1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief Custom DAG lowering for SI
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "SIISelLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDILIntrinsicInfo.h"
18 #include "SIInstrInfo.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/IR/Function.h"
26
27 const uint64_t RSRC_DATA_FORMAT = 0xf00000000000LL;
28
29 using namespace llvm;
30
SITargetLowering(TargetMachine & TM)31 SITargetLowering::SITargetLowering(TargetMachine &TM) :
32 AMDGPUTargetLowering(TM) {
33
34 addRegisterClass(MVT::i1, &AMDGPU::SReg_64RegClass);
35 addRegisterClass(MVT::i64, &AMDGPU::VSrc_64RegClass);
36
37 addRegisterClass(MVT::v2i1, &AMDGPU::VReg_64RegClass);
38 addRegisterClass(MVT::v4i1, &AMDGPU::VReg_128RegClass);
39
40 addRegisterClass(MVT::v16i8, &AMDGPU::SReg_128RegClass);
41 addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
42 addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
43
44 addRegisterClass(MVT::i32, &AMDGPU::VSrc_32RegClass);
45 addRegisterClass(MVT::f32, &AMDGPU::VSrc_32RegClass);
46
47 addRegisterClass(MVT::v1i32, &AMDGPU::VSrc_32RegClass);
48
49 addRegisterClass(MVT::f64, &AMDGPU::VSrc_64RegClass);
50 addRegisterClass(MVT::v2i32, &AMDGPU::VSrc_64RegClass);
51 addRegisterClass(MVT::v2f32, &AMDGPU::VSrc_64RegClass);
52
53 addRegisterClass(MVT::v4i32, &AMDGPU::VReg_128RegClass);
54 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
55 addRegisterClass(MVT::i128, &AMDGPU::SReg_128RegClass);
56
57 addRegisterClass(MVT::v8i32, &AMDGPU::VReg_256RegClass);
58 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
59
60 addRegisterClass(MVT::v16i32, &AMDGPU::VReg_512RegClass);
61 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
62
63 computeRegisterProperties();
64
65 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
66 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
67 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
68 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
69
70 setOperationAction(ISD::ADD, MVT::i64, Legal);
71 setOperationAction(ISD::ADD, MVT::i32, Legal);
72
73 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
74 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
75
76 setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
77
78 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
79 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
80
81 setOperationAction(ISD::SIGN_EXTEND, MVT::i64, Custom);
82 setOperationAction(ISD::ZERO_EXTEND, MVT::i64, Custom);
83
84 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
85
86 setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Expand);
87
88 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
89
90 setTargetDAGCombine(ISD::SELECT_CC);
91
92 setTargetDAGCombine(ISD::SETCC);
93
94 setSchedulingPreference(Sched::RegPressure);
95 }
96
97 //===----------------------------------------------------------------------===//
98 // TargetLowering queries
99 //===----------------------------------------------------------------------===//
100
allowsUnalignedMemoryAccesses(EVT VT,bool * IsFast) const101 bool SITargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
102 bool *IsFast) const {
103 // XXX: This depends on the address space and also we may want to revist
104 // the alignment values we specify in the DataLayout.
105 return VT.bitsGT(MVT::i32);
106 }
107
108
LowerParameter(SelectionDAG & DAG,EVT VT,SDLoc DL,SDValue Chain,unsigned Offset) const109 SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT,
110 SDLoc DL, SDValue Chain,
111 unsigned Offset) const {
112 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
113 PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
114 AMDGPUAS::CONSTANT_ADDRESS);
115 EVT ArgVT = MVT::getIntegerVT(VT.getSizeInBits());
116 SDValue BasePtr = DAG.getCopyFromReg(Chain, DL,
117 MRI.getLiveInVirtReg(AMDGPU::SGPR0_SGPR1), MVT::i64);
118 SDValue Ptr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
119 DAG.getConstant(Offset, MVT::i64));
120 return DAG.getLoad(VT, DL, Chain, Ptr,
121 MachinePointerInfo(UndefValue::get(PtrTy)),
122 false, false, false, ArgVT.getSizeInBits() >> 3);
123
124 }
125
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const126 SDValue SITargetLowering::LowerFormalArguments(
127 SDValue Chain,
128 CallingConv::ID CallConv,
129 bool isVarArg,
130 const SmallVectorImpl<ISD::InputArg> &Ins,
131 SDLoc DL, SelectionDAG &DAG,
132 SmallVectorImpl<SDValue> &InVals) const {
133
134 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
135
136 MachineFunction &MF = DAG.getMachineFunction();
137 FunctionType *FType = MF.getFunction()->getFunctionType();
138 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
139
140 assert(CallConv == CallingConv::C);
141
142 SmallVector<ISD::InputArg, 16> Splits;
143 uint32_t Skipped = 0;
144
145 for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
146 const ISD::InputArg &Arg = Ins[i];
147
148 // First check if it's a PS input addr
149 if (Info->ShaderType == ShaderType::PIXEL && !Arg.Flags.isInReg()) {
150
151 assert((PSInputNum <= 15) && "Too many PS inputs!");
152
153 if (!Arg.Used) {
154 // We can savely skip PS inputs
155 Skipped |= 1 << i;
156 ++PSInputNum;
157 continue;
158 }
159
160 Info->PSInputAddr |= 1 << PSInputNum++;
161 }
162
163 // Second split vertices into their elements
164 if (Info->ShaderType != ShaderType::COMPUTE && Arg.VT.isVector()) {
165 ISD::InputArg NewArg = Arg;
166 NewArg.Flags.setSplit();
167 NewArg.VT = Arg.VT.getVectorElementType();
168
169 // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
170 // three or five element vertex only needs three or five registers,
171 // NOT four or eigth.
