• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the integer arithmetic instructions in the X86
11// architecture.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// LEA - Load Effective Address
17let SchedRW = [WriteLEA] in {
18let neverHasSideEffects = 1 in
19def LEA16r   : I<0x8D, MRMSrcMem,
20                 (outs GR16:$dst), (ins i32mem:$src),
21                 "lea{w}\t{$src|$dst}, {$dst|$src}", [], IIC_LEA_16>, OpSize;
22let isReMaterializable = 1 in
23def LEA32r   : I<0x8D, MRMSrcMem,
24                 (outs GR32:$dst), (ins i32mem:$src),
25                 "lea{l}\t{$src|$dst}, {$dst|$src}",
26                 [(set GR32:$dst, lea32addr:$src)], IIC_LEA>,
27                 Requires<[In32BitMode]>;
28
29def LEA64_32r : I<0x8D, MRMSrcMem,
30                  (outs GR32:$dst), (ins lea64_32mem:$src),
31                  "lea{l}\t{$src|$dst}, {$dst|$src}",
32                  [(set GR32:$dst, lea64_32addr:$src)], IIC_LEA>,
33                  Requires<[In64BitMode]>;
34
35let isReMaterializable = 1 in
36def LEA64r   : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
37                  "lea{q}\t{$src|$dst}, {$dst|$src}",
38                  [(set GR64:$dst, lea64addr:$src)], IIC_LEA>;
39} // SchedRW
40
41//===----------------------------------------------------------------------===//
42//  Fixed-Register Multiplication and Division Instructions.
43//
44
45// SchedModel info for instruction that loads one value and gets the second
46// (and possibly third) value from a register.
47// This is used for instructions that put the memory operands before other
48// uses.
49class SchedLoadReg<SchedWrite SW> : Sched<[SW,
50  // Memory operand.
51  ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
52  // Register reads (implicit or explicit).
53  ReadAfterLd, ReadAfterLd]>;
54
55// Extra precision multiplication
56
57// AL is really implied by AX, but the registers in Defs must match the
58// SDNode results (i8, i32).
59// AL,AH = AL*GR8
60let Defs = [AL,EFLAGS,AX], Uses = [AL] in
61def MUL8r  : I<0xF6, MRM4r, (outs),  (ins GR8:$src), "mul{b}\t$src",
62               // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
63               // This probably ought to be moved to a def : Pat<> if the
64               // syntax can be accepted.
65               [(set AL, (mul AL, GR8:$src)),
66                (implicit EFLAGS)], IIC_MUL8>, Sched<[WriteIMul]>;
67// AX,DX = AX*GR16
68let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in
69def MUL16r : I<0xF7, MRM4r, (outs),  (ins GR16:$src),
70               "mul{w}\t$src",
71               [], IIC_MUL16_REG>, OpSize, Sched<[WriteIMul]>;
72// EAX,EDX = EAX*GR32
73let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in
74def MUL32r : I<0xF7, MRM4r, (outs),  (ins GR32:$src),
75               "mul{l}\t$src",
76               [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/],
77               IIC_MUL32_REG>, Sched<[WriteIMul]>;
78// RAX,RDX = RAX*GR64
79let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
80def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
81                "mul{q}\t$src",
82                [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/],
83                IIC_MUL64>, Sched<[WriteIMul]>;
84// AL,AH = AL*[mem8]
85let Defs = [AL,EFLAGS,AX], Uses = [AL] in
86def MUL8m  : I<0xF6, MRM4m, (outs), (ins i8mem :$src),
87               "mul{b}\t$src",
88               // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
89               // This probably ought to be moved to a def : Pat<> if the
90               // syntax can be accepted.
91               [(set AL, (mul AL, (loadi8 addr:$src))),
92                (implicit EFLAGS)], IIC_MUL8>, SchedLoadReg<WriteIMulLd>;
93// AX,DX = AX*[mem16]
94let mayLoad = 1, neverHasSideEffects = 1 in {
95let Defs = [AX,DX,EFLAGS], Uses = [AX] in
96def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src),
97               "mul{w}\t$src",
98               [], IIC_MUL16_MEM>, OpSize, SchedLoadReg<WriteIMulLd>;
99// EAX,EDX = EAX*[mem32]
100let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
101def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src),
102              "mul{l}\t$src",
103              [], IIC_MUL32_MEM>, SchedLoadReg<WriteIMulLd>;
104// RAX,RDX = RAX*[mem64]
105let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
106def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
107                "mul{q}\t$src", [], IIC_MUL64>, SchedLoadReg<WriteIMulLd>;
108}
109
110let neverHasSideEffects = 1 in {
111// AL,AH = AL*GR8
112let Defs = [AL,EFLAGS,AX], Uses = [AL] in
113def IMUL8r  : I<0xF6, MRM5r, (outs),  (ins GR8:$src), "imul{b}\t$src", [],
114              IIC_IMUL8>, Sched<[WriteIMul]>;
115// AX,DX = AX*GR16
116let Defs = [AX,DX,EFLAGS], Uses = [AX] in
117def IMUL16r : I<0xF7, MRM5r, (outs),  (ins GR16:$src), "imul{w}\t$src", [],
118              IIC_IMUL16_RR>, OpSize, Sched<[WriteIMul]>;
119// EAX,EDX = EAX*GR32
120let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
121def IMUL32r : I<0xF7, MRM5r, (outs),  (ins GR32:$src), "imul{l}\t$src", [],
122              IIC_IMUL32_RR>, Sched<[WriteIMul]>;
123// RAX,RDX = RAX*GR64
124let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
125def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", [],
126              IIC_IMUL64_RR>, Sched<[WriteIMul]>;
127
128let mayLoad = 1 in {
129// AL,AH = AL*[mem8]
130let Defs = [AL,EFLAGS,AX], Uses = [AL] in
131def IMUL8m  : I<0xF6, MRM5m, (outs), (ins i8mem :$src),
132                "imul{b}\t$src", [], IIC_IMUL8>, SchedLoadReg<WriteIMulLd>;
133// AX,DX = AX*[mem16]
134let Defs = [AX,DX,EFLAGS], Uses = [AX] in
135def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src),
136                "imul{w}\t$src", [], IIC_IMUL16_MEM>, OpSize,
137              SchedLoadReg<WriteIMulLd>;
138// EAX,EDX = EAX*[mem32]
139let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
140def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src),
141                "imul{l}\t$src", [], IIC_IMUL32_MEM>, SchedLoadReg<WriteIMulLd>;
142// RAX,RDX = RAX*[mem64]
143let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
144def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
145                 "imul{q}\t$src", [], IIC_IMUL64>, SchedLoadReg<WriteIMulLd>;
146}
147} // neverHasSideEffects
148
149
150let Defs = [EFLAGS] in {
151let Constraints = "$src1 = $dst" in {
152
153let isCommutable = 1, SchedRW = [WriteIMul] in {
154// X = IMUL Y, Z --> X = IMUL Z, Y
155// Register-Register Signed Integer Multiply
156def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2),
157                 "imul{w}\t{$src2, $dst|$dst, $src2}",
158                 [(set GR16:$dst, EFLAGS,
159                       (X86smul_flag GR16:$src1, GR16:$src2))], IIC_IMUL16_RR>,
160                       TB, OpSize;
161def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2),
162                 "imul{l}\t{$src2, $dst|$dst, $src2}",
163                 [(set GR32:$dst, EFLAGS,
164                       (X86smul_flag GR32:$src1, GR32:$src2))], IIC_IMUL32_RR>,
165                 TB;
166def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst),
167                                   (ins GR64:$src1, GR64:$src2),
168                  "imul{q}\t{$src2, $dst|$dst, $src2}",
169                  [(set GR64:$dst, EFLAGS,
170                        (X86smul_flag GR64:$src1, GR64:$src2))], IIC_IMUL64_RR>,
171                 TB;
172} // isCommutable, SchedRW
173
174// Register-Memory Signed Integer Multiply
175let SchedRW = [WriteIMulLd, ReadAfterLd] in {
176def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst),
177                                  (ins GR16:$src1, i16mem:$src2),
178                 "imul{w}\t{$src2, $dst|$dst, $src2}",
179                 [(set GR16:$dst, EFLAGS,
180                       (X86smul_flag GR16:$src1, (load addr:$src2)))],
181                       IIC_IMUL16_RM>,
182               TB, OpSize;
183def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst),
184                 (ins GR32:$src1, i32mem:$src2),
185                 "imul{l}\t{$src2, $dst|$dst, $src2}",
186                 [(set GR32:$dst, EFLAGS,
187                       (X86smul_flag GR32:$src1, (load addr:$src2)))],
188                       IIC_IMUL32_RM>,
189               TB;
190def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst),
191                                   (ins GR64:$src1, i64mem:$src2),
192                  "imul{q}\t{$src2, $dst|$dst, $src2}",
193                  [(set GR64:$dst, EFLAGS,
194                        (X86smul_flag GR64:$src1, (load addr:$src2)))],
195                        IIC_IMUL64_RM>,
196               TB;
197} // SchedRW
198} // Constraints = "$src1 = $dst"
199
200} // Defs = [EFLAGS]
201
202// Surprisingly enough, these are not two address instructions!
