Sched<[WriteALU]> {
986  bits<5> imm5;
987  let Inst{10-6} = imm5;
988}
989
990// LSL register
991def tLSLrr :                    // A8.6.89
992  T1sItDPEncode<0b0010, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
993                IIC_iMOVsr,
994                "lsl", "\t$Rdn, $Rm",
995                [(set tGPR:$Rdn, (shl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
996
997// LSR immediate
998def tLSRri :                    // A8.6.90
999  T1sIGenEncodeImm<{0,0,1,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5),
1000                   IIC_iMOVsi,
1001                   "lsr", "\t$Rd, $Rm, $imm5",
1002                   [(set tGPR:$Rd, (srl tGPR:$Rm, (i32 imm_sr:$imm5)))]>,
1003                   Sched<[WriteALU]> {
1004  bits<5> imm5;
1005  let Inst{10-6} = imm5;
1006}
1007
1008// LSR register
1009def tLSRrr :                    // A8.6.91
1010  T1sItDPEncode<0b0011, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1011                IIC_iMOVsr,
1012                "lsr", "\t$Rdn, $Rm",
1013                [(set tGPR:$Rdn, (srl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
1014
1015// Move register
1016let isMoveImm = 1 in
1017def tMOVi8 : T1sI<(outs tGPR:$Rd), (ins imm0_255:$imm8), IIC_iMOVi,
1018                  "mov", "\t$Rd, $imm8",
1019                  [(set tGPR:$Rd, imm0_255:$imm8)]>,
1020             T1General<{1,0,0,?,?}>, Sched<[WriteALU]> {
1021  // A8.6.96
1022  bits<3> Rd;
1023  bits<8> imm8;
1024  let Inst{10-8} = Rd;
1025  let Inst{7-0}  = imm8;
1026}
1027// Because we have an explicit tMOVSr below, we need an alias to handle
1028// the immediate "movs" form here. Blech.
1029def : tInstAlias <"movs $Rdn, $imm",
1030                 (tMOVi8 tGPR:$Rdn, CPSR, imm0_255:$imm, 14, 0)>;
1031
1032// A7-73: MOV(2) - mov setting flag.
1033
1034let neverHasSideEffects = 1 in {
1035def tMOVr : Thumb1pI<(outs GPR:$Rd), (ins GPR:$Rm), AddrModeNone,
1036                      2, IIC_iMOVr,
1037                      "mov", "\t$Rd, $Rm", "", []>,
1038                  T1Special<{1,0,?,?}>, Sched<[WriteALU]> {
1039  // A8.6.97
1040  bits<4> Rd;
1041  bits<4> Rm;
1042  let Inst{7}   = Rd{3};
1043  let Inst{6-3} = Rm;
1044  let Inst{2-0} = Rd{2-0};
1045}
1046let Defs = [CPSR] in
1047def tMOVSr      : T1I<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iMOVr,
1048                      "movs\t$Rd, $Rm", []>, Encoding16, Sched<[WriteALU]> {
1049  // A8.6.97
1050  bits<3> Rd;
1051  bits<3> Rm;
1052  let Inst{15-6} = 0b0000000000;
1053  let Inst{5-3}  = Rm;
1054  let Inst{2-0}  = Rd;
1055}
1056} // neverHasSideEffects
1057
1058// Multiply register
1059let isCommutable = 1 in
1060def tMUL :                      // A8.6.105 T1
1061  Thumb1sI<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), AddrModeNone, 2,
1062           IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm", "$Rm = $Rd",
1063           [(set tGPR:$Rd, (mul tGPR:$Rn, tGPR:$Rm))]>,
1064      T1DataProcessing<0b1101> {
1065  bits<3> Rd;
1066  bits<3> Rn;
1067  let Inst{5-3} = Rn;
1068  let Inst{2-0} = Rd;
1069  let AsmMatchConverter = "cvtThumbMultiply";
1070}
1071
1072def :tInstAlias<"mul${s}${p} $Rdm, $Rn", (tMUL tGPR:$Rdm, s_cc_out:$s, tGPR:$Rn,
1073                                               pred:$p)>;
1074
1075// Move inverse register
1076def tMVN :                      // A8.6.107
1077  T1sIDPEncode<0b1111, (outs tGPR:$Rd), (ins tGPR:$Rn), IIC_iMVNr,
1078               "mvn", "\t$Rd, $Rn",
1079               [(set tGPR:$Rd, (not tGPR:$Rn))]>, Sched<[WriteALU]>;
1080
1081// Bitwise or register
1082let isCommutable = 1 in
1083def tORR :                      // A8.6.114
1084  T1sItDPEncode<0b1100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1085                IIC_iBITr,
1086                "orr", "\t$Rdn, $Rm",
1087                [(set tGPR:$Rdn, (or tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
1088
1089// Swaps
1090def tREV :                      // A8.6.134