172 Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
173 unsigned NumElements = ParamType->getVectorNumElements();
174
175 for (unsigned j = 0; j != NumElements; ++j) {
176 Splits.push_back(NewArg);
177 NewArg.PartOffset += NewArg.VT.getStoreSize();
178 }
179
180 } else {
181 Splits.push_back(Arg);
182 }
183 }
184
185 SmallVector<CCValAssign, 16> ArgLocs;
186 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
187 getTargetMachine(), ArgLocs, *DAG.getContext());
188
189 // At least one interpolation mode must be enabled or else the GPU will hang.
190 if (Info->ShaderType == ShaderType::PIXEL && (Info->PSInputAddr & 0x7F) == 0) {
191 Info->PSInputAddr |= 1;
192 CCInfo.AllocateReg(AMDGPU::VGPR0);
193 CCInfo.AllocateReg(AMDGPU::VGPR1);
194 }
195
196 // The pointer to the list of arguments is stored in SGPR0, SGPR1
197 if (Info->ShaderType == ShaderType::COMPUTE) {
198 CCInfo.AllocateReg(AMDGPU::SGPR0);
199 CCInfo.AllocateReg(AMDGPU::SGPR1);
200 MF.addLiveIn(AMDGPU::SGPR0_SGPR1, &AMDGPU::SReg_64RegClass);
201 }
202
203 AnalyzeFormalArguments(CCInfo, Splits);
204
205 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
206
207 const ISD::InputArg &Arg = Ins[i];
208 if (Skipped & (1 << i)) {
209 InVals.push_back(DAG.getUNDEF(Arg.VT));
210 continue;
211 }
212
213 CCValAssign &VA = ArgLocs[ArgIdx++];
214 EVT VT = VA.getLocVT();
215
216 if (VA.isMemLoc()) {
217 // The first 36 bytes of the input buffer contains information about
218 // thread group and global sizes.
219 SDValue Arg = LowerParameter(DAG, VT, DL, DAG.getRoot(),
220 36 + VA.getLocMemOffset());
221 InVals.push_back(Arg);
222 continue;
223 }
224 assert(VA.isRegLoc() && "Parameter must be in a register!");
225
226 unsigned Reg = VA.getLocReg();
227
228 if (VT == MVT::i64) {
229 // For now assume it is a pointer
230 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
231 &AMDGPU::SReg_64RegClass);
232 Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
233 InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
234 continue;
235 }
236
237 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
238
239 Reg = MF.addLiveIn(Reg, RC);
240 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
241
242 if (Arg.VT.isVector()) {
243
244 // Build a vector from the registers
245 Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
246 unsigned NumElements = ParamType->getVectorNumElements();
247
248 SmallVector<SDValue, 4> Regs;
249 Regs.push_back(Val);
250 for (unsigned j = 1; j != NumElements; ++j) {
251 Reg = ArgLocs[ArgIdx++].getLocReg();
252 Reg = MF.addLiveIn(Reg, RC);
253 Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
254 }
255
256 // Fill up the missing vector elements
257 NumElements = Arg.VT.getVectorNumElements() - NumElements;
258 for (unsigned j = 0; j != NumElements; ++j)
259 Regs.push_back(DAG.getUNDEF(VT));
260
261 InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT,
262 Regs.data(), Regs.size()));
263 continue;
264 }
265
266 InVals.push_back(Val);
267 }
268 return Chain;
269 }
270
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const271 MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
272 MachineInstr * MI, MachineBasicBlock * BB) const {
273
274 MachineBasicBlock::iterator I = *MI;
275
276 switch (MI->getOpcode()) {
277 default:
278 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
279 case AMDGPU::BRANCH: return BB;
280 case AMDGPU::SI_ADDR64_RSRC: {
281 const SIInstrInfo *TII =
282 static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
283 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
284 unsigned SuperReg = MI->getOperand(0).getReg();
285 unsigned SubRegLo = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
286 unsigned SubRegHi = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
287 unsigned SubRegHiHi = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
288 unsigned SubRegHiLo = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
289 BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), SubRegLo)
290 .addOperand(MI->getOperand(1));
291 BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiLo)
292 .addImm(0);
293 BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiHi)
294 .addImm(RSRC_DATA_FORMAT >> 32);
295 BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SubRegHi)
296 .addReg(SubRegHiLo)
297 .addImm(AMDGPU::sub0)
298 .addReg(SubRegHiHi)
299 .addImm(AMDGPU::sub1);
300 BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SuperReg)
301 .addReg(SubRegLo)
302 .addImm(AMDGPU::sub0_sub1)
303 .addReg(SubRegHi)