203let Defs = [EFLAGS] in {
204let SchedRW = [WriteIMul] in {
205// Register-Integer Signed Integer Multiply
206def IMUL16rri  : Ii16<0x69, MRMSrcReg,                      // GR16 = GR16*I16
207                      (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
208                      "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
209                      [(set GR16:$dst, EFLAGS,
210                            (X86smul_flag GR16:$src1, imm:$src2))],
211                            IIC_IMUL16_RRI>, OpSize;
212def IMUL16rri8 : Ii8<0x6B, MRMSrcReg,                       // GR16 = GR16*I8
213                     (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
214                     "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
215                     [(set GR16:$dst, EFLAGS,
216                           (X86smul_flag GR16:$src1, i16immSExt8:$src2))],
217                           IIC_IMUL16_RRI>,
218                 OpSize;
219def IMUL32rri  : Ii32<0x69, MRMSrcReg,                      // GR32 = GR32*I32
220                      (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
221                      "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
222                      [(set GR32:$dst, EFLAGS,
223                            (X86smul_flag GR32:$src1, imm:$src2))],
224                            IIC_IMUL32_RRI>;
225def IMUL32rri8 : Ii8<0x6B, MRMSrcReg,                       // GR32 = GR32*I8
226                     (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
227                     "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
228                     [(set GR32:$dst, EFLAGS,
229                           (X86smul_flag GR32:$src1, i32immSExt8:$src2))],
230                           IIC_IMUL32_RRI>;
231def IMUL64rri32 : RIi32<0x69, MRMSrcReg,                    // GR64 = GR64*I32
232                        (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
233                        "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
234                       [(set GR64:$dst, EFLAGS,
235                             (X86smul_flag GR64:$src1, i64immSExt32:$src2))],
236                             IIC_IMUL64_RRI>;
237def IMUL64rri8 : RIi8<0x6B, MRMSrcReg,                      // GR64 = GR64*I8
238                      (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
239                      "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
240                      [(set GR64:$dst, EFLAGS,
241                            (X86smul_flag GR64:$src1, i64immSExt8:$src2))],
242                            IIC_IMUL64_RRI>;
243} // SchedRW
244
245// Memory-Integer Signed Integer Multiply
246let SchedRW = [WriteIMulLd] in {
247def IMUL16rmi  : Ii16<0x69, MRMSrcMem,                     // GR16 = [mem16]*I16
248                      (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2),
249                      "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
250                      [(set GR16:$dst, EFLAGS,
251                            (X86smul_flag (load addr:$src1), imm:$src2))],
252                            IIC_IMUL16_RMI>,
253                 OpSize;
254def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem,                       // GR16 = [mem16]*I8
255                     (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2),
256                     "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
257                     [(set GR16:$dst, EFLAGS,
258                           (X86smul_flag (load addr:$src1),
259                                         i16immSExt8:$src2))], IIC_IMUL16_RMI>,
260                                         OpSize;
261def IMUL32rmi  : Ii32<0x69, MRMSrcMem,                     // GR32 = [mem32]*I32
262                      (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2),
263                      "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
264                      [(set GR32:$dst, EFLAGS,
265                            (X86smul_flag (load addr:$src1), imm:$src2))],
266                            IIC_IMUL32_RMI>;
267def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem,                       // GR32 = [mem32]*I8
268                     (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2),
269                     "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
270                     [(set GR32:$dst, EFLAGS,
271                           (X86smul_flag (load addr:$src1),
272                                         i32immSExt8:$src2))],
273                                         IIC_IMUL32_RMI>;
274def IMUL64rmi32 : RIi32<0x69, MRMSrcMem,                   // GR64 = [mem64]*I32
275                        (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
276                        "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
277                        [(set GR64:$dst, EFLAGS,
278                              (X86smul_flag (load addr:$src1),
279                                            i64immSExt32:$src2))],
280                                            IIC_IMUL64_RMI>;
281def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem,                      // GR64 = [mem64]*I8
282                      (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
283                      "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
284                      [(set GR64:$dst, EFLAGS,
285                            (X86smul_flag (load addr:$src1),
286                                          i64immSExt8:$src2))],
287                                          IIC_IMUL64_RMI>;
288} // SchedRW
289} // Defs = [EFLAGS]
290
291
292
293
294// unsigned division/remainder
295let hasSideEffects = 1 in { // so that we don't speculatively execute
296let SchedRW = [WriteIDiv] in {
297let Defs = [AL,AH,EFLAGS], Uses = [AX] in
298def DIV8r  : I<0xF6, MRM6r, (outs),  (ins GR8:$src),    // AX/r8 = AL,AH
299               "div{b}\t$src", [], IIC_DIV8_REG>;
300let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
301def DIV16r : I<0xF7, MRM6r, (outs),  (ins GR16:$src),   // DX:AX/r16 = AX,DX
302               "div{w}\t$src", [], IIC_DIV16>, OpSize;
303let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
304def DIV32r : I<0xF7, MRM6r, (outs),  (ins GR32:$src),   // EDX:EAX/r32 = EAX,EDX
305               "div{l}\t$src", [], IIC_DIV32>;
306// RDX:RAX/r64 = RAX,RDX
307let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
308def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src),
309                "div{q}\t$src", [], IIC_DIV64>;
310} // SchedRW
311
312let mayLoad = 1 in {
313let Defs = [AL,AH,EFLAGS], Uses = [AX] in
314def DIV8m  : I<0xF6, MRM6m, (outs), (ins i8mem:$src),   // AX/[mem8] = AL,AH
315               "div{b}\t$src", [], IIC_DIV8_MEM>,
316             SchedLoadReg<WriteIDivLd>;
317let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
318def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src),  // DX:AX/[mem16] = AX,DX
319               "div{w}\t$src", [], IIC_DIV16>, OpSize,
320             SchedLoadReg<WriteIDivLd>;
321let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in    // EDX:EAX/[mem32] = EAX,EDX
322def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src),
323               "div{l}\t$src", [], IIC_DIV32>,
324             SchedLoadReg<WriteIDivLd>;
325// RDX:RAX/[mem64] = RAX,RDX
326let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
327def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src),
328                "div{q}\t$src", [], IIC_DIV64>,
329             SchedLoadReg<WriteIDivLd>;
330}
331
332// Signed division/remainder.
