• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19  // Transformation function: get the low 32 bits.
20  return getI32Imm((unsigned)N->getZExtValue());
21}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24  // Transformation function: get the low 8 bits.
25  return getI8Imm((uint8_t)N->getZExtValue());
26}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction.  This expands to code that looks like this:
33//     call  $next_inst
34//     popl %destreg"
35let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
36  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37                      "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
46def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
47                           "#ADJCALLSTACKDOWN",
48                           [(X86callseq_start timm:$amt)]>,
49                          Requires<[In32BitMode]>;
50def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51                           "#ADJCALLSTACKUP",
52                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53                          Requires<[In32BitMode]>;
54}
55
56// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
57// a stack adjustment and the codegen must know that they may modify the stack
58// pointer before prolog-epilog rewriting occurs.
59// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
60// sub / add which can clobber EFLAGS.
61let Defs = [RSP, EFLAGS], Uses = [RSP] in {
62def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
63                           "#ADJCALLSTACKDOWN",
64                           [(X86callseq_start timm:$amt)]>,
65                          Requires<[In64BitMode]>;
66def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
67                           "#ADJCALLSTACKUP",
68                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
69                          Requires<[In64BitMode]>;
70}
71
72
73
74// x86-64 va_start lowering magic.
75let usesCustomInserter = 1 in {
76def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
77                              (outs),
78                              (ins GR8:$al,
79                                   i64imm:$regsavefi, i64imm:$offset,
80                                   variable_ops),
81                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
82                              [(X86vastart_save_xmm_regs GR8:$al,
83                                                         imm:$regsavefi,
84                                                         imm:$offset)]>;
85
86// The VAARG_64 pseudo-instruction takes the address of the va_list,
87// and places the address of the next argument into a register.
88let Defs = [EFLAGS] in
89def VAARG_64 : I<0, Pseudo,
90                 (outs GR64:$dst),
91                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
92                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
93                 [(set GR64:$dst,
94                    (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
95                  (implicit EFLAGS)]>;
96
97// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
98// targets.  These calls are needed to probe the stack when allocating more than
99// 4k bytes in one go. Touching the stack at 4K increments is necessary to
100// ensure that the guard pages used by the OS virtual memory manager are
101// allocated in correct sequence.
102// The main point of having separate instruction are extra unmodelled effects
103// (compared to ordinary calls) like stack pointer change.
104
105let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
106  def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
107                     "# dynamic stack allocation",
108                     [(X86WinAlloca)]>;
109
110// When using segmented stacks these are lowered into instructions which first
111// check if the current stacklet has enough free memory. If it does, memory is
112// allocated by bumping the stack pointer. Otherwise memory is allocated from
113// the heap.
114
115let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
116def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
117                      "# variable sized alloca for segmented stacks",
118                      [(set GR32:$dst,
119                         (X86SegAlloca GR32:$size))]>,
120                    Requires<[In32BitMode]>;
121
122let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
123def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
124                      "# variable sized alloca for segmented stacks",
125                      [(set GR64:$dst,
126                         (X86SegAlloca GR64:$size))]>,
127                    Requires<[In64BitMode]>;
128}
129
130// The MSVC runtime contains an _ftol2 routine for converting floating-point
131// to integer values. It has a strange calling convention: the input is
132// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
133// used as a temporary register. No other registers (aside from flags) are
134// touched.
135// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
136// variant is unnecessary.