304 .addImm(AMDGPU::sub2_sub3);
305 MI->eraseFromParent();
306 break;
307 }
308 case AMDGPU::V_SUB_F64: {
309 const SIInstrInfo *TII =
310 static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
311 BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F64),
312 MI->getOperand(0).getReg())
313 .addReg(MI->getOperand(1).getReg())
314 .addReg(MI->getOperand(2).getReg())
315 .addImm(0) /* src2 */
316 .addImm(0) /* ABS */
317 .addImm(0) /* CLAMP */
318 .addImm(0) /* OMOD */
319 .addImm(2); /* NEG */
320 MI->eraseFromParent();
321 break;
322 }
323 }
324 return BB;
325 }
326
getSetCCResultType(LLVMContext &,EVT VT) const327 EVT SITargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
328 if (!VT.isVector()) {
329 return MVT::i1;
330 }
331 return MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
332 }
333
getScalarShiftAmountTy(EVT VT) const334 MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
335 return MVT::i32;
336 }
337
338 //===----------------------------------------------------------------------===//
339 // Custom DAG Lowering Operations
340 //===----------------------------------------------------------------------===//
341
LowerOperation(SDValue Op,SelectionDAG & DAG) const342 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
343 MachineFunction &MF = DAG.getMachineFunction();
344 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
345 switch (Op.getOpcode()) {
346 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
347 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
348 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
349 case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
350 case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, DAG);
351 case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
352 case ISD::INTRINSIC_WO_CHAIN: {
353 unsigned IntrinsicID =
354 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
355 EVT VT = Op.getValueType();
356 SDLoc DL(Op);
357 //XXX: Hardcoded we only use two to store the pointer to the parameters.
358 unsigned NumUserSGPRs = 2;
359 switch (IntrinsicID) {
360 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
361 case Intrinsic::r600_read_ngroups_x:
362 return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 0);
363 case Intrinsic::r600_read_ngroups_y:
364 return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 4);
365 case Intrinsic::r600_read_ngroups_z:
366 return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 8);
367 case Intrinsic::r600_read_global_size_x:
368 return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 12);
369 case Intrinsic::r600_read_global_size_y:
370 return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 16);
371 case Intrinsic::r600_read_global_size_z:
372 return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 20);
373 case Intrinsic::r600_read_local_size_x:
374 return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 24);
375 case Intrinsic::r600_read_local_size_y:
376 return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 28);
377 case Intrinsic::r600_read_local_size_z:
378 return LowerParameter(DAG, VT, DL, DAG.getEntryNode(), 32);
379 case Intrinsic::r600_read_tgid_x:
380 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
381 AMDGPU::SReg_32RegClass.getRegister(NumUserSGPRs + 0), VT);
382 case Intrinsic::r600_read_tgid_y:
383 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
384 AMDGPU::SReg_32RegClass.getRegister(NumUserSGPRs + 1), VT);
385 case Intrinsic::r600_read_tgid_z:
386 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
387 AMDGPU::SReg_32RegClass.getRegister(NumUserSGPRs + 2), VT);
388 case Intrinsic::r600_read_tidig_x:
389 return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
390 AMDGPU::VGPR0, VT);
391 case Intrinsic::r600_read_tidig_y:
392 return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
393 AMDGPU::VGPR1, VT);
394 case Intrinsic::r600_read_tidig_z:
395 return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
396 AMDGPU::VGPR2, VT);
397
398 }
399 }
400 }
401 return SDValue();
402 }
403
404 /// \brief Helper function for LowerBRCOND
findUser(SDValue Value,unsigned Opcode)405 static SDNode *findUser(SDValue Value, unsigned Opcode) {
406
407 SDNode *Parent = Value.getNode();
408 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
409 I != E; ++I) {
410
411 if (I.getUse().get() != Value)
412 continue;
413
414 if (I->getOpcode() == Opcode)
415 return *I;
416 }
417 return 0;
418 }
419
420 /// This transforms the control flow intrinsics to get the branch destination as