333let SchedRW = [WriteIDiv] in {
334let Defs = [AL,AH,EFLAGS], Uses = [AX] in
335def IDIV8r : I<0xF6, MRM7r, (outs),  (ins GR8:$src),    // AX/r8 = AL,AH
336               "idiv{b}\t$src", [], IIC_IDIV8>;
337let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
338def IDIV16r: I<0xF7, MRM7r, (outs),  (ins GR16:$src),   // DX:AX/r16 = AX,DX
339               "idiv{w}\t$src", [], IIC_IDIV16>, OpSize;
340let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
341def IDIV32r: I<0xF7, MRM7r, (outs),  (ins GR32:$src),   // EDX:EAX/r32 = EAX,EDX
342               "idiv{l}\t$src", [], IIC_IDIV32>;
343// RDX:RAX/r64 = RAX,RDX
344let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
345def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src),
346                "idiv{q}\t$src", [], IIC_IDIV64>;
347} // SchedRW
348
349let mayLoad = 1 in {
350let Defs = [AL,AH,EFLAGS], Uses = [AX] in
351def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src),   // AX/[mem8] = AL,AH
352               "idiv{b}\t$src", [], IIC_IDIV8>,
353             SchedLoadReg<WriteIDivLd>;
354let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
355def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src),  // DX:AX/[mem16] = AX,DX
356               "idiv{w}\t$src", [], IIC_IDIV16>, OpSize,
357             SchedLoadReg<WriteIDivLd>;
358let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in    // EDX:EAX/[mem32] = EAX,EDX
359def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src),
360               "idiv{l}\t$src", [], IIC_IDIV32>,
361             SchedLoadReg<WriteIDivLd>;
362let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX
363def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src),
364                "idiv{q}\t$src", [], IIC_IDIV64>,
365             SchedLoadReg<WriteIDivLd>;
366}
367} // hasSideEffects = 0
368
369//===----------------------------------------------------------------------===//
370//  Two address Instructions.
371//
372
373// unary instructions
374let CodeSize = 2 in {
375let Defs = [EFLAGS] in {
376let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
377def NEG8r  : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1),
378               "neg{b}\t$dst",
379               [(set GR8:$dst, (ineg GR8:$src1)),
380                (implicit EFLAGS)], IIC_UNARY_REG>;
381def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1),
382               "neg{w}\t$dst",
383               [(set GR16:$dst, (ineg GR16:$src1)),
384                (implicit EFLAGS)], IIC_UNARY_REG>, OpSize;
385def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1),
386               "neg{l}\t$dst",
387               [(set GR32:$dst, (ineg GR32:$src1)),
388                (implicit EFLAGS)], IIC_UNARY_REG>;
389def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst",
390                [(set GR64:$dst, (ineg GR64:$src1)),
391                 (implicit EFLAGS)], IIC_UNARY_REG>;
392} // Constraints = "$src1 = $dst", SchedRW
393
394// Read-modify-write negate.
395let SchedRW = [WriteALULd, WriteRMW] in {
396def NEG8m  : I<0xF6, MRM3m, (outs), (ins i8mem :$dst),
397               "neg{b}\t$dst",
398               [(store (ineg (loadi8 addr:$dst)), addr:$dst),
399                (implicit EFLAGS)], IIC_UNARY_MEM>;
400def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst),
401               "neg{w}\t$dst",
402               [(store (ineg (loadi16 addr:$dst)), addr:$dst),
403                (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize;
404def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst),
405               "neg{l}\t$dst",
406               [(store (ineg (loadi32 addr:$dst)), addr:$dst),
407                (implicit EFLAGS)], IIC_UNARY_MEM>;
408def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
409                [(store (ineg (loadi64 addr:$dst)), addr:$dst),
410                 (implicit EFLAGS)], IIC_UNARY_MEM>;
411} // SchedRW
412} // Defs = [EFLAGS]
413
414
415// Note: NOT does not set EFLAGS!
416
417let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
418// Match xor -1 to not. Favors these over a move imm + xor to save code size.
419let AddedComplexity = 15 in {
420def NOT8r  : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1),
421               "not{b}\t$dst",
422               [(set GR8:$dst, (not GR8:$src1))], IIC_UNARY_REG>;
423def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1),
424               "not{w}\t$dst",
425               [(set GR16:$dst, (not GR16:$src1))], IIC_UNARY_REG>, OpSize;
426def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1),
427               "not{l}\t$dst",
428               [(set GR32:$dst, (not GR32:$src1))], IIC_UNARY_REG>;
429def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst",
430                [(set GR64:$dst, (not GR64:$src1))], IIC_UNARY_REG>;
431}
432} // Constraints = "$src1 = $dst", SchedRW
433
434let SchedRW = [WriteALULd, WriteRMW] in {
435def NOT8m  : I<0xF6, MRM2m, (outs), (ins i8mem :$dst),
436               "not{b}\t$dst",
437               [(store (not (loadi8 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>;
438def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst),
439               "not{w}\t$dst",
440               [(store (not (loadi16 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>,
441               OpSize;
442def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst),
443               "not{l}\t$dst",
444               [(store (not (loadi32 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>;
445def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
446                [(store (not (loadi64 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>;
447} // SchedRW
448} // CodeSize
449
450// TODO: inc/dec is slow for P4, but fast for Pentium-M.
451let Defs = [EFLAGS] in {
452let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
453let CodeSize = 2 in
454def INC8r  : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
455               "inc{b}\t$dst",
456               [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))],
457               IIC_UNARY_REG>;
458
459let isConvertibleToThreeAddress = 1, CodeSize = 1 in {  // Can xform into LEA.
460def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
461               "inc{w}\t$dst",
462               [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))], IIC_UNARY_REG>,
463             OpSize, Requires<[In32BitMode]>;
464def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
465               "inc{l}\t$dst",
466               [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))],
467               IIC_UNARY_REG>,
468             Requires<[In32BitMode]>;
469def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst",
470                [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))],
471                IIC_UNARY_REG>;
472} // isConvertibleToThreeAddress = 1, CodeSize = 1
473
474
475// In 64-bit mode, single byte INC and DEC cannot be encoded.