137
138let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
139  def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
140                      "# win32 fptoui",
141                      [(X86WinFTOL RFP32:$src)]>,
142                    Requires<[In32BitMode]>;
143
144  def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
145                      "# win32 fptoui",
146                      [(X86WinFTOL RFP64:$src)]>,
147                    Requires<[In32BitMode]>;
148}
149
150//===----------------------------------------------------------------------===//
151// EH Pseudo Instructions
152//
153let SchedRW = [WriteSystem] in {
154let isTerminator = 1, isReturn = 1, isBarrier = 1,
155    hasCtrlDep = 1, isCodeGenOnly = 1 in {
156def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
157                    "ret\t#eh_return, addr: $addr",
158                    [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
159
160}
161
162let isTerminator = 1, isReturn = 1, isBarrier = 1,
163    hasCtrlDep = 1, isCodeGenOnly = 1 in {
164def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
165                     "ret\t#eh_return, addr: $addr",
166                     [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
167
168}
169
170let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
171    usesCustomInserter = 1 in {
172  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
173                            "#EH_SJLJ_SETJMP32",
174                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
175                          Requires<[In32BitMode]>;
176  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
177                            "#EH_SJLJ_SETJMP64",
178                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
179                          Requires<[In64BitMode]>;
180  let isTerminator = 1 in {
181  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
182                            "#EH_SJLJ_LONGJMP32",
183                            [(X86eh_sjlj_longjmp addr:$buf)]>,
184                          Requires<[In32BitMode]>;
185  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
186                            "#EH_SJLJ_LONGJMP64",
187                            [(X86eh_sjlj_longjmp addr:$buf)]>,
188                          Requires<[In64BitMode]>;
189  }
190}
191} // SchedRW
192
193let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
194  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
195                        "#EH_SjLj_Setup\t$dst", []>;
196}
197
198//===----------------------------------------------------------------------===//
199// Pseudo instructions used by segmented stacks.
200//
201
202// This is lowered into a RET instruction by MCInstLower.  We need
203// this so that we don't have to have a MachineBasicBlock which ends
204// with a RET and also has successors.
205let isPseudo = 1 in {
206def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
207                          "", []>;
208
209// This instruction is lowered to a RET followed by a MOV.  The two
210// instructions are not generated on a higher level since then the
211// verifier sees a MachineBasicBlock ending with a non-terminator.
212def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
213                                  "", []>;
214}
215
216//===----------------------------------------------------------------------===//
217// Alias Instructions
218//===----------------------------------------------------------------------===//
219
220// Alias instruction mapping movr0 to xor.
221// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
222// FIXME: Set encoding to pseudo.
223let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
224    isCodeGenOnly = 1 in
225def MOV32r0  : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
226                 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
227
228// Other widths can also make use of the 32-bit xor, which may have a smaller
229// encoding and avoid partial register updates.
230def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
231def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
232def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
233  let AddedComplexity = 20;
234}
235
236// Materialize i64 constant where top 32-bits are zero. This could theoretically
237// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
238// that would make it more difficult to rematerialize.
239let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
240    isCodeGenOnly = 1, neverHasSideEffects = 1 in
241def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
242                     "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
243
244// This 64-bit pseudo-move can be used for both a 64-bit constant that is
245// actually the zero-extension of a 32-bit constant, and for labels in the
246// x86-64 small code model.
247def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
248
249let AddedComplexity = 1 in
250def : Pat<(i64 mov64imm32:$src),
251          (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
252
253// Use sbb to materialize carry bit.
254let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
255// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
256// However, Pat<> can't replicate the destination reg into the inputs of the
257// result.
258def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
259                 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
260def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
261                 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
262def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
263                 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
264def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
265                 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
266} // isCodeGenOnly
267
268
269def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
270          (SETB_C16r)>;
271def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
272          (SETB_C32r)>;
273def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
274          (SETB_C64r)>;
275
276def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
277          (SETB_C16r)>;
278def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
279          (SETB_C32r)>;
280def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
281          (SETB_C64r)>;
282
283// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
284// will be eliminated and that the sbb can be extended up to a wider type.  When
285// this happens, it is great.  However, if we are left with an 8-bit sbb and an
286// and, we might as well just match it as a setb.
