• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===-- PPCRegisterInfo.td - The PowerPC Register File -----*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//
11//===----------------------------------------------------------------------===//
12
13let Namespace = "PPC" in {
14def sub_lt : SubRegIndex<1>;
15def sub_gt : SubRegIndex<1, 1>;
16def sub_eq : SubRegIndex<1, 2>;
17def sub_un : SubRegIndex<1, 3>;
18def sub_32 : SubRegIndex<32>;
19}
20
21
22class PPCReg<string n> : Register<n> {
23  let Namespace = "PPC";
24}
25
26// We identify all our registers with a 5-bit ID, for consistency's sake.
27
28// GPR - One of the 32 32-bit general-purpose registers
29class GPR<bits<5> num, string n> : PPCReg<n> {
30  let HWEncoding{4-0} = num;
31}
32
33// GP8 - One of the 32 64-bit general-purpose registers
34class GP8<GPR SubReg, string n> : PPCReg<n> {
35  let HWEncoding = SubReg.HWEncoding;
36  let SubRegs = [SubReg];
37  let SubRegIndices = [sub_32];
38}
39
40// SPR - One of the 32-bit special-purpose registers
41class SPR<bits<10> num, string n> : PPCReg<n> {
42  let HWEncoding{9-0} = num;
43}
44
45// FPR - One of the 32 64-bit floating-point registers
46class FPR<bits<5> num, string n> : PPCReg<n> {
47  let HWEncoding{4-0} = num;
48}
49
50// VR - One of the 32 128-bit vector registers
51class VR<bits<5> num, string n> : PPCReg<n> {
52  let HWEncoding{4-0} = num;
53}
54
55// CR - One of the 8 4-bit condition registers
56class CR<bits<3> num, string n, list<Register> subregs> : PPCReg<n> {
57  let HWEncoding{2-0} = num;
58  let SubRegs = subregs;
59}
60
61// CRBIT - One of the 32 1-bit condition register fields
62class CRBIT<bits<5> num, string n> : PPCReg<n> {
63  let HWEncoding{4-0} = num;
64}
65
66// General-purpose registers
67foreach Index = 0-31 in {
68  def R#Index : GPR<Index, "r"#Index>, DwarfRegNum<[-2, Index]>;
69}
70
71// 64-bit General-purpose registers
72foreach Index = 0-31 in {
73  def X#Index : GP8<!cast<GPR>("R"#Index), "r"#Index>,
74                    DwarfRegNum<[Index, -2]>;
75}
76
77// Floating-point registers
78foreach Index = 0-31 in {
79  def F#Index : FPR<Index, "f"#Index>,
80                DwarfRegNum<[!add(Index, 32), !add(Index, 32)]>;
81}
82
83// Vector registers
84foreach Index = 0-31 in {
85  def V#Index : VR<Index, "v"#Index>,
86                DwarfRegNum<[!add(Index, 77), !add(Index, 77)]>;
87}
88
89// The reprsentation of r0 when treated as the constant 0.
90def ZERO  : GPR<0, "0">;
91def ZERO8 : GP8<ZERO, "0">;
92
93// Representations of the frame pointer used by ISD::FRAMEADDR.
94def FP   : GPR<0 /* arbitrary */, "**FRAME POINTER**">;
95def FP8  : GP8<FP, "**FRAME POINTER**">;
96
97// Representations of the base pointer used by setjmp.