476let isConvertibleToThreeAddress = 1, CodeSize = 2 in {
477// Can transform into LEA.
478def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
479                  "inc{w}\t$dst",
480                  [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))],
481                  IIC_UNARY_REG>,
482                OpSize, Requires<[In64BitMode]>;
483def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
484                  "inc{l}\t$dst",
485                  [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))],
486                  IIC_UNARY_REG>,
487                Requires<[In64BitMode]>;
488def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
489                  "dec{w}\t$dst",
490                  [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))],
491                  IIC_UNARY_REG>,
492                OpSize, Requires<[In64BitMode]>;
493def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
494                  "dec{l}\t$dst",
495                  [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))],
496                  IIC_UNARY_REG>,
497                Requires<[In64BitMode]>;
498} // isConvertibleToThreeAddress = 1, CodeSize = 2
499
500} // Constraints = "$src1 = $dst", SchedRW
501
502let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in {
503  def INC8m  : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst",
504               [(store (add (loadi8 addr:$dst), 1), addr:$dst),
505                (implicit EFLAGS)], IIC_UNARY_MEM>;
506  def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
507               [(store (add (loadi16 addr:$dst), 1), addr:$dst),
508                (implicit EFLAGS)], IIC_UNARY_MEM>,
509               OpSize, Requires<[In32BitMode]>;
510  def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
511               [(store (add (loadi32 addr:$dst), 1), addr:$dst),
512                (implicit EFLAGS)], IIC_UNARY_MEM>,
513               Requires<[In32BitMode]>;
514  def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
515                  [(store (add (loadi64 addr:$dst), 1), addr:$dst),
516                   (implicit EFLAGS)], IIC_UNARY_MEM>;
517
518// These are duplicates of their 32-bit counterparts. Only needed so X86 knows
519// how to unfold them.
520// FIXME: What is this for??
521def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
522                  [(store (add (loadi16 addr:$dst), 1), addr:$dst),
523                    (implicit EFLAGS)], IIC_UNARY_MEM>,
524                OpSize, Requires<[In64BitMode]>;
525def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
526                  [(store (add (loadi32 addr:$dst), 1), addr:$dst),
527                    (implicit EFLAGS)], IIC_UNARY_MEM>,
528                Requires<[In64BitMode]>;
529def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
530                  [(store (add (loadi16 addr:$dst), -1), addr:$dst),
531                    (implicit EFLAGS)], IIC_UNARY_MEM>,
532                OpSize, Requires<[In64BitMode]>;
533def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
534                  [(store (add (loadi32 addr:$dst), -1), addr:$dst),
535                    (implicit EFLAGS)], IIC_UNARY_MEM>,
536                Requires<[In64BitMode]>;
537} // CodeSize = 2, SchedRW
538
539let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
540let CodeSize = 2 in
541def DEC8r  : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
542               "dec{b}\t$dst",
543               [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))],
544               IIC_UNARY_REG>;
545let isConvertibleToThreeAddress = 1, CodeSize = 1 in {   // Can xform into LEA.
546def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
547               "dec{w}\t$dst",
548               [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))],
549               IIC_UNARY_REG>,
550             OpSize, Requires<[In32BitMode]>;
551def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
552               "dec{l}\t$dst",
553               [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))],
554               IIC_UNARY_REG>,
555             Requires<[In32BitMode]>;
556def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst",
557                [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))],
558                IIC_UNARY_REG>;
559} // CodeSize = 2
560} // Constraints = "$src1 = $dst", SchedRW
561
562
563let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in {
564  def DEC8m  : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst",
565               [(store (add (loadi8 addr:$dst), -1), addr:$dst),
566                (implicit EFLAGS)], IIC_UNARY_MEM>;
567  def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
568               [(store (add (loadi16 addr:$dst), -1), addr:$dst),
569                (implicit EFLAGS)], IIC_UNARY_MEM>,
570               OpSize, Requires<[In32BitMode]>;
571  def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
572               [(store (add (loadi32 addr:$dst), -1), addr:$dst),
573                (implicit EFLAGS)], IIC_UNARY_MEM>,
574               Requires<[In32BitMode]>;
575  def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
576                  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
577                   (implicit EFLAGS)], IIC_UNARY_MEM>;
578} // CodeSize = 2, SchedRW
579} // Defs = [EFLAGS]
580
581
582/// X86TypeInfo - This is a bunch of information that describes relevant X86
583/// information about value types.  For example, it can tell you what the
584/// register class and preferred load to use.
585class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
586                  PatFrag loadnode, X86MemOperand memoperand, ImmType immkind,
587                  Operand immoperand, SDPatternOperator immoperator,
588                  Operand imm8operand, SDPatternOperator imm8operator,
589                  bit hasOddOpcode, bit hasOpSizePrefix, bit hasREX_WPrefix> {
590  /// VT - This is the value type itself.
591  ValueType VT = vt;
592
593  /// InstrSuffix - This is the suffix used on instructions with this type.  For
594  /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q".
595  string InstrSuffix = instrsuffix;
596
597  /// RegClass - This is the register class associated with this type.  For
598  /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64.
599  RegisterClass RegClass = regclass;
600
601  /// LoadNode - This is the load node associated with this type.  For
602  /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64.
603  PatFrag LoadNode = loadnode;
604
605  /// MemOperand - This is the memory operand associated with this type.  For
606  /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem.
607  X86MemOperand MemOperand = memoperand;
608
609  /// ImmEncoding - This is the encoding of an immediate of this type.  For
610  /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32.  Note that i64 -> Imm32
611  /// since the immediate fields of i64 instructions is a 32-bit sign extended
612  /// value.
613  ImmType ImmEncoding = immkind;
614
615  /// ImmOperand - This is the operand kind of an immediate of this type.  For
616  /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm.  Note that i64 ->
617  /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign
618  /// extended value.
619  Operand ImmOperand = immoperand;
620
621  /// ImmOperator - This is the operator that should be used to match an
622  /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32).
623  SDPatternOperator ImmOperator = immoperator;
624
625  /// Imm8Operand - This is the operand kind to use for an imm8 of this type.
626  /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm.  This is
627  /// only used for instructions that have a sign-extended imm8 field form.
628  Operand Imm8Operand = imm8operand;
629
630  /// Imm8Operator - This is the operator that should be used to match an 8-bit
631  /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8).
632  SDPatternOperator Imm8Operator = imm8operator;
633
634  /// HasOddOpcode - This bit is true if the instruction should have an odd (as
635  /// opposed to even) opcode.  Operations on i8 are usually even, operations on
636  /// other datatypes are odd.
637  bit HasOddOpcode = hasOddOpcode;
638
639  /// HasOpSizePrefix - This bit is set to true if the instruction should have
640  /// the 0x66 operand size prefix.  This is set for i16 types.
641  bit HasOpSizePrefix = hasOpSizePrefix;
642
643  /// HasREX_WPrefix - This bit is set to true if the instruction should have
644  /// the 0x40 REX prefix.  This is set for i64 types.