287def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
288          (SETBr)>;
289
290// (add OP, SETB) -> (adc OP, 0)
291def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
292          (ADC8ri GR8:$op, 0)>;
293def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
294          (ADC32ri8 GR32:$op, 0)>;
295def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
296          (ADC64ri8 GR64:$op, 0)>;
297
298// (sub OP, SETB) -> (sbb OP, 0)
299def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
300          (SBB8ri GR8:$op, 0)>;
301def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
302          (SBB32ri8 GR32:$op, 0)>;
303def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
304          (SBB64ri8 GR64:$op, 0)>;
305
306// (sub OP, SETCC_CARRY) -> (adc OP, 0)
307def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
308          (ADC8ri GR8:$op, 0)>;
309def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
310          (ADC32ri8 GR32:$op, 0)>;
311def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
312          (ADC64ri8 GR64:$op, 0)>;
313
314//===----------------------------------------------------------------------===//
315// String Pseudo Instructions
316//
317let SchedRW = [WriteMicrocoded] in {
318let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
319def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
320                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
321                   Requires<[In32BitMode]>;
322def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
323                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
324                   Requires<[In32BitMode]>;
325def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
326                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
327                   Requires<[In32BitMode]>;
328}
329
330let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
331def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
332                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
333                   Requires<[In64BitMode]>;
334def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
335                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
336                   Requires<[In64BitMode]>;
337def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
338                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
339                   Requires<[In64BitMode]>;
340def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
341                    [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
342                   Requires<[In64BitMode]>;
343}
344
345// FIXME: Should use "(X86rep_stos AL)" as the pattern.
346let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
347  let Uses = [AL,ECX,EDI] in
348  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
349                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
350                     Requires<[In32BitMode]>;
351  let Uses = [AX,ECX,EDI] in
352  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
353                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
354                     Requires<[In32BitMode]>;
355  let Uses = [EAX,ECX,EDI] in
356  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
357                      [(X86rep_stos i32)], IIC_REP_STOS>, REP,
358                     Requires<[In32BitMode]>;
359}
360
361let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
362  let Uses = [AL,RCX,RDI] in
363  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
364                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
365                     Requires<[In64BitMode]>;
366  let Uses = [AX,RCX,RDI] in
367  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
368                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
369                     Requires<[In64BitMode]>;
370  let Uses = [RAX,RCX,RDI] in
371  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
372                      [(X86rep_stos i32)], IIC_REP_STOS>, REP,
373                     Requires<[In64BitMode]>;
374
375  let Uses = [RAX,RCX,RDI] in
376  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
377                      [(X86rep_stos i64)], IIC_REP_STOS>, REP,
378                     Requires<[In64BitMode]>;
379}
380} // SchedRW
381
382//===----------------------------------------------------------------------===//
383// Thread Local Storage Instructions
384//
385
386// ELF TLS Support
387// All calls clobber the non-callee saved registers. ESP is marked as
388// a use to prevent stack-pointer assignments that appear immediately
389// before calls from potentially appearing dead.
390let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
391            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
392            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
393            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
394    Uses = [ESP] in {
395def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
396                  "# TLS_addr32",
397                  [(X86tlsaddr tls32addr:$sym)]>,
398                  Requires<[In32BitMode]>;
399def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
400                  "# TLS_base_addr32",
401                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
402                  Requires<[In32BitMode]>;
403}
404
405// All calls clobber the non-callee saved registers. RSP is marked as
406// a use to prevent stack-pointer assignments that appear immediately
407// before calls from potentially appearing dead.
408let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
409            FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
410            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
411            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
412            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
413    Uses = [RSP] in {
414def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
415                   "# TLS_addr64",
416                  [(X86tlsaddr tls64addr:$sym)]>,
417                  Requires<[In64BitMode]>;
418def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
419                   "# TLS_base_addr64",
420                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
421                  Requires<[In64BitMode]>;
422}
423
424// Darwin TLS Support
425// For i386, the address of the thunk is passed on the stack, on return the
426// address of the variable is in %eax.  %ecx is trashed during the function
427// call.  All other registers are preserved.
428let Defs = [EAX, ECX, EFLAGS],
429    Uses = [ESP],
430    usesCustomInserter = 1 in
431def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
432                "# TLSCall_32",
433                [(X86TLSCall addr:$sym)]>,
434                Requires<[In32BitMode]>;
435
436// For x86_64, the address of the thunk is passed in %rdi, on return
437// the address of the variable is in %rax.  All other registers are preserved.
438let Defs = [RAX, EFLAGS],
439    Uses = [RSP, RDI],
440    usesCustomInserter = 1 in
441def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
442                  "# TLSCall_64",
443                  [(X86TLSCall addr:$sym)]>,
444                  Requires<[In64BitMode]>;
445
446
447//===----------------------------------------------------------------------===//
448// Conditional Move Pseudo Instructions
449
450// X86 doesn't have 8-bit conditional moves. Use a customInserter to
451// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
452// however that requires promoting the operands, and can induce additional
453// i8 register pressure.