421 /// last parameter, also switches branch target with BR if the need arise
LowerBRCOND(SDValue BRCOND,SelectionDAG & DAG) const422 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
423 SelectionDAG &DAG) const {
424
425 SDLoc DL(BRCOND);
426
427 SDNode *Intr = BRCOND.getOperand(1).getNode();
428 SDValue Target = BRCOND.getOperand(2);
429 SDNode *BR = 0;
430
431 if (Intr->getOpcode() == ISD::SETCC) {
432 // As long as we negate the condition everything is fine
433 SDNode *SetCC = Intr;
434 assert(SetCC->getConstantOperandVal(1) == 1);
435 assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
436 ISD::SETNE);
437 Intr = SetCC->getOperand(0).getNode();
438
439 } else {
440 // Get the target from BR if we don't negate the condition
441 BR = findUser(BRCOND, ISD::BR);
442 Target = BR->getOperand(1);
443 }
444
445 assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
446
447 // Build the result and
448 SmallVector<EVT, 4> Res;
449 for (unsigned i = 1, e = Intr->getNumValues(); i != e; ++i)
450 Res.push_back(Intr->getValueType(i));
451
452 // operands of the new intrinsic call
453 SmallVector<SDValue, 4> Ops;
454 Ops.push_back(BRCOND.getOperand(0));
455 for (unsigned i = 1, e = Intr->getNumOperands(); i != e; ++i)
456 Ops.push_back(Intr->getOperand(i));
457 Ops.push_back(Target);
458
459 // build the new intrinsic call
460 SDNode *Result = DAG.getNode(
461 Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
462 DAG.getVTList(Res.data(), Res.size()), Ops.data(), Ops.size()).getNode();
463
464 if (BR) {
465 // Give the branch instruction our target
466 SDValue Ops[] = {
467 BR->getOperand(0),
468 BRCOND.getOperand(2)
469 };
470 DAG.MorphNodeTo(BR, ISD::BR, BR->getVTList(), Ops, 2);
471 }
472
473 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
474
475 // Copy the intrinsic results to registers
476 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
477 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
478 if (!CopyToReg)
479 continue;
480
481 Chain = DAG.getCopyToReg(
482 Chain, DL,
483 CopyToReg->getOperand(1),
484 SDValue(Result, i - 1),
485 SDValue());
486
487 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
488 }
489
490 // Remove the old intrinsic from the chain
491 DAG.ReplaceAllUsesOfValueWith(
492 SDValue(Intr, Intr->getNumValues() - 1),
493 Intr->getOperand(0));
494
495 return Chain;
496 }
497
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const498 SDValue SITargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
499 SDValue LHS = Op.getOperand(0);
500 SDValue RHS = Op.getOperand(1);
501 SDValue True = Op.getOperand(2);
502 SDValue False = Op.getOperand(3);
503 SDValue CC = Op.getOperand(4);
504 EVT VT = Op.getValueType();
505 SDLoc DL(Op);
506
507 // Possible Min/Max pattern
508 SDValue MinMax = LowerMinMax(Op, DAG);
509 if (MinMax.getNode()) {
510 return MinMax;
511 }
512
513 SDValue Cond = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, CC);
514 return DAG.getNode(ISD::SELECT, DL, VT, Cond, True, False);
515 }
516
LowerSIGN_EXTEND(SDValue Op,SelectionDAG & DAG) const517 SDValue SITargetLowering::LowerSIGN_EXTEND(SDValue Op,
518 SelectionDAG &DAG) const {
519 EVT VT = Op.getValueType();
520 SDLoc DL(Op);
521
522 if (VT != MVT::i64) {
523 return SDValue();
524 }
525
526 SDValue Hi = DAG.getNode(ISD::SRA, DL, MVT::i32, Op.getOperand(0),
527 DAG.getConstant(31, MVT::i32));
528
529 return DAG.getNode(ISD::BUILD_PAIR, DL, VT, Op.getOperand(0), Hi);
530 }
531
LowerZERO_EXTEND(SDValue Op,SelectionDAG & DAG) const532 SDValue SITargetLowering::LowerZERO_EXTEND(SDValue Op,
533 SelectionDAG &DAG) const {
534 EVT VT = Op.getValueType();
535 SDLoc DL(Op);
536
537 if (VT != MVT::i64) {
538 return SDValue();
539 }
540
541 return DAG.getNode(ISD::BUILD_PAIR, DL, VT, Op.getOperand(0),
542 DAG.getConstant(0, MVT::i32));
543 }
544
545 //===----------------------------------------------------------------------===//
546 // Custom DAG optimizations
547 //===----------------------------------------------------------------------===//
548
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const549 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
550 DAGCombinerInfo &DCI) const {
551 SelectionDAG &DAG = DCI.DAG;
552 SDLoc DL(N);
553 EVT VT = N->getValueType(0);
554
555 switch (N->getOpcode()) {
556 default: break;
557 case ISD::SELECT_CC: {
558 N->dump();
559 ConstantSDNode *True, *False;
560 // i1 selectcc(l, r, -1, 0, cc) -> i1 setcc(l, r, cc)
561 if ((True = dyn_cast<ConstantSDNode>(N->getOperand(2)))