645  bit HasREX_WPrefix = hasREX_WPrefix;
646}
647
648def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">;
649
650
651def Xi8  : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem ,
652                       Imm8 , i8imm ,    imm,          i8imm   , invalid_node,
653                       0, 0, 0>;
654def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem,
655                       Imm16, i16imm,    imm,          i16i8imm, i16immSExt8,
656                       1, 1, 0>;
657def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem,
658                       Imm32, i32imm,    imm,          i32i8imm, i32immSExt8,
659                       1, 0, 0>;
660def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem,
661                       Imm32, i64i32imm, i64immSExt32, i64i8imm, i64immSExt8,
662                       1, 0, 1>;
663
664/// ITy - This instruction base class takes the type info for the instruction.
665/// Using this, it:
666/// 1. Concatenates together the instruction mnemonic with the appropriate
667///    suffix letter, a tab, and the arguments.
668/// 2. Infers whether the instruction should have a 0x66 prefix byte.
669/// 3. Infers whether the instruction should have a 0x40 REX_W prefix.
670/// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations)
671///    or 1 (for i16,i32,i64 operations).
672class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins,
673          string mnemonic, string args, list<dag> pattern,
674          InstrItinClass itin = IIC_BIN_NONMEM>
675  : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4},
676       opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode },
677      f, outs, ins,
678      !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern,
679      itin> {
680
681  // Infer instruction prefixes from type info.
682  let hasOpSizePrefix = typeinfo.HasOpSizePrefix;
683  let hasREX_WPrefix  = typeinfo.HasREX_WPrefix;
684}
685
686// BinOpRR - Instructions like "add reg, reg, reg".
687class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
688              dag outlist, list<dag> pattern, InstrItinClass itin,
689              Format f = MRMDestReg>
690  : ITy<opcode, f, typeinfo, outlist,
691        (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
692        mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
693    Sched<[WriteALU]>;
694
695// BinOpRR_R - Instructions like "add reg, reg, reg", where the pattern has
696// just a regclass (no eflags) as a result.
697class BinOpRR_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
698                SDNode opnode>
699  : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
700            [(set typeinfo.RegClass:$dst,
701                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
702                  IIC_BIN_NONMEM>;
703
704// BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has
705// just a EFLAGS as a result.
706class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
707                SDPatternOperator opnode, Format f = MRMDestReg>
708  : BinOpRR<opcode, mnemonic, typeinfo, (outs),
709            [(set EFLAGS,
710                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
711            IIC_BIN_NONMEM, f>;
712
713// BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has
714// both a regclass and EFLAGS as a result.
715class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
716                 SDNode opnode>
717  : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
718            [(set typeinfo.RegClass:$dst, EFLAGS,
719                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
720                  IIC_BIN_NONMEM>;
721
722// BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has
723// both a regclass and EFLAGS as a result, and has EFLAGS as input.
724class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
725                  SDNode opnode>
726  : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
727            [(set typeinfo.RegClass:$dst, EFLAGS,
728                  (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2,
729                          EFLAGS))], IIC_BIN_NONMEM>;
730
731// BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding).
732class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
733  : ITy<opcode, MRMSrcReg, typeinfo,
734        (outs typeinfo.RegClass:$dst),
735        (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
736        mnemonic, "{$src2, $dst|$dst, $src2}", [], IIC_BIN_NONMEM>,
737    Sched<[WriteALU]> {
738  // The disassembler should know about this, but not the asmparser.
739  let isCodeGenOnly = 1;
740  let hasSideEffects = 0;
741}
742
743// BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding).
744class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
745  : ITy<opcode, MRMSrcReg, typeinfo, (outs),
746        (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
747        mnemonic, "{$src2, $src1|$src1, $src2}", [], IIC_BIN_NONMEM>,
748    Sched<[WriteALU]> {
749  // The disassembler should know about this, but not the asmparser.
750  let isCodeGenOnly = 1;
751  let hasSideEffects = 0;
752}
753
754// BinOpRM - Instructions like "add reg, reg, [mem]".
755class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
756              dag outlist, list<dag> pattern>
757  : ITy<opcode, MRMSrcMem, typeinfo, outlist,
758        (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
759        mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM>,
760    Sched<[WriteALULd, ReadAfterLd]>;
761
762// BinOpRM_R - Instructions like "add reg, reg, [mem]".
763class BinOpRM_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
764              SDNode opnode>
765  : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
766            [(set typeinfo.RegClass:$dst,
767            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
768
769// BinOpRM_F - Instructions like "cmp reg, [mem]".
770class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
771              SDPatternOperator opnode>
772  : BinOpRM<opcode, mnemonic, typeinfo, (outs),
773            [(set EFLAGS,
774            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
775
776// BinOpRM_RF - Instructions like "add reg, reg, [mem]".
777class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
778                 SDNode opnode>
779  : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
780            [(set typeinfo.RegClass:$dst, EFLAGS,
781            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
782
783// BinOpRM_RFF - Instructions like "adc reg, reg, [mem]".
784class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
785                 SDNode opnode>
786  : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
787            [(set typeinfo.RegClass:$dst, EFLAGS,
788            (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2),
789                    EFLAGS))]>;
790
791// BinOpRI - Instructions like "add reg, reg, imm".
792class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
793              Format f, dag outlist, list<dag> pattern>
794  : ITy<opcode, f, typeinfo, outlist,
795        (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
796        mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM>,
797    Sched<[WriteALU]> {
798  let ImmT = typeinfo.ImmEncoding;
799}
800
801// BinOpRI_R - Instructions like "add reg, reg, imm".
802class BinOpRI_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
803                SDNode opnode, Format f>
804  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
805            [(set typeinfo.RegClass:$dst,
806                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
807
808// BinOpRI_F - Instructions like "cmp reg, imm".
809class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
810                SDPatternOperator opnode, Format f>
811  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs),
812            [(set EFLAGS,
813                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
814
815// BinOpRI_RF - Instructions like "add reg, reg, imm".
816class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
817                 SDNode opnode, Format f>
818  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
819            [(set typeinfo.RegClass:$dst, EFLAGS,
820                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
821// BinOpRI_RFF - Instructions like "adc reg, reg, imm".
822class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
823                 SDNode opnode, Format f>
824  : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
825            [(set typeinfo.RegClass:$dst, EFLAGS,
826                (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2,
827                        EFLAGS))]>;
828
829// BinOpRI8 - Instructions like "add reg, reg, imm8".
830class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
831               Format f, dag outlist, list<dag> pattern>
832  : ITy<opcode, f, typeinfo, outlist,
833        (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2),
834        mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM>,
835    Sched<[WriteALU]> {
836  let ImmT = Imm8; // Always 8-bit immediate.
837}
838
839// BinOpRI8_R - Instructions like "add reg, reg, imm8".
840class BinOpRI8_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
841                  SDNode opnode, Format f>
842  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
843             [(set typeinfo.RegClass:$dst,
844               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
845
846// BinOpRI8_F - Instructions like "cmp reg, imm8".
847class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
848                  SDNode opnode, Format f>
849  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs),
850             [(set EFLAGS,
851               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
852
853// BinOpRI8_RF - Instructions like "add reg, reg, imm8".
854class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
855                  SDNode opnode, Format f>
856  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
857             [(set typeinfo.RegClass:$dst, EFLAGS,
858               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
859
860// BinOpRI8_RFF - Instructions like "adc reg, reg, imm8".