454let usesCustomInserter = 1, Uses = [EFLAGS] in {
455def CMOV_GR8 : I<0, Pseudo,
456                 (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
457                 "#CMOV_GR8 PSEUDO!",
458                 [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
459                                          imm:$cond, EFLAGS))]>;
460
461let Predicates = [NoCMov] in {
462def CMOV_GR32 : I<0, Pseudo,
463                    (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
464                    "#CMOV_GR32* PSEUDO!",
465                    [(set GR32:$dst,
466                      (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
467def CMOV_GR16 : I<0, Pseudo,
468                    (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
469                    "#CMOV_GR16* PSEUDO!",
470                    [(set GR16:$dst,
471                      (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
472} // Predicates = [NoCMov]
473
474// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
475// SSE1.
476let Predicates = [FPStackf32] in
477def CMOV_RFP32 : I<0, Pseudo,
478                    (outs RFP32:$dst),
479                    (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
480                    "#CMOV_RFP32 PSEUDO!",
481                    [(set RFP32:$dst,
482                      (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
483                                                  EFLAGS))]>;
484// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
485// SSE2.
486let Predicates = [FPStackf64] in
487def CMOV_RFP64 : I<0, Pseudo,
488                    (outs RFP64:$dst),
489                    (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
490                    "#CMOV_RFP64 PSEUDO!",
491                    [(set RFP64:$dst,
492                      (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
493                                                  EFLAGS))]>;
494def CMOV_RFP80 : I<0, Pseudo,
495                    (outs RFP80:$dst),
496                    (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
497                    "#CMOV_RFP80 PSEUDO!",
498                    [(set RFP80:$dst,
499                      (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
500                                                  EFLAGS))]>;
501} // UsesCustomInserter = 1, Uses = [EFLAGS]
502
503
504//===----------------------------------------------------------------------===//
505// Atomic Instruction Pseudo Instructions
506//===----------------------------------------------------------------------===//
507
508// Pseudo atomic instructions
509
510multiclass PSEUDO_ATOMIC_LOAD_BINOP<string mnemonic> {
511  let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in {
512    let Defs = [EFLAGS, AL] in
513    def NAME#8  : I<0, Pseudo, (outs GR8:$dst),
514                    (ins i8mem:$ptr, GR8:$val),
515                    !strconcat(mnemonic, "8 PSEUDO!"), []>;
516    let Defs = [EFLAGS, AX] in
517    def NAME#16 : I<0, Pseudo,(outs GR16:$dst),
518                    (ins i16mem:$ptr, GR16:$val),
519                    !strconcat(mnemonic, "16 PSEUDO!"), []>;
520    let Defs = [EFLAGS, EAX] in
521    def NAME#32 : I<0, Pseudo, (outs GR32:$dst),
522                    (ins i32mem:$ptr, GR32:$val),
523                    !strconcat(mnemonic, "32 PSEUDO!"), []>;
524    let Defs = [EFLAGS, RAX] in
525    def NAME#64 : I<0, Pseudo, (outs GR64:$dst),
526                    (ins i64mem:$ptr, GR64:$val),
527                    !strconcat(mnemonic, "64 PSEUDO!"), []>;
528  }
529}
530
531multiclass PSEUDO_ATOMIC_LOAD_BINOP_PATS<string name, string frag> {
532  def : Pat<(!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val),
533            (!cast<Instruction>(name # "8") addr:$ptr, GR8:$val)>;
534  def : Pat<(!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val),
535            (!cast<Instruction>(name # "16") addr:$ptr, GR16:$val)>;
536  def : Pat<(!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val),
537            (!cast<Instruction>(name # "32") addr:$ptr, GR32:$val)>;
538  def : Pat<(!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val),
539            (!cast<Instruction>(name # "64") addr:$ptr, GR64:$val)>;
540}
541
542// Atomic exchange, and, or, xor
543defm ATOMAND  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMAND">;
544defm ATOMOR   : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMOR">;
545defm ATOMXOR  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMXOR">;
546defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMNAND">;
547defm ATOMMAX  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMAX">;
548defm ATOMMIN  : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMIN">;
549defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMAX">;
550defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMIN">;
551
552defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMAND",  "atomic_load_and">;
553defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMOR",   "atomic_load_or">;
554defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMXOR",  "atomic_load_xor">;
555defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMNAND", "atomic_load_nand">;
556defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMAX",  "atomic_load_max">;
557defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMIN",  "atomic_load_min">;
558defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMAX", "atomic_load_umax">;
559defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMIN", "atomic_load_umin">;
560
561multiclass PSEUDO_ATOMIC_LOAD_BINOP6432<string mnemonic> {
562  let usesCustomInserter = 1, Defs = [EFLAGS, EAX, EDX],
563      mayLoad = 1, mayStore = 1, hasSideEffects = 0 in
564    def NAME#6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
565                      (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
566                      !strconcat(mnemonic, "6432 PSEUDO!"), []>;
567}
568
569defm ATOMAND  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMAND">;
570defm ATOMOR   : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMOR">;
571defm ATOMXOR  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMXOR">;
572defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMNAND">;
573defm ATOMADD  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMADD">;