562 && (False = dyn_cast<ConstantSDNode>(N->getOperand(3)))
563 && True->isAllOnesValue()
564 && False->isNullValue()
565 && VT == MVT::i1) {
566 return DAG.getNode(ISD::SETCC, DL, VT, N->getOperand(0),
567 N->getOperand(1), N->getOperand(4));
568
569 }
570 break;
571 }
572 case ISD::SETCC: {
573 SDValue Arg0 = N->getOperand(0);
574 SDValue Arg1 = N->getOperand(1);
575 SDValue CC = N->getOperand(2);
576 ConstantSDNode * C = NULL;
577 ISD::CondCode CCOp = dyn_cast<CondCodeSDNode>(CC)->get();
578
579 // i1 setcc (sext(i1), 0, setne) -> i1 setcc(i1, 0, setne)
580 if (VT == MVT::i1
581 && Arg0.getOpcode() == ISD::SIGN_EXTEND
582 && Arg0.getOperand(0).getValueType() == MVT::i1
583 && (C = dyn_cast<ConstantSDNode>(Arg1))
584 && C->isNullValue()
585 && CCOp == ISD::SETNE) {
586 return SimplifySetCC(VT, Arg0.getOperand(0),
587 DAG.getConstant(0, MVT::i1), CCOp, true, DCI, DL);
588 }
589 break;
590 }
591 }
592 return SDValue();
593 }
594
595 /// \brief Test if RegClass is one of the VSrc classes
isVSrc(unsigned RegClass)596 static bool isVSrc(unsigned RegClass) {
597 return AMDGPU::VSrc_32RegClassID == RegClass ||
598 AMDGPU::VSrc_64RegClassID == RegClass;
599 }
600
601 /// \brief Test if RegClass is one of the SSrc classes
isSSrc(unsigned RegClass)602 static bool isSSrc(unsigned RegClass) {
603 return AMDGPU::SSrc_32RegClassID == RegClass ||
604 AMDGPU::SSrc_64RegClassID == RegClass;
605 }
606
607 /// \brief Analyze the possible immediate value Op
608 ///
609 /// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
610 /// and the immediate value if it's a literal immediate
analyzeImmediate(const SDNode * N) const611 int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
612
613 union {
614 int32_t I;
615 float F;
616 } Imm;
617
618 if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
619 if (Node->getZExtValue() >> 32) {
620 return -1;
621 }
622 Imm.I = Node->getSExtValue();
623 } else if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N))
624 Imm.F = Node->getValueAPF().convertToFloat();
625 else
626 return -1; // It isn't an immediate
627
628 if ((Imm.I >= -16 && Imm.I <= 64) ||
629 Imm.F == 0.5f || Imm.F == -0.5f ||
630 Imm.F == 1.0f || Imm.F == -1.0f ||
631 Imm.F == 2.0f || Imm.F == -2.0f ||
632 Imm.F == 4.0f || Imm.F == -4.0f)
633 return 0; // It's an inline immediate
634
635 return Imm.I; // It's a literal immediate
636 }
637
638 /// \brief Try to fold an immediate directly into an instruction
foldImm(SDValue & Operand,int32_t & Immediate,bool & ScalarSlotUsed) const639 bool SITargetLowering::foldImm(SDValue &Operand, int32_t &Immediate,
640 bool &ScalarSlotUsed) const {
641
642 MachineSDNode *Mov = dyn_cast<MachineSDNode>(Operand);
643 const SIInstrInfo *TII =
644 static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
645 if (Mov == 0 || !TII->isMov(Mov->getMachineOpcode()))
646 return false;
647
648 const SDValue &Op = Mov->getOperand(0);
649 int32_t Value = analyzeImmediate(Op.getNode());
650 if (Value == -1) {
651 // Not an immediate at all
652 return false;
653
654 } else if (Value == 0) {
655 // Inline immediates can always be fold
656 Operand = Op;
657 return true;
658
659 } else if (Value == Immediate) {
660 // Already fold literal immediate
661 Operand = Op;
662 return true;
663
664 } else if (!ScalarSlotUsed && !Immediate) {
665 // Fold this literal immediate
666 ScalarSlotUsed = true;
667 Immediate = Value;
668 Operand = Op;
669 return true;
670
671 }
672
673 return false;
674 }
675
getRegClassForNode(SelectionDAG & DAG,const SDValue & Op) const676 const TargetRegisterClass *SITargetLowering::getRegClassForNode(
677 SelectionDAG &DAG, const SDValue &Op) const {
678 const SIInstrInfo *TII =
679 static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
680 const SIRegisterInfo &TRI = TII->getRegisterInfo();
681
682 if (!Op->isMachineOpcode()) {
683 switch(Op->getOpcode()) {
684 case ISD::CopyFromReg: {
685 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
686 unsigned Reg = cast<RegisterSDNode>(Op->getOperand(1))->getReg();
687 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
688 return MRI.getRegClass(Reg);
689 }
690 return TRI.getPhysRegClass(Reg);
691 }
692 default: return NULL;
693 }
694 }
695 const MCInstrDesc &Desc = TII->get(Op->getMachineOpcode());
696 int OpClassID = Desc.OpInfo[Op.getResNo()].RegClass;
697 if (OpClassID != -1) {
698 return TRI.getRegClass(OpClassID);
699 }
700 switch(Op.getMachineOpcode()) {
701 case AMDGPU::COPY_TO_REGCLASS:
702 // Operand 1 is the register class id for COPY_TO_REGCLASS instructions.