861class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
862                   SDNode opnode, Format f>
863  : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
864             [(set typeinfo.RegClass:$dst, EFLAGS,
865               (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2,
866                       EFLAGS))]>;
867
868// BinOpMR - Instructions like "add [mem], reg".
869class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
870              list<dag> pattern>
871  : ITy<opcode, MRMDestMem, typeinfo,
872        (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src),
873        mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM>,
874    Sched<[WriteALULd, WriteRMW]>;
875
876// BinOpMR_RMW - Instructions like "add [mem], reg".
877class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
878                  SDNode opnode>
879  : BinOpMR<opcode, mnemonic, typeinfo,
880          [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst),
881           (implicit EFLAGS)]>;
882
883// BinOpMR_RMW_FF - Instructions like "adc [mem], reg".
884class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
885                    SDNode opnode>
886  : BinOpMR<opcode, mnemonic, typeinfo,
887          [(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS),
888                  addr:$dst),
889           (implicit EFLAGS)]>;
890
891// BinOpMR_F - Instructions like "cmp [mem], reg".
892class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
893                  SDNode opnode>
894  : BinOpMR<opcode, mnemonic, typeinfo,
895            [(set EFLAGS, (opnode (load addr:$dst), typeinfo.RegClass:$src))]>;
896
897// BinOpMI - Instructions like "add [mem], imm".
898class BinOpMI<string mnemonic, X86TypeInfo typeinfo,
899              Format f, list<dag> pattern, bits<8> opcode = 0x80>
900  : ITy<opcode, f, typeinfo,
901        (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src),
902        mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM>,
903    Sched<[WriteALULd, WriteRMW]> {
904  let ImmT = typeinfo.ImmEncoding;
905}
906
907// BinOpMI_RMW - Instructions like "add [mem], imm".
908class BinOpMI_RMW<string mnemonic, X86TypeInfo typeinfo,
909                  SDNode opnode, Format f>
910  : BinOpMI<mnemonic, typeinfo, f,
911            [(store (opnode (typeinfo.VT (load addr:$dst)),
912                            typeinfo.ImmOperator:$src), addr:$dst),
913             (implicit EFLAGS)]>;
914// BinOpMI_RMW_FF - Instructions like "adc [mem], imm".
915class BinOpMI_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
916                  SDNode opnode, Format f>
917  : BinOpMI<mnemonic, typeinfo, f,
918            [(store (opnode (typeinfo.VT (load addr:$dst)),
919                            typeinfo.ImmOperator:$src, EFLAGS), addr:$dst),
920             (implicit EFLAGS)]>;
921
922// BinOpMI_F - Instructions like "cmp [mem], imm".
923class BinOpMI_F<string mnemonic, X86TypeInfo typeinfo,
924                SDPatternOperator opnode, Format f, bits<8> opcode = 0x80>
925  : BinOpMI<mnemonic, typeinfo, f,
926            [(set EFLAGS, (opnode (typeinfo.VT (load addr:$dst)),
927                                               typeinfo.ImmOperator:$src))],
928            opcode>;
929
930// BinOpMI8 - Instructions like "add [mem], imm8".
931class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
932               Format f, list<dag> pattern>
933  : ITy<0x82, f, typeinfo,
934        (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src),
935        mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM>,
936    Sched<[WriteALULd, WriteRMW]> {
937  let ImmT = Imm8; // Always 8-bit immediate.
938}
939
940// BinOpMI8_RMW - Instructions like "add [mem], imm8".
941class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo,
942                   SDNode opnode, Format f>
943  : BinOpMI8<mnemonic, typeinfo, f,
944             [(store (opnode (load addr:$dst),
945                             typeinfo.Imm8Operator:$src), addr:$dst),
946              (implicit EFLAGS)]>;
947
948// BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8".
949class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
950                   SDNode opnode, Format f>
951  : BinOpMI8<mnemonic, typeinfo, f,
952             [(store (opnode (load addr:$dst),
953                             typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst),
954              (implicit EFLAGS)]>;
955
956// BinOpMI8_F - Instructions like "cmp [mem], imm8".
957class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo,
958                 SDNode opnode, Format f>
959  : BinOpMI8<mnemonic, typeinfo, f,
960             [(set EFLAGS, (opnode (load addr:$dst),
961                                   typeinfo.Imm8Operator:$src))]>;
962
963// BinOpAI - Instructions like "add %eax, %eax, imm", that imp-def EFLAGS.
964class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
965              Register areg, string operands>
966  : ITy<opcode, RawFrm, typeinfo,
967        (outs), (ins typeinfo.ImmOperand:$src),
968        mnemonic, operands, []>, Sched<[WriteALU]> {
969  let ImmT = typeinfo.ImmEncoding;
970  let Uses = [areg];
971  let Defs = [areg, EFLAGS];
972  let hasSideEffects = 0;
973}
974
975// BinOpAI_FF - Instructions like "adc %eax, %eax, imm", that implicitly define
976// and use EFLAGS.
977class BinOpAI_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
978                Register areg, string operands>
979  : BinOpAI<opcode, mnemonic, typeinfo, areg, operands> {
980  let Uses = [areg, EFLAGS];
981}
982
983/// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is
984/// defined with "(set GPR:$dst, EFLAGS, (...".
985///
986/// It would be nice to get rid of the second and third argument here, but
987/// tblgen can't handle dependent type references aggressively enough: PR8330
988multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
989                         string mnemonic, Format RegMRM, Format MemMRM,
990                         SDNode opnodeflag, SDNode opnode,
991                         bit CommutableRR, bit ConvertibleToThreeAddress> {
992  let Defs = [EFLAGS] in {
993    let Constraints = "$src1 = $dst" in {
994      let isCommutable = CommutableRR,
995          isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
996        def NAME#8rr  : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
997        def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
998        def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
999        def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
1000      } // isCommutable
1001
1002      def NAME#8rr_REV  : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
1003      def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
1004      def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
1005      def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
1006
1007      def NAME#8rm   : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>;
1008      def NAME#16rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>;
1009      def NAME#32rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>;
1010      def NAME#64rm  : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
1011
1012      let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1013        // NOTE: These are order specific, we want the ri8 forms to be listed
1014        // first so that they are slightly preferred to the ri forms.
1015        def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>;
1016        def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>;
1017        def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>;
1018
1019        def NAME#8ri   : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
1020        def NAME#16ri  : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>;
1021        def NAME#32ri  : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>;
1022        def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>;
1023      }
1024    } // Constraints = "$src1 = $dst"
1025
1026    def NAME#8mr    : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>;
1027    def NAME#16mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>;
1028    def NAME#32mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>;
1029    def NAME#64mr   : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>;
1030
1031    // NOTE: These are order specific, we want the mi8 forms to be listed
1032    // first so that they are slightly preferred to the mi forms.