574defm ATOMSUB  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSUB">;
575defm ATOMMAX  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMAX">;
576defm ATOMMIN  : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMIN">;
577defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMAX">;
578defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMIN">;
579defm ATOMSWAP : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSWAP">;
580
581//===----------------------------------------------------------------------===//
582// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
583//===----------------------------------------------------------------------===//
584
585// FIXME: Use normal instructions and add lock prefix dynamically.
586
587// Memory barriers
588
589// TODO: Get this to fold the constant into the instruction.
590let isCodeGenOnly = 1, Defs = [EFLAGS] in
591def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
592                      "or{l}\t{$zero, $dst|$dst, $zero}",
593                      [], IIC_ALU_MEM>, Requires<[In32BitMode]>, LOCK,
594                    Sched<[WriteALULd, WriteRMW]>;
595
596let hasSideEffects = 1 in
597def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
598                     "#MEMBARRIER",
599                     [(X86MemBarrier)]>, Sched<[WriteLoad]>;
600
601// RegOpc corresponds to the mr version of the instruction
602// ImmOpc corresponds to the mi version of the instruction
603// ImmOpc8 corresponds to the mi8 version of the instruction
604// ImmMod corresponds to the instruction format of the mi and mi8 versions
605multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
606                           Format ImmMod, string mnemonic> {
607let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
608    SchedRW = [WriteALULd, WriteRMW] in {
609
610def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
611                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
612                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
613                  !strconcat(mnemonic, "{b}\t",
614                             "{$src2, $dst|$dst, $src2}"),
615                  [], IIC_ALU_NONMEM>, LOCK;
616def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
617                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
618                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
619                   !strconcat(mnemonic, "{w}\t",
620                              "{$src2, $dst|$dst, $src2}"),
621                   [], IIC_ALU_NONMEM>, OpSize, LOCK;
622def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
623                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
624                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
625                   !strconcat(mnemonic, "{l}\t",
626                              "{$src2, $dst|$dst, $src2}"),
627                   [], IIC_ALU_NONMEM>, LOCK;
628def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
629                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
630                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
631                    !strconcat(mnemonic, "{q}\t",
632                               "{$src2, $dst|$dst, $src2}"),
633                    [], IIC_ALU_NONMEM>, LOCK;
634
635def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
636                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
637                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
638                    !strconcat(mnemonic, "{b}\t",
639                               "{$src2, $dst|$dst, $src2}"),
640                    [], IIC_ALU_MEM>, LOCK;
641
642def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
643                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
644                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
645                      !strconcat(mnemonic, "{w}\t",
646                                 "{$src2, $dst|$dst, $src2}"),
647                      [], IIC_ALU_MEM>, OpSize, LOCK;
648
649def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
650                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
651                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
652                      !strconcat(mnemonic, "{l}\t",
653                                 "{$src2, $dst|$dst, $src2}"),
654                      [], IIC_ALU_MEM>, LOCK;
655
656def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
657                         ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
658                         ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
659                         !strconcat(mnemonic, "{q}\t",
660                                    "{$src2, $dst|$dst, $src2}"),
661                         [], IIC_ALU_MEM>, LOCK;
662
663def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
664                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
665                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
666                      !strconcat(mnemonic, "{w}\t",
667                                 "{$src2, $dst|$dst, $src2}"),
668                      [], IIC_ALU_MEM>, OpSize, LOCK;
669def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
670                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
671                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
672                      !strconcat(mnemonic, "{l}\t",
673                                 "{$src2, $dst|$dst, $src2}"),
674                      [], IIC_ALU_MEM>, LOCK;
675def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
676                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
677                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
678                       !strconcat(mnemonic, "{q}\t",
679                                  "{$src2, $dst|$dst, $src2}"),
680                       [], IIC_ALU_MEM>, LOCK;
681
682}
683
684}
685
686defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
687defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
688defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
689defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
690defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
691
692// Optimized codegen when the non-memory output is not used.
693multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
694                          string mnemonic> {
695let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
696    SchedRW = [WriteALULd, WriteRMW] in {
697
698def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
699                 !strconcat(mnemonic, "{b}\t$dst"),
700                 [], IIC_UNARY_MEM>, LOCK;
701def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
702                 !strconcat(mnemonic, "{w}\t$dst"),
703                 [], IIC_UNARY_MEM>, OpSize, LOCK;
704def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
705                 !strconcat(mnemonic, "{l}\t$dst"),
706                 [], IIC_UNARY_MEM>, LOCK;
707def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
708                  !strconcat(mnemonic, "{q}\t$dst"),
709                  [], IIC_UNARY_MEM>, LOCK;
710}
711}
712
713defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
714defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
715
716// Atomic compare and swap.
717multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
718                         SDPatternOperator frag, X86MemOperand x86memop,
719                         InstrItinClass itin> {
720let isCodeGenOnly = 1 in {
721  def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
722               !strconcat(mnemonic, "\t$ptr"),
723               [(frag addr:$ptr)], itin>, TB, LOCK;
724}
725}
726
727multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
728                          string mnemonic, SDPatternOperator frag,
729                          InstrItinClass itin8, InstrItinClass itin> {
730let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
731  let Defs = [AL, EFLAGS], Uses = [AL] in
732  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
733                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
734                  [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
735  let Defs = [AX, EFLAGS], Uses = [AX] in
736  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
737                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
738                  [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize, LOCK;
739  let Defs = [EAX, EFLAGS], Uses = [EAX] in
740  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
741                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
742                  [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, LOCK;
743  let Defs = [RAX, EFLAGS], Uses = [RAX] in
744  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
745                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
746                   [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
747}
748}
749
750let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
751    SchedRW = [WriteALULd, WriteRMW] in {
752defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
753                                X86cas8, i64mem,
754                                IIC_CMPX_LOCK_8B>;
755}
756
757let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
758    Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
759defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
760                                 X86cas16, i128mem,
761                                 IIC_CMPX_LOCK_16B>, REX_W;
762}
763
764defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
765                               X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
766
767// Atomic exchange and add
768multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
769                             string frag,
770                             InstrItinClass itin8, InstrItinClass itin> {
771  let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
772      SchedRW = [WriteALULd, WriteRMW] in {
773    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
774                    (ins GR8:$val, i8mem:$ptr),
775                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
776                    [(set GR8:$dst,
777                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
778                    itin8>;
779    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
780                    (ins GR16:$val, i16mem:$ptr),
781                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
782                    [(set
783                       GR16:$dst,
784                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
785                    itin>, OpSize;
786    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
787                    (ins GR32:$val, i32mem:$ptr),
788                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
789                    [(set
790                       GR32:$dst,
791                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
792                    itin>;
793    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
794                     (ins GR64:$val, i64mem:$ptr),
795                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
796                     [(set
797                        GR64:$dst,
798                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
799                     itin>;
800  }
801}
802
803defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
804                               IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
805             TB, LOCK;
806
807def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
808                      "#ACQUIRE_MOV PSEUDO!",
809                      [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
810def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
811                      "#ACQUIRE_MOV PSEUDO!",
812                      [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
813def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
814                      "#ACQUIRE_MOV PSEUDO!",
815                      [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
816def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
817                      "#ACQUIRE_MOV PSEUDO!",
818                      [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
819
820def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
821                        "#RELEASE_MOV PSEUDO!",
822                        [(atomic_store_8  addr:$dst, GR8 :$src)]>;
823def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
824                        "#RELEASE_MOV PSEUDO!",
825                        [(atomic_store_16 addr:$dst, GR16:$src)]>;
826def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
827                        "#RELEASE_MOV PSEUDO!",
828                        [(atomic_store_32 addr:$dst, GR32:$src)]>;
829def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
830                        "#RELEASE_MOV PSEUDO!",
831                        [(atomic_store_64 addr:$dst, GR64:$src)]>;
832
833//===----------------------------------------------------------------------===//
834// Conditional Move Pseudo Instructions.