703 OpClassID = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
704
705 // If the COPY_TO_REGCLASS instruction is copying to a VSrc register
706 // class, then the register class for the value could be either a
707 // VReg or and SReg. In order to get a more accurate
708 if (OpClassID == AMDGPU::VSrc_32RegClassID ||
709 OpClassID == AMDGPU::VSrc_64RegClassID) {
710 return getRegClassForNode(DAG, Op.getOperand(0));
711 }
712 return TRI.getRegClass(OpClassID);
713 case AMDGPU::EXTRACT_SUBREG: {
714 int SubIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
715 const TargetRegisterClass *SuperClass =
716 getRegClassForNode(DAG, Op.getOperand(0));
717 return TRI.getSubClassWithSubReg(SuperClass, SubIdx);
718 }
719 case AMDGPU::REG_SEQUENCE:
720 // Operand 0 is the register class id for REG_SEQUENCE instructions.
721 return TRI.getRegClass(
722 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue());
723 default:
724 return getRegClassFor(Op.getSimpleValueType());
725 }
726 }
727
728 /// \brief Does "Op" fit into register class "RegClass" ?
fitsRegClass(SelectionDAG & DAG,const SDValue & Op,unsigned RegClass) const729 bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, const SDValue &Op,
730 unsigned RegClass) const {
731 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
732 const TargetRegisterClass *RC = getRegClassForNode(DAG, Op);
733 if (!RC) {
734 return false;
735 }
736 return TRI->getRegClass(RegClass)->hasSubClassEq(RC);
737 }
738
739 /// \brief Make sure that we don't exeed the number of allowed scalars
ensureSRegLimit(SelectionDAG & DAG,SDValue & Operand,unsigned RegClass,bool & ScalarSlotUsed) const740 void SITargetLowering::ensureSRegLimit(SelectionDAG &DAG, SDValue &Operand,
741 unsigned RegClass,
742 bool &ScalarSlotUsed) const {
743
744 // First map the operands register class to a destination class
745 if (RegClass == AMDGPU::VSrc_32RegClassID)
746 RegClass = AMDGPU::VReg_32RegClassID;
747 else if (RegClass == AMDGPU::VSrc_64RegClassID)
748 RegClass = AMDGPU::VReg_64RegClassID;
749 else
750 return;
751
752 // Nothing todo if they fit naturaly
753 if (fitsRegClass(DAG, Operand, RegClass))
754 return;
755
756 // If the scalar slot isn't used yet use it now
757 if (!ScalarSlotUsed) {
758 ScalarSlotUsed = true;
759 return;
760 }
761
762 // This is a conservative aproach, it is possible that we can't determine
763 // the correct register class and copy too often, but better save than sorry.
764 SDValue RC = DAG.getTargetConstant(RegClass, MVT::i32);
765 SDNode *Node = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, SDLoc(),
766 Operand.getValueType(), Operand, RC);
767 Operand = SDValue(Node, 0);
768 }
769
770 /// \returns true if \p Node's operands are different from the SDValue list
771 /// \p Ops
isNodeChanged(const SDNode * Node,const std::vector<SDValue> & Ops)772 static bool isNodeChanged(const SDNode *Node, const std::vector<SDValue> &Ops) {
773 for (unsigned i = 0, e = Node->getNumOperands(); i < e; ++i) {
774 if (Ops[i].getNode() != Node->getOperand(i).getNode()) {
775 return true;
776 }
777 }
778 return false;
779 }
780
781 /// \brief Try to fold the Nodes operands into the Node
foldOperands(MachineSDNode * Node,SelectionDAG & DAG) const782 SDNode *SITargetLowering::foldOperands(MachineSDNode *Node,
783 SelectionDAG &DAG) const {
784
785 // Original encoding (either e32 or e64)
786 int Opcode = Node->getMachineOpcode();
787 const SIInstrInfo *TII =
788 static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
789 const MCInstrDesc *Desc = &TII->get(Opcode);
790
791 unsigned NumDefs = Desc->getNumDefs();
792 unsigned NumOps = Desc->getNumOperands();
793
794 // Commuted opcode if available
795 int OpcodeRev = Desc->isCommutable() ? TII->commuteOpcode(Opcode) : -1;
796 const MCInstrDesc *DescRev = OpcodeRev == -1 ? 0 : &TII->get(OpcodeRev);
797
798 assert(!DescRev || DescRev->getNumDefs() == NumDefs);
799 assert(!DescRev || DescRev->getNumOperands() == NumOps);
800
801 // e64 version if available, -1 otherwise
802 int OpcodeE64 = AMDGPU::getVOPe64(Opcode);
803 const MCInstrDesc *DescE64 = OpcodeE64 == -1 ? 0 : &TII->get(OpcodeE64);
804
805 assert(!DescE64 || DescE64->getNumDefs() == NumDefs);
806 assert(!DescE64 || DescE64->getNumOperands() == (NumOps + 4));
807
808 int32_t Immediate = Desc->getSize() == 4 ? 0 : -1;
809 bool HaveVSrc = false, HaveSSrc = false;
810
811 // First figure out what we alread have in this instruction
812 for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
813 i != e && Op < NumOps; ++i, ++Op) {
814
815 unsigned RegClass = Desc->OpInfo[Op].RegClass;
816 if (isVSrc(RegClass))
817 HaveVSrc = true;
818 else if (isSSrc(RegClass))
819 HaveSSrc = true;
820 else
821 continue;
822
823 int32_t Imm = analyzeImmediate(Node->getOperand(i).getNode());
824 if (Imm != -1 && Imm != 0) {
825 // Literal immediate
826 Immediate = Imm;
827 }
828 }
829
830 // If we neither have VSrc nor SSrc it makes no sense to continue
831 if (!HaveVSrc && !HaveSSrc)
832 return Node;
833
834 // No scalar allowed when we have both VSrc and SSrc
835 bool ScalarSlotUsed = HaveVSrc && HaveSSrc;
836
837 // Second go over the operands and try to fold them
838 std::vector<SDValue> Ops;
839 bool Promote2e64 = false;
840 for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
841 i != e && Op < NumOps; ++i, ++Op) {
842
843 const SDValue &Operand = Node->getOperand(i);
844 Ops.push_back(Operand);
845
846 // Already folded immediate ?