98def BP   : GPR<0 /* arbitrary */, "**BASE POINTER**">;
99def BP8  : GP8<BP, "**BASE POINTER**">;
100
101// Condition register bits
102def CR0LT : CRBIT< 0, "0">;
103def CR0GT : CRBIT< 1, "1">;
104def CR0EQ : CRBIT< 2, "2">;
105def CR0UN : CRBIT< 3, "3">;
106def CR1LT : CRBIT< 4, "4">;
107def CR1GT : CRBIT< 5, "5">;
108def CR1EQ : CRBIT< 6, "6">;
109def CR1UN : CRBIT< 7, "7">;
110def CR2LT : CRBIT< 8, "8">;
111def CR2GT : CRBIT< 9, "9">;
112def CR2EQ : CRBIT<10, "10">;
113def CR2UN : CRBIT<11, "11">;
114def CR3LT : CRBIT<12, "12">;
115def CR3GT : CRBIT<13, "13">;
116def CR3EQ : CRBIT<14, "14">;
117def CR3UN : CRBIT<15, "15">;
118def CR4LT : CRBIT<16, "16">;
119def CR4GT : CRBIT<17, "17">;
120def CR4EQ : CRBIT<18, "18">;
121def CR4UN : CRBIT<19, "19">;
122def CR5LT : CRBIT<20, "20">;
123def CR5GT : CRBIT<21, "21">;
124def CR5EQ : CRBIT<22, "22">;
125def CR5UN : CRBIT<23, "23">;
126def CR6LT : CRBIT<24, "24">;
127def CR6GT : CRBIT<25, "25">;
128def CR6EQ : CRBIT<26, "26">;
129def CR6UN : CRBIT<27, "27">;
130def CR7LT : CRBIT<28, "28">;
131def CR7GT : CRBIT<29, "29">;
132def CR7EQ : CRBIT<30, "30">;
133def CR7UN : CRBIT<31, "31">;
134
135// Condition registers
136let SubRegIndices = [sub_lt, sub_gt, sub_eq, sub_un] in {
137def CR0 : CR<0, "cr0", [CR0LT, CR0GT, CR0EQ, CR0UN]>, DwarfRegNum<[68, 68]>;
138def CR1 : CR<1, "cr1", [CR1LT, CR1GT, CR1EQ, CR1UN]>, DwarfRegNum<[69, 69]>;
139def CR2 : CR<2, "cr2", [CR2LT, CR2GT, CR2EQ, CR2UN]>, DwarfRegNum<[70, 70]>;
140def CR3 : CR<3, "cr3", [CR3LT, CR3GT, CR3EQ, CR3UN]>, DwarfRegNum<[71, 71]>;
141def CR4 : CR<4, "cr4", [CR4LT, CR4GT, CR4EQ, CR4UN]>, DwarfRegNum<[72, 72]>;
142def CR5 : CR<5, "cr5", [CR5LT, CR5GT, CR5EQ, CR5UN]>, DwarfRegNum<[73, 73]>;
143def CR6 : CR<6, "cr6", [CR6LT, CR6GT, CR6EQ, CR6UN]>, DwarfRegNum<[74, 74]>;
144def CR7 : CR<7, "cr7", [CR7LT, CR7GT, CR7EQ, CR7UN]>, DwarfRegNum<[75, 75]>;
145}
146
147// Link register
148def LR  : SPR<8, "lr">, DwarfRegNum<[-2, 65]>;
149//let Aliases = [LR] in
150def LR8 : SPR<8, "lr">, DwarfRegNum<[65, -2]>;
151
152// Count register
153def CTR  : SPR<9, "ctr">, DwarfRegNum<[-2, 66]>;
154def CTR8 : SPR<9, "ctr">, DwarfRegNum<[66, -2]>;
155
156// VRsave register
157def VRSAVE: SPR<256, "vrsave">, DwarfRegNum<[109]>;
158
159// Carry bit.  In the architecture this is really bit 0 of the XER register
160// (which really is SPR register 1);  this is the only bit interesting to a
161// compiler.
162def CARRY: SPR<1, "ca">;
163
164// FP rounding mode:  bits 30 and 31 of the FP status and control register
165// This is not allocated as a normal register; it appears only in
166// Uses and Defs.  The ABI says it needs to be preserved by a function,
167// but this is not achieved by saving and restoring it as with
168// most registers, it has to be done in code; to make this work all the
169// return and call instructions are described as Uses of RM, so instructions
170// that do nothing but change RM will not get deleted.