1091  T1pIMiscEncode<{1,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1092                 IIC_iUNAr,
1093                 "rev", "\t$Rd, $Rm",
1094                 [(set tGPR:$Rd, (bswap tGPR:$Rm))]>,
1095                 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
1096
1097def tREV16 :                    // A8.6.135
1098  T1pIMiscEncode<{1,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1099                 IIC_iUNAr,
1100                 "rev16", "\t$Rd, $Rm",
1101             [(set tGPR:$Rd, (rotr (bswap tGPR:$Rm), (i32 16)))]>,
1102                Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
1103
1104def tREVSH :                    // A8.6.136
1105  T1pIMiscEncode<{1,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1106                 IIC_iUNAr,
1107                 "revsh", "\t$Rd, $Rm",
1108                 [(set tGPR:$Rd, (sra (bswap tGPR:$Rm), (i32 16)))]>,
1109                 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
1110
1111// Rotate right register
1112def tROR :                      // A8.6.139
1113  T1sItDPEncode<0b0111, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1114                IIC_iMOVsr,
1115                "ror", "\t$Rdn, $Rm",
1116                [(set tGPR:$Rdn, (rotr tGPR:$Rn, tGPR:$Rm))]>,
1117                Sched<[WriteALU]>;
1118
1119// Negate register
1120def tRSB :                      // A8.6.141
1121  T1sIDPEncode<0b1001, (outs tGPR:$Rd), (ins tGPR:$Rn),
1122               IIC_iALUi,
1123               "rsb", "\t$Rd, $Rn, #0",
1124               [(set tGPR:$Rd, (ineg tGPR:$Rn))]>, Sched<[WriteALU]>;
1125
1126// Subtract with carry register
1127let Uses = [CPSR] in
1128def tSBC :                      // A8.6.151
1129  T1sItDPEncode<0b0110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1130                IIC_iALUr,
1131                "sbc", "\t$Rdn, $Rm",
1132                [(set tGPR:$Rdn, (sube tGPR:$Rn, tGPR:$Rm))]>,
1133                Sched<[WriteALU]>;
1134
1135// Subtract immediate
1136def tSUBi3 :                    // A8.6.210 T1
1137  T1sIGenEncodeImm<0b01111, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
1138                   IIC_iALUi,
1139                   "sub", "\t$Rd, $Rm, $imm3",
1140                   [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7_neg:$imm3))]>,
1141                   Sched<[WriteALU]> {
1142  bits<3> imm3;
1143  let Inst{8-6} = imm3;
1144}
1145
1146def tSUBi8 :                    // A8.6.210 T2
1147  T1sItGenEncodeImm<{1,1,1,?,?}, (outs tGPR:$Rdn),
1148                    (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi,
1149                    "sub", "\t$Rdn, $imm8",
1150                    [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255_neg:$imm8))]>,
1151                    Sched<[WriteALU]>;
1152
1153// Subtract register
1154def tSUBrr :                    // A8.6.212
1155  T1sIGenEncode<0b01101, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
1156                IIC_iALUr,
1157                "sub", "\t$Rd, $Rn, $Rm",
1158                [(set tGPR:$Rd, (sub tGPR:$Rn, tGPR:$Rm))]>,
1159                Sched<[WriteALU]>;
1160
1161// Sign-extend byte
1162def tSXTB :                     // A8.6.222
1163  T1pIMiscEncode<{0,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1164                 IIC_iUNAr,
1165                 "sxtb", "\t$Rd, $Rm",
1166                 [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i8))]>,
1167                 Requires<[IsThumb, IsThumb1Only, HasV6]>,
1168                 Sched<[WriteALU]>;
1169
1170// Sign-extend short
1171def tSXTH :                     // A8.6.224
1172  T1pIMiscEncode<{0,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1173                 IIC_iUNAr,
1174                 "sxth", "\t$Rd, $Rm",
1175                 [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i16))]>,
1176                 Requires<[IsThumb, IsThumb1Only, HasV6]>,