847 if (isa<ConstantSDNode>(Operand.getNode()) ||
848 isa<ConstantFPSDNode>(Operand.getNode()))
849 continue;
850
851 // Is this a VSrc or SSrc operand ?
852 unsigned RegClass = Desc->OpInfo[Op].RegClass;
853 if (isVSrc(RegClass) || isSSrc(RegClass)) {
854 // Try to fold the immediates
855 if (!foldImm(Ops[i], Immediate, ScalarSlotUsed)) {
856 // Folding didn't worked, make sure we don't hit the SReg limit
857 ensureSRegLimit(DAG, Ops[i], RegClass, ScalarSlotUsed);
858 }
859 continue;
860 }
861
862 if (i == 1 && DescRev && fitsRegClass(DAG, Ops[0], RegClass)) {
863
864 unsigned OtherRegClass = Desc->OpInfo[NumDefs].RegClass;
865 assert(isVSrc(OtherRegClass) || isSSrc(OtherRegClass));
866
867 // Test if it makes sense to swap operands
868 if (foldImm(Ops[1], Immediate, ScalarSlotUsed) ||
869 (!fitsRegClass(DAG, Ops[1], RegClass) &&
870 fitsRegClass(DAG, Ops[1], OtherRegClass))) {
871
872 // Swap commutable operands
873 SDValue Tmp = Ops[1];
874 Ops[1] = Ops[0];
875 Ops[0] = Tmp;
876
877 Desc = DescRev;
878 DescRev = 0;
879 continue;
880 }
881 }
882
883 if (DescE64 && !Immediate) {
884
885 // Test if it makes sense to switch to e64 encoding
886 unsigned OtherRegClass = DescE64->OpInfo[Op].RegClass;
887 if (!isVSrc(OtherRegClass) && !isSSrc(OtherRegClass))
888 continue;
889
890 int32_t TmpImm = -1;
891 if (foldImm(Ops[i], TmpImm, ScalarSlotUsed) ||
892 (!fitsRegClass(DAG, Ops[i], RegClass) &&
893 fitsRegClass(DAG, Ops[1], OtherRegClass))) {
894
895 // Switch to e64 encoding
896 Immediate = -1;
897 Promote2e64 = true;
898 Desc = DescE64;
899 DescE64 = 0;
900 }
901 }
902 }
903
904 if (Promote2e64) {
905 // Add the modifier flags while promoting
906 for (unsigned i = 0; i < 4; ++i)
907 Ops.push_back(DAG.getTargetConstant(0, MVT::i32));
908 }
909
910 // Add optional chain and glue
911 for (unsigned i = NumOps - NumDefs, e = Node->getNumOperands(); i < e; ++i)
912 Ops.push_back(Node->getOperand(i));
913
914 // Nodes that have a glue result are not CSE'd by getMachineNode(), so in
915 // this case a brand new node is always be created, even if the operands
916 // are the same as before. So, manually check if anything has been changed.