171// Also, in the architecture it is not really a SPR; 512 is arbitrary.
172def RM: SPR<512, "**ROUNDING MODE**">;
173
174/// Register classes
175// Allocate volatiles first
176// then nonvolatiles in reverse order since stmw/lmw save from rN to r31
177def GPRC : RegisterClass<"PPC", [i32], 32, (add (sequence "R%u", 2, 12),
178                                                (sequence "R%u", 30, 13),
179                                                R31, R0, R1, FP, BP)>;
180
181def G8RC : RegisterClass<"PPC", [i64], 64, (add (sequence "X%u", 2, 12),
182                                                (sequence "X%u", 30, 14),
183                                                X31, X13, X0, X1, FP8, BP8)>;
184
185// For some instructions r0 is special (representing the value 0 instead of
186// the value in the r0 register), and we use these register subclasses to
187// prevent r0 from being allocated for use by those instructions.
188def GPRC_NOR0 : RegisterClass<"PPC", [i32], 32, (add (sub GPRC, R0), ZERO)>;
189def G8RC_NOX0 : RegisterClass<"PPC", [i64], 64, (add (sub G8RC, X0), ZERO8)>;
190
191// Allocate volatiles first, then non-volatiles in reverse order. With the SVR4
192// ABI the size of the Floating-point register save area is determined by the
193// allocated non-volatile register with the lowest register number, as FP
194// register N is spilled to offset 8 * (32 - N) below the back chain word of the
195// previous stack frame. By allocating non-volatiles in reverse order we make
196// sure that the Floating-point register save area is always as small as
197// possible because there aren't any unused spill slots.
198def F8RC : RegisterClass<"PPC", [f64], 64, (add (sequence "F%u", 0, 13),
199                                                (sequence "F%u", 31, 14))>;
200def F4RC : RegisterClass<"PPC", [f32], 32, (add F8RC)>;
201
202def VRRC : RegisterClass<"PPC", [v16i8,v8i16,v4i32,v4f32], 128,
203                         (add V2, V3, V4, V5, V0, V1, V6, V7, V8, V9, V10, V11,
204                             V12, V13, V14, V15, V16, V17, V18, V19, V31, V30,
205                             V29, V28, V27, V26, V25, V24, V23, V22, V21, V20)>;
206
207def CRBITRC : RegisterClass<"PPC", [i32], 32,
208  (add CR0LT, CR0GT, CR0EQ, CR0UN,
209       CR1LT, CR1GT, CR1EQ, CR1UN,
210       CR2LT, CR2GT, CR2EQ, CR2UN,
211       CR3LT, CR3GT, CR3EQ, CR3UN,
212       CR4LT, CR4GT, CR4EQ, CR4UN,
213       CR5LT, CR5GT, CR5EQ, CR5UN,
214       CR6LT, CR6GT, CR6EQ, CR6UN,
215       CR7LT, CR7GT, CR7EQ, CR7UN)>
216{
217  let CopyCost = -1;
218}
219
220def CRRC : RegisterClass<"PPC", [i32], 32, (add CR0, CR1, CR5, CR6,
221                                                CR7, CR2, CR3, CR4)>;
222
223// The CTR registers are not allocatable because they're used by the
224// decrement-and-branch instructions, and thus need to stay live across
225// multiple basic blocks.
226def CTRRC : RegisterClass<"PPC", [i32], 32, (add CTR)> {
227  let isAllocatable = 0;
228}
229def CTRRC8 : RegisterClass<"PPC", [i64], 64, (add CTR8)> {
230  let isAllocatable = 0;
231}
232
233def VRSAVERC : RegisterClass<"PPC", [i32], 32, (add VRSAVE)>;
234def CARRYRC : RegisterClass<"PPC", [i32], 32, (add CARRY)> {
235  let CopyCost = -1;
236}
237