1177                 Sched<[WriteALU]>;
1178
1179// Test
1180let isCompare = 1, isCommutable = 1, Defs = [CPSR] in
1181def tTST :                      // A8.6.230
1182  T1pIDPEncode<0b1000, (outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iTSTr,
1183               "tst", "\t$Rn, $Rm",
1184               [(ARMcmpZ (and_su tGPR:$Rn, tGPR:$Rm), 0)]>,
1185               Sched<[WriteALU]>;
1186
1187// Zero-extend byte
1188def tUXTB :                     // A8.6.262
1189  T1pIMiscEncode<{0,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1190                 IIC_iUNAr,
1191                 "uxtb", "\t$Rd, $Rm",
1192                 [(set tGPR:$Rd, (and tGPR:$Rm, 0xFF))]>,
1193                 Requires<[IsThumb, IsThumb1Only, HasV6]>,
1194                 Sched<[WriteALU]>;
1195
1196// Zero-extend short
1197def tUXTH :                     // A8.6.264
1198  T1pIMiscEncode<{0,0,1,0,1,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1199                 IIC_iUNAr,
1200                 "uxth", "\t$Rd, $Rm",
1201                 [(set tGPR:$Rd, (and tGPR:$Rm, 0xFFFF))]>,
1202                 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
1203
1204// Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC operation.
1205// Expanded after instruction selection into a branch sequence.
1206let usesCustomInserter = 1 in  // Expanded after instruction selection.
1207  def tMOVCCr_pseudo :
1208  PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, pred:$cc),
1209              NoItinerary,
1210             [/*(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, imm:$cc))*/]>;
1211
1212// tLEApcrel - Load a pc-relative address into a register without offending the
1213// assembler.
1214
1215def tADR : T1I<(outs tGPR:$Rd), (ins t_adrlabel:$addr, pred:$p),
1216               IIC_iALUi, "adr{$p}\t$Rd, $addr", []>,
1217               T1Encoding<{1,0,1,0,0,?}>, Sched<[WriteALU]> {
1218  bits<3> Rd;
1219  bits<8> addr;
1220  let Inst{10-8} = Rd;
1221  let Inst{7-0} = addr;
1222  let DecoderMethod = "DecodeThumbAddSpecialReg";
1223}
1224
1225let neverHasSideEffects = 1, isReMaterializable = 1 in
1226def tLEApcrel   : tPseudoInst<(outs tGPR:$Rd), (ins i32imm:$label, pred:$p),
1227                              2, IIC_iALUi, []>, Sched<[WriteALU]>;
1228
1229let hasSideEffects = 1 in
1230def tLEApcrelJT : tPseudoInst<(outs tGPR:$Rd),
1231                              (ins i32imm:$label, nohash_imm:$id, pred:$p),
1232                              2, IIC_iALUi, []>, Sched<[WriteALU]>;
1233
1234//===----------------------------------------------------------------------===//
1235// TLS Instructions
1236//
1237
1238// __aeabi_read_tp preserves the registers r1-r3.
1239// This is a pseudo inst so that we can get the encoding right,
1240// complete with fixup for the aeabi_read_tp function.
1241let isCall = 1, Defs = [R0, R12, LR, CPSR], Uses = [SP] in
1242def tTPsoft : tPseudoInst<(outs), (ins), 4, IIC_Br,
1243                          [(set R0, ARMthread_pointer)]>,
1244                          Sched<[WriteBr]>;
1245
1246//===----------------------------------------------------------------------===//
1247// SJLJ Exception handling intrinsics
1248//
1249
1250// eh_sjlj_setjmp() is an instruction sequence to store the return address and
1251// save #0 in R0 for the non-longjmp case.  Since by its nature we may be coming
1252// from some other function to get here, and we're using the stack frame for the
1253// containing function to save/restore registers, we can't keep anything live in
1254// regs across the eh_sjlj_setjmp(), else it will almost certainly have been
1255// tromped upon when we get here from a longjmp(). We force everything out of
1256// registers except for our own input by listing the relevant registers in
1257// Defs. By doing so, we also cause the prologue/epilogue code to actively
1258// preserve all of the callee-saved resgisters, which is exactly what we want.