917 if (Desc->Opcode == Opcode && !isNodeChanged(Node, Ops)) {
918 return Node;
919 }
920
921 // Create a complete new instruction
922 return DAG.getMachineNode(Desc->Opcode, SDLoc(Node), Node->getVTList(), Ops);
923 }
924
925 /// \brief Helper function for adjustWritemask
SubIdx2Lane(unsigned Idx)926 static unsigned SubIdx2Lane(unsigned Idx) {
927 switch (Idx) {
928 default: return 0;
929 case AMDGPU::sub0: return 0;
930 case AMDGPU::sub1: return 1;
931 case AMDGPU::sub2: return 2;
932 case AMDGPU::sub3: return 3;
933 }
934 }
935
936 /// \brief Adjust the writemask of MIMG instructions
adjustWritemask(MachineSDNode * & Node,SelectionDAG & DAG) const937 void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
938 SelectionDAG &DAG) const {
939 SDNode *Users[4] = { };
940 unsigned Writemask = 0, Lane = 0;
941
942 // Try to figure out the used register components
943 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
944 I != E; ++I) {
945
946 // Abort if we can't understand the usage
947 if (!I->isMachineOpcode() ||
948 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
949 return;
950
951 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
952
953 // Abort if we have more than one user per component
954 if (Users[Lane])
955 return;
956
957 Users[Lane] = *I;
958 Writemask |= 1 << Lane;
959 }
960
961 // Abort if all components are used
962 if (Writemask == 0xf)
963 return;
964
965 // Adjust the writemask in the node
966 std::vector<SDValue> Ops;
967 Ops.push_back(DAG.getTargetConstant(Writemask, MVT::i32));
968 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
969 Ops.push_back(Node->getOperand(i));
970 Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops.data(), Ops.size());
971
972 // If we only got one lane, replace it with a copy
973 if (Writemask == (1U << Lane)) {
974 SDValue RC = DAG.getTargetConstant(AMDGPU::VReg_32RegClassID, MVT::i32);
975 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
976 SDLoc(), Users[Lane]->getValueType(0),
977 SDValue(Node, 0), RC);
978 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
979 return;
980 }
981
982 // Update the users of the node with the new indices
983 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
984
985 SDNode *User = Users[i];
986 if (!User)
987 continue;
988
989 SDValue Op = DAG.getTargetConstant(Idx, MVT::i32);
990 DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
991
992 switch (Idx) {
993 default: break;
994 case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
995 case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
996 case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
997 }
998 }
999 }
1000
1001 /// \brief Fold the instructions after slecting them
PostISelFolding(MachineSDNode * Node,SelectionDAG & DAG) const1002 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
1003 SelectionDAG &DAG) const {
1004 Node = AdjustRegClass(Node, DAG);
1005
1006 if (AMDGPU::isMIMG(Node->getMachineOpcode()) != -1)
1007 adjustWritemask(Node, DAG);
1008
1009 return foldOperands(Node, DAG);
1010 }
1011
1012 /// \brief Assign the register class depending on the number of
1013 /// bits set in the writemask
AdjustInstrPostInstrSelection(MachineInstr * MI,SDNode * Node) const1014 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
1015 SDNode *Node) const {
1016 if (AMDGPU::isMIMG(MI->getOpcode()) == -1)
1017 return;
1018
1019 unsigned VReg = MI->getOperand(0).getReg();
1020 unsigned Writemask = MI->getOperand(1).getImm();
1021 unsigned BitsSet = 0;
1022 for (unsigned i = 0; i < 4; ++i)
1023 BitsSet += Writemask & (1 << i) ? 1 : 0;
1024
1025 const TargetRegisterClass *RC;
1026 switch (BitsSet) {
1027 default: return;
1028 case 1: RC = &AMDGPU::VReg_32RegClass; break;
1029 case 2: RC = &AMDGPU::VReg_64RegClass; break;
1030 case 3: RC = &AMDGPU::VReg_96RegClass; break;
1031 }
1032
1033 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1034 MRI.setRegClass(VReg, RC);
1035 }
1036
AdjustRegClass(MachineSDNode * N,SelectionDAG & DAG) const1037 MachineSDNode *SITargetLowering::AdjustRegClass(MachineSDNode *N,
1038 SelectionDAG &DAG) const {
1039
1040 SDLoc DL(N);
1041 unsigned NewOpcode = N->getMachineOpcode();
1042
1043 switch (N->getMachineOpcode()) {
1044 default: return N;
1045 case AMDGPU::S_LOAD_DWORD_IMM:
1046 NewOpcode = AMDGPU::BUFFER_LOAD_DWORD_ADDR64;
1047 // Fall-through
1048 case AMDGPU::S_LOAD_DWORDX2_SGPR:
1049 if (NewOpcode == N->getMachineOpcode()) {
1050 NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX2_ADDR64;
1051 }
1052 // Fall-through
1053 case AMDGPU::S_LOAD_DWORDX4_IMM:
1054 case AMDGPU::S_LOAD_DWORDX4_SGPR: {
1055 if (NewOpcode == N->getMachineOpcode()) {
1056 NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX4_ADDR64;
1057 }
1058 if (fitsRegClass(DAG, N->getOperand(0), AMDGPU::SReg_64RegClassID)) {
1059 return N;
1060 }
1061 ConstantSDNode *Offset = cast<ConstantSDNode>(N->getOperand(1));
1062 SDValue Ops[] = {
1063 SDValue(DAG.getMachineNode(AMDGPU::SI_ADDR64_RSRC, DL, MVT::i128,
1064 DAG.getConstant(0, MVT::i64)), 0),
1065 N->getOperand(0),
1066 DAG.getConstant(Offset->getSExtValue() << 2, MVT::i32)
1067 };
1068 return DAG.getMachineNode(NewOpcode, DL, N->getVTList(), Ops);
1069 }
1070 }
1071 }
1072
CreateLiveInRegister(SelectionDAG & DAG,const TargetRegisterClass * RC,unsigned Reg,EVT VT) const1073 SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
1074 const TargetRegisterClass *RC,
1075 unsigned Reg, EVT VT) const {
1076 SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
1077
1078 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
1079 cast<RegisterSDNode>(VReg)->getReg(), VT);
1080 }
1081