1033    def NAME#16mi8  : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>;
1034    def NAME#32mi8  : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>;
1035    def NAME#64mi8  : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>;
1036
1037    def NAME#8mi    : BinOpMI_RMW<mnemonic, Xi8 , opnode, MemMRM>;
1038    def NAME#16mi   : BinOpMI_RMW<mnemonic, Xi16, opnode, MemMRM>;
1039    def NAME#32mi   : BinOpMI_RMW<mnemonic, Xi32, opnode, MemMRM>;
1040    def NAME#64mi32 : BinOpMI_RMW<mnemonic, Xi64, opnode, MemMRM>;
1041  } // Defs = [EFLAGS]
1042
1043  def NAME#8i8   : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
1044                           "{$src, %al|al, $src}">;
1045  def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
1046                           "{$src, %ax|ax, $src}">;
1047  def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
1048                           "{$src, %eax|eax, $src}">;
1049  def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
1050                           "{$src, %rax|rax, $src}">;
1051}
1052
1053/// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is
1054/// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and
1055/// SBB.
1056///
1057/// It would be nice to get rid of the second and third argument here, but
1058/// tblgen can't handle dependent type references aggressively enough: PR8330
1059multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
1060                          string mnemonic, Format RegMRM, Format MemMRM,
1061                          SDNode opnode, bit CommutableRR,
1062                           bit ConvertibleToThreeAddress> {
1063  let Uses = [EFLAGS], Defs = [EFLAGS] in {
1064    let Constraints = "$src1 = $dst" in {
1065      let isCommutable = CommutableRR,
1066          isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1067        def NAME#8rr  : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>;
1068        def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>;
1069        def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>;
1070        def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>;
1071      } // isCommutable
1072
1073      def NAME#8rr_REV  : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
1074      def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
1075      def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
1076      def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
1077
1078      def NAME#8rm   : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>;
1079      def NAME#16rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>;
1080      def NAME#32rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>;
1081      def NAME#64rm  : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>;
1082
1083      let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1084        // NOTE: These are order specific, we want the ri8 forms to be listed
1085        // first so that they are slightly preferred to the ri forms.
1086        def NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>;
1087        def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>;
1088        def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>;
1089
1090        def NAME#8ri   : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
1091        def NAME#16ri  : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>;
1092        def NAME#32ri  : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>;
1093        def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>;
1094      }
1095    } // Constraints = "$src1 = $dst"
1096
1097    def NAME#8mr    : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>;
1098    def NAME#16mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>;
1099    def NAME#32mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>;
1100    def NAME#64mr   : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>;
1101
1102    // NOTE: These are order specific, we want the mi8 forms to be listed
1103    // first so that they are slightly preferred to the mi forms.
1104    def NAME#16mi8  : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
1105    def NAME#32mi8  : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
1106    def NAME#64mi8  : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
1107
1108    def NAME#8mi    : BinOpMI_RMW_FF<mnemonic, Xi8 , opnode, MemMRM>;
1109    def NAME#16mi   : BinOpMI_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
1110    def NAME#32mi   : BinOpMI_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
1111    def NAME#64mi32 : BinOpMI_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
1112  } // Uses = [EFLAGS], Defs = [EFLAGS]
1113
1114  def NAME#8i8   : BinOpAI_FF<BaseOpc4, mnemonic, Xi8 , AL,
1115                              "{$src, %al|al, $src}">;
1116  def NAME#16i16 : BinOpAI_FF<BaseOpc4, mnemonic, Xi16, AX,
1117                              "{$src, %ax|ax, $src}">;
1118  def NAME#32i32 : BinOpAI_FF<BaseOpc4, mnemonic, Xi32, EAX,
1119                              "{$src, %eax|eax, $src}">;
1120  def NAME#64i32 : BinOpAI_FF<BaseOpc4, mnemonic, Xi64, RAX,
1121                              "{$src, %rax|rax, $src}">;
1122}
1123
1124/// ArithBinOp_F - This is an arithmetic binary operator where the pattern is
1125/// defined with "(set EFLAGS, (...".  It would be really nice to find a way
1126/// to factor this with the other ArithBinOp_*.
1127///
1128multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
1129                        string mnemonic, Format RegMRM, Format MemMRM,
1130                        SDNode opnode,
1131                        bit CommutableRR, bit ConvertibleToThreeAddress> {
1132  let Defs = [EFLAGS] in {
1133    let isCommutable = CommutableRR,
1134        isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1135      def NAME#8rr  : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
1136      def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
1137      def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
1138      def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
1139    } // isCommutable
1140
1141    def NAME#8rr_REV  : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>;
1142    def NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>;
1143    def NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>;
1144    def NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>;
1145
1146    def NAME#8rm   : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>;
1147    def NAME#16rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>;
1148    def NAME#32rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>;
1149    def NAME#64rm  : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;
1150
1151    let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1152      // NOTE: These are order specific, we want the ri8 forms to be listed
1153      // first so that they are slightly preferred to the ri forms.
1154      def NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>;
1155      def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>;
1156      def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>;
1157
1158      def NAME#8ri   : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
1159      def NAME#16ri  : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>;
1160      def NAME#32ri  : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>;
1161      def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>;
1162    }
1163
1164    def NAME#8mr    : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>;
1165    def NAME#16mr   : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>;
1166    def NAME#32mr   : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>;
1167    def NAME#64mr   : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>;
1168
1169    // NOTE: These are order specific, we want the mi8 forms to be listed
1170    // first so that they are slightly preferred to the mi forms.
1171    def NAME#16mi8  : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>;
1172    def NAME#32mi8  : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>;
1173    def NAME#64mi8  : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>;
1174
1175    def NAME#8mi    : BinOpMI_F<mnemonic, Xi8 , opnode, MemMRM>;
1176    def NAME#16mi   : BinOpMI_F<mnemonic, Xi16, opnode, MemMRM>;
1177    def NAME#32mi   : BinOpMI_F<mnemonic, Xi32, opnode, MemMRM>;
1178    def NAME#64mi32 : BinOpMI_F<mnemonic, Xi64, opnode, MemMRM>;
1179  } // Defs = [EFLAGS]
1180
1181  def NAME#8i8   : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
1182                           "{$src, %al|al, $src}">;
1183  def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
1184                           "{$src, %ax|ax, $src}">;
1185  def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
1186                           "{$src, %eax|eax, $src}">;
1187  def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
1188                           "{$src, %rax|rax, $src}">;
1189}
1190
1191
1192defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m,
1193                         X86and_flag, and, 1, 0>;
1194defm OR  : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m,
1195                         X86or_flag, or, 1, 0>;
1196defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m,
1197                         X86xor_flag, xor, 1, 0>;
1198defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m,
1199                         X86add_flag, add, 1, 1>;
1200let isCompare = 1 in {
1201defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m,
1202                         X86sub_flag, sub, 0, 0>;
1203}
1204
1205// Arithmetic.
1206defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag,
1207                          1, 0>;
1208defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag,
1209                          0, 0>;
1210
1211let isCompare = 1 in {
1212defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>;
1213}
1214
1215
1216//===----------------------------------------------------------------------===//
1217// Semantically, test instructions are similar like AND, except they don't
1218// generate a result.  From an encoding perspective, they are very different:
1219// they don't have all the usual imm8 and REV forms, and are encoded into a
1220// different space.