1259// $val is a scratch register for our use.
1260let Defs = [ R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7, R12, CPSR ],
1261    hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
1262    usesCustomInserter = 1 in
1263def tInt_eh_sjlj_setjmp : ThumbXI<(outs),(ins tGPR:$src, tGPR:$val),
1264                                  AddrModeNone, 0, NoItinerary, "","",
1265                          [(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>;
1266
1267// FIXME: Non-IOS version(s)
1268let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1,
1269    Defs = [ R7, LR, SP ] in
1270def tInt_eh_sjlj_longjmp : XI<(outs), (ins GPR:$src, GPR:$scratch),
1271                              AddrModeNone, 0, IndexModeNone,
1272                              Pseudo, NoItinerary, "", "",
1273                              [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
1274                             Requires<[IsThumb, IsIOS]>;
1275
1276//===----------------------------------------------------------------------===//
1277// Non-Instruction Patterns
1278//
1279
1280// Comparisons
1281def : T1Pat<(ARMcmpZ tGPR:$Rn, imm0_255:$imm8),
1282            (tCMPi8  tGPR:$Rn, imm0_255:$imm8)>;
1283def : T1Pat<(ARMcmpZ tGPR:$Rn, tGPR:$Rm),
1284            (tCMPr   tGPR:$Rn, tGPR:$Rm)>;
1285
1286// Add with carry
1287def : T1Pat<(addc   tGPR:$lhs, imm0_7:$rhs),
1288            (tADDi3 tGPR:$lhs, imm0_7:$rhs)>;
1289def : T1Pat<(addc   tGPR:$lhs, imm8_255:$rhs),
1290            (tADDi8 tGPR:$lhs, imm8_255:$rhs)>;
1291def : T1Pat<(addc   tGPR:$lhs, tGPR:$rhs),
1292            (tADDrr tGPR:$lhs, tGPR:$rhs)>;
1293
1294// Subtract with carry
1295def : T1Pat<(addc   tGPR:$lhs, imm0_7_neg:$rhs),
1296            (tSUBi3 tGPR:$lhs, imm0_7_neg:$rhs)>;
1297def : T1Pat<(addc   tGPR:$lhs, imm8_255_neg:$rhs),
1298            (tSUBi8 tGPR:$lhs, imm8_255_neg:$rhs)>;
1299def : T1Pat<(subc   tGPR:$lhs, tGPR:$rhs),
1300            (tSUBrr tGPR:$lhs, tGPR:$rhs)>;
1301
1302// ConstantPool, GlobalAddress
1303def : T1Pat<(ARMWrapper  tglobaladdr :$dst), (tLEApcrel tglobaladdr :$dst)>;
1304def : T1Pat<(ARMWrapper  tconstpool  :$dst), (tLEApcrel tconstpool  :$dst)>;
1305
1306// JumpTable
1307def : T1Pat<(ARMWrapperJT tjumptable:$dst, imm:$id),
1308            (tLEApcrelJT tjumptable:$dst, imm:$id)>;
1309
1310// Direct calls
1311def : T1Pat<(ARMtcall texternalsym:$func), (tBL texternalsym:$func)>,
1312      Requires<[IsThumb]>;
1313
1314def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi texternalsym:$func)>,
1315      Requires<[IsThumb, HasV5T]>;
1316
1317// Indirect calls to ARM routines
1318def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr GPR:$dst)>,
1319      Requires<[IsThumb, HasV5T]>;
1320
1321// zextload i1 -> zextload i8
1322def : T1Pat<(zextloadi1 t_addrmode_rrs1:$addr),
1323            (tLDRBr t_addrmode_rrs1:$addr)>;
1324def : T1Pat<(zextloadi1 t_addrmode_is1:$addr),
1325            (tLDRBi t_addrmode_is1:$addr)>;
1326
1327// extload -> zextload
1328def : T1Pat<(extloadi1  t_addrmode_rrs1:$addr), (tLDRBr t_addrmode_rrs1:$addr)>;
1329def : T1Pat<(extloadi1  t_addrmode_is1:$addr),  (tLDRBi t_addrmode_is1:$addr)>;
1330def : T1Pat<(extloadi8  t_addrmode_rrs1:$addr), (tLDRBr t_addrmode_rrs1:$addr)>;
1331def : T1Pat<(extloadi8  t_addrmode_is1:$addr),  (tLDRBi t_addrmode_is1:$addr)>;
1332def : T1Pat<(extloadi16 t_addrmode_rrs2:$addr), (tLDRHr t_addrmode_rrs2:$addr)>;
1333def : T1Pat<(extloadi16 t_addrmode_is2:$addr),  (tLDRHi t_addrmode_is2:$addr)>;
1334
1335// If it's impossible to use [r,r] address mode for sextload, select to
1336// ldr{b|h} + sxt{b|h} instead.