1221def X86testpat : PatFrag<(ops node:$lhs, node:$rhs),
1222                         (X86cmp (and_su node:$lhs, node:$rhs), 0)>;
1223
1224let isCompare = 1 in {
1225  let Defs = [EFLAGS] in {
1226    let isCommutable = 1 in {
1227      def TEST8rr  : BinOpRR_F<0x84, "test", Xi8 , X86testpat, MRMSrcReg>;
1228      def TEST16rr : BinOpRR_F<0x84, "test", Xi16, X86testpat, MRMSrcReg>;
1229      def TEST32rr : BinOpRR_F<0x84, "test", Xi32, X86testpat, MRMSrcReg>;
1230      def TEST64rr : BinOpRR_F<0x84, "test", Xi64, X86testpat, MRMSrcReg>;
1231    } // isCommutable
1232
1233    def TEST8rm    : BinOpRM_F<0x84, "test", Xi8 , X86testpat>;
1234    def TEST16rm   : BinOpRM_F<0x84, "test", Xi16, X86testpat>;
1235    def TEST32rm   : BinOpRM_F<0x84, "test", Xi32, X86testpat>;
1236    def TEST64rm   : BinOpRM_F<0x84, "test", Xi64, X86testpat>;
1237
1238    def TEST8ri    : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>;
1239    def TEST16ri   : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>;
1240    def TEST32ri   : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>;
1241    def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>;
1242
1243    def TEST8mi    : BinOpMI_F<"test", Xi8 , X86testpat, MRM0m, 0xF6>;
1244    def TEST16mi   : BinOpMI_F<"test", Xi16, X86testpat, MRM0m, 0xF6>;
1245    def TEST32mi   : BinOpMI_F<"test", Xi32, X86testpat, MRM0m, 0xF6>;
1246    def TEST64mi32 : BinOpMI_F<"test", Xi64, X86testpat, MRM0m, 0xF6>;
1247
1248    // When testing the result of EXTRACT_SUBREG sub_8bit_hi, make sure the
1249    // register class is constrained to GR8_NOREX.
1250    let isPseudo = 1 in
1251    def TEST8ri_NOREX : I<0, Pseudo, (outs), (ins GR8_NOREX:$src, i8imm:$mask),
1252                          "", [], IIC_BIN_NONMEM>, Sched<[WriteALU]>;
1253  } // Defs = [EFLAGS]
1254
1255  def TEST8i8    : BinOpAI<0xA8, "test", Xi8 , AL,
1256                           "{$src, %al|al, $src}">;
1257  def TEST16i16  : BinOpAI<0xA8, "test", Xi16, AX,
1258                           "{$src, %ax|ax, $src}">;
1259  def TEST32i32  : BinOpAI<0xA8, "test", Xi32, EAX,
1260                           "{$src, %eax|eax, $src}">;
1261  def TEST64i32  : BinOpAI<0xA8, "test", Xi64, RAX,
1262                           "{$src, %rax|rax, $src}">;
1263} // isCompare
1264
1265//===----------------------------------------------------------------------===//
1266// ANDN Instruction
1267//
1268multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
1269                    PatFrag ld_frag> {
1270  def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
1271            !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
1272            [(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), RC:$src2))],
1273            IIC_BIN_NONMEM>, Sched<[WriteALU]>;
1274  def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
1275            !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
1276            [(set RC:$dst, EFLAGS,
1277             (X86and_flag (not RC:$src1), (ld_frag addr:$src2)))], IIC_BIN_MEM>,
1278           Sched<[WriteALULd, ReadAfterLd]>;
1279}
1280
1281let Predicates = [HasBMI], Defs = [EFLAGS] in {
1282  defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32>, T8, VEX_4V;
1283  defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64>, T8, VEX_4V, VEX_W;
1284}
1285
1286let Predicates = [HasBMI] in {
1287  def : Pat<(and (not GR32:$src1), GR32:$src2),
1288            (ANDN32rr GR32:$src1, GR32:$src2)>;
1289  def : Pat<(and (not GR64:$src1), GR64:$src2),
1290            (ANDN64rr GR64:$src1, GR64:$src2)>;
1291  def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)),
1292            (ANDN32rm GR32:$src1, addr:$src2)>;
1293  def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)),
1294            (ANDN64rm GR64:$src1, addr:$src2)>;
1295}
1296
1297//===----------------------------------------------------------------------===//
1298// MULX Instruction
1299//
1300multiclass bmi_mulx<string mnemonic, RegisterClass RC, X86MemOperand x86memop> {
1301let neverHasSideEffects = 1 in {
1302  let isCommutable = 1 in
1303  def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src),
1304             !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
1305             [], IIC_MUL8>, T8XD, VEX_4V, Sched<[WriteIMul, WriteIMulH]>;
1306
1307  let mayLoad = 1 in
1308  def rm : I<0xF6, MRMSrcMem, (outs RC:$dst1, RC:$dst2), (ins x86memop:$src),
1309             !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
1310             [], IIC_MUL8>, T8XD, VEX_4V, Sched<[WriteIMulLd, WriteIMulH]>;
1311}
1312}
1313
1314let Predicates = [HasBMI2] in {
1315  let Uses = [EDX] in
1316    defm MULX32 : bmi_mulx<"mulx{l}", GR32, i32mem>;
1317  let Uses = [RDX] in
1318    defm MULX64 : bmi_mulx<"mulx{q}", GR64, i64mem>, VEX_W;
1319}
1320
1321//===----------------------------------------------------------------------===//
1322// ADCX Instruction
1323//
1324let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in {
1325  let SchedRW = [WriteALU] in {
1326  def ADCX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
1327             "adcx{l}\t{$src, $dst|$dst, $src}",
1328             [], IIC_BIN_NONMEM>, T8, OpSize;
1329
1330  def ADCX64rr : I<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
1331             "adcx{q}\t{$src, $dst|$dst, $src}",
1332             [], IIC_BIN_NONMEM>, T8, OpSize, REX_W, Requires<[In64BitMode]>;
1333  } // SchedRW
1334
1335  let mayLoad = 1, SchedRW = [WriteALULd] in {
1336  def ADCX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
1337             "adcx{l}\t{$src, $dst|$dst, $src}",
1338             [], IIC_BIN_MEM>, T8, OpSize;
1339
1340  def ADCX64rm : I<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
1341             "adcx{q}\t{$src, $dst|$dst, $src}",
1342             [], IIC_BIN_MEM>, T8, OpSize, REX_W, Requires<[In64BitMode]>;
1343  }
1344}
1345
1346//===----------------------------------------------------------------------===//
1347// ADOX Instruction
1348//
1349let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in {
1350  let SchedRW = [WriteALU] in {
1351  def ADOX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
1352             "adox{l}\t{$src, $dst|$dst, $src}",
1353             [], IIC_BIN_NONMEM>, T8XS;
1354
1355  def ADOX64rr : I<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
1356             "adox{q}\t{$src, $dst|$dst, $src}",
1357             [], IIC_BIN_NONMEM>, T8XS, REX_W, Requires<[In64BitMode]>;
1358  } // SchedRW
1359
1360  let mayLoad = 1, SchedRW = [WriteALULd] in {
1361  def ADOX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
1362             "adox{l}\t{$src, $dst|$dst, $src}",
1363             [], IIC_BIN_MEM>, T8XS;
1364
1365  def ADOX64rm : I<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
1366             "adox{q}\t{$src, $dst|$dst, $src}",
1367             [], IIC_BIN_MEM>, T8XS, REX_W, Requires<[In64BitMode]>;
1368  }
1369}
1370