1337def : T1Pat<(sextloadi8 t_addrmode_is1:$addr),
1338            (tSXTB (tLDRBi t_addrmode_is1:$addr))>,
1339      Requires<[IsThumb, IsThumb1Only, HasV6]>;
1340def : T1Pat<(sextloadi8 t_addrmode_rrs1:$addr),
1341            (tSXTB (tLDRBr t_addrmode_rrs1:$addr))>,
1342      Requires<[IsThumb, IsThumb1Only, HasV6]>;
1343def : T1Pat<(sextloadi16 t_addrmode_is2:$addr),
1344            (tSXTH (tLDRHi t_addrmode_is2:$addr))>,
1345      Requires<[IsThumb, IsThumb1Only, HasV6]>;
1346def : T1Pat<(sextloadi16 t_addrmode_rrs2:$addr),
1347            (tSXTH (tLDRHr t_addrmode_rrs2:$addr))>,
1348      Requires<[IsThumb, IsThumb1Only, HasV6]>;
1349
1350def : T1Pat<(sextloadi8 t_addrmode_rrs1:$addr),
1351            (tASRri (tLSLri (tLDRBr t_addrmode_rrs1:$addr), 24), 24)>;
1352def : T1Pat<(sextloadi8 t_addrmode_is1:$addr),
1353            (tASRri (tLSLri (tLDRBi t_addrmode_is1:$addr), 24), 24)>;
1354def : T1Pat<(sextloadi16 t_addrmode_rrs2:$addr),
1355            (tASRri (tLSLri (tLDRHr t_addrmode_rrs2:$addr), 16), 16)>;
1356def : T1Pat<(sextloadi16 t_addrmode_is2:$addr),
1357            (tASRri (tLSLri (tLDRHi t_addrmode_is2:$addr), 16), 16)>;
1358
1359def : T1Pat<(atomic_load_8 t_addrmode_is1:$src),
1360             (tLDRBi t_addrmode_is1:$src)>;
1361def : T1Pat<(atomic_load_8 t_addrmode_rrs1:$src),
1362             (tLDRBr t_addrmode_rrs1:$src)>;
1363def : T1Pat<(atomic_load_16 t_addrmode_is2:$src),
1364             (tLDRHi t_addrmode_is2:$src)>;
1365def : T1Pat<(atomic_load_16 t_addrmode_rrs2:$src),
1366             (tLDRHr t_addrmode_rrs2:$src)>;
1367def : T1Pat<(atomic_load_32 t_addrmode_is4:$src),
1368             (tLDRi t_addrmode_is4:$src)>;
1369def : T1Pat<(atomic_load_32 t_addrmode_rrs4:$src),
1370             (tLDRr t_addrmode_rrs4:$src)>;
1371def : T1Pat<(atomic_store_8 t_addrmode_is1:$ptr, tGPR:$val),
1372             (tSTRBi tGPR:$val, t_addrmode_is1:$ptr)>;
1373def : T1Pat<(atomic_store_8 t_addrmode_rrs1:$ptr, tGPR:$val),
1374             (tSTRBr tGPR:$val, t_addrmode_rrs1:$ptr)>;
1375def : T1Pat<(atomic_store_16 t_addrmode_is2:$ptr, tGPR:$val),
1376             (tSTRHi tGPR:$val, t_addrmode_is2:$ptr)>;
1377def : T1Pat<(atomic_store_16 t_addrmode_rrs2:$ptr, tGPR:$val),
1378             (tSTRHr tGPR:$val, t_addrmode_rrs2:$ptr)>;
1379def : T1Pat<(atomic_store_32 t_addrmode_is4:$ptr, tGPR:$val),
1380             (tSTRi tGPR:$val, t_addrmode_is4:$ptr)>;
1381def : T1Pat<(atomic_store_32 t_addrmode_rrs4:$ptr, tGPR:$val),
1382             (tSTRr tGPR:$val, t_addrmode_rrs4:$ptr)>;
1383
1384// Large immediate handling.
1385
1386// Two piece imms.
1387def : T1Pat<(i32 thumb_immshifted:$src),
1388            (tLSLri (tMOVi8 (thumb_immshifted_val imm:$src)),
1389                    (thumb_immshifted_shamt imm:$src))>;
1390
1391def : T1Pat<(i32 imm0_255_comp:$src),
1392            (tMVN (tMOVi8 (imm_comp_XFORM imm:$src)))>;
1393
1394// Pseudo instruction that combines ldr from constpool and add pc. This should
1395// be expanded into two instructions late to allow if-conversion and
1396// scheduling.
1397let isReMaterializable = 1 in
1398def tLDRpci_pic : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr, pclabel:$cp),
1399                             NoItinerary,
1400               [(set GPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)),
1401                                           imm:$cp))]>,
1402               Requires<[IsThumb, IsThumb1Only]>;
1403
1404// Pseudo-instruction for merged POP and return.
1405// FIXME: remove when we have a way to marking a MI with these properties.
1406let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
1407    hasExtraDefRegAllocReq = 1 in
1408def tPOP_RET : tPseudoExpand<(outs), (ins pred:$p, reglist:$regs, variable_ops),
1409                           2, IIC_iPop_Br, [],
1410                           (tPOP pred:$p, reglist:$regs)>, Sched<[WriteBrL]>;
1411
1412// Indirect branch using "mov pc, $Rm"
1413let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
1414  def tBRIND : tPseudoExpand<(outs), (ins GPR:$Rm, pred:$p),
1415                  2, IIC_Br, [(brind GPR:$Rm)],
1416                  (tMOVr PC, GPR:$Rm, pred:$p)>, Sched<[WriteBr]>;
1417}
1418
1419
1420// In Thumb1, "nop" is encoded as a "mov r8, r8". Technically, the bf00
1421// encoding is available on ARMv6K, but we don't differentiate that finely.
1422def : InstAlias<"nop", (tMOVr R8, R8, 14, 0)>,Requires<[IsThumb, IsThumb1Only]>;
1423
1424
1425// For round-trip assembly/disassembly, we have to handle a CPS instruction
1426// without any iflags. That's not, strictly speaking, valid syntax, but it's
1427// a useful extension and assembles to defined behaviour (the insn does
1428// nothing).
1429def : tInstAlias<"cps$imod", (tCPS imod_op:$imod, 0)>;
1430def : tInstAlias<"cps$imod", (tCPS imod_op:$imod, 0)>;
1431
1432// "neg" is and alias for "rsb rd, rn, #0"
1433def : tInstAlias<"neg${s}${p} $Rd, $Rm",
1434                 (tRSB tGPR:$Rd, s_cc_out:$s, tGPR:$Rm, pred:$p)>;
1435
1436
1437// Implied destination operand forms for shifts.
1438def : tInstAlias<"lsl${s}${p} $Rdm, $imm",
1439             (tLSLri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm0_31:$imm, pred:$p)>;
1440def : tInstAlias<"lsr${s}${p} $Rdm, $imm",
1441             (tLSRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>;
1442def : tInstAlias<"asr${s}${p} $Rdm, $imm",
1443             (tASRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>;
1444