835//===----------------------------------------------------------------------===//
836
837
838// CMOV* - Used to implement the SSE SELECT DAG operation.  Expanded after
839// instruction selection into a branch sequence.
840let Uses = [EFLAGS], usesCustomInserter = 1 in {
841  def CMOV_FR32 : I<0, Pseudo,
842                    (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
843                    "#CMOV_FR32 PSEUDO!",
844                    [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
845                                                  EFLAGS))]>;
846  def CMOV_FR64 : I<0, Pseudo,
847                    (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
848                    "#CMOV_FR64 PSEUDO!",
849                    [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
850                                                  EFLAGS))]>;
851  def CMOV_V4F32 : I<0, Pseudo,
852                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
853                    "#CMOV_V4F32 PSEUDO!",
854                    [(set VR128:$dst,
855                      (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
856                                          EFLAGS)))]>;
857  def CMOV_V2F64 : I<0, Pseudo,
858                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
859                    "#CMOV_V2F64 PSEUDO!",
860                    [(set VR128:$dst,
861                      (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
862                                          EFLAGS)))]>;
863  def CMOV_V2I64 : I<0, Pseudo,
864                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
865                    "#CMOV_V2I64 PSEUDO!",
866                    [(set VR128:$dst,
867                      (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
868                                          EFLAGS)))]>;
869  def CMOV_V8F32 : I<0, Pseudo,
870                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
871                    "#CMOV_V8F32 PSEUDO!",
872                    [(set VR256:$dst,
873                      (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
874                                          EFLAGS)))]>;
875  def CMOV_V4F64 : I<0, Pseudo,
876                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
877                    "#CMOV_V4F64 PSEUDO!",
878                    [(set VR256:$dst,
879                      (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
880                                          EFLAGS)))]>;
881  def CMOV_V4I64 : I<0, Pseudo,
882                    (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
883                    "#CMOV_V4I64 PSEUDO!",
884                    [(set VR256:$dst,
885                      (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
886                                          EFLAGS)))]>;
887}
888
889
890//===----------------------------------------------------------------------===//
891// DAG Pattern Matching Rules
892//===----------------------------------------------------------------------===//
893
894// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
895def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
896def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
897def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
898def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
899def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
900def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
901
902def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
903          (ADD32ri GR32:$src1, tconstpool:$src2)>;
904def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
905          (ADD32ri GR32:$src1, tjumptable:$src2)>;
906def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
907          (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
908def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
909          (ADD32ri GR32:$src1, texternalsym:$src2)>;
910def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
911          (ADD32ri GR32:$src1, tblockaddress:$src2)>;
912
913def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
914          (MOV32mi addr:$dst, tglobaladdr:$src)>;
915def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
916          (MOV32mi addr:$dst, texternalsym:$src)>;
917def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
918          (MOV32mi addr:$dst, tblockaddress:$src)>;
919
920
921
922// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
923// code model mode, should use 'movabs'.  FIXME: This is really a hack, the
924//  'movabs' predicate should handle this sort of thing.
925def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
926          (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
927def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
928          (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
929def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
930          (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
931def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
932          (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
933def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
934          (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
935
936// In kernel code model, we can get the address of a label
937// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
938// the MOV64ri32 should accept these.
939def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
940          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
941def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
942          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
943def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
944          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
945def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
946          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
947def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
948          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
949
950// If we have small model and -static mode, it is safe to store global addresses
951// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
952// for MOV64mi32 should handle this sort of thing.
953def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
954          (MOV64mi32 addr:$dst, tconstpool:$src)>,
955          Requires<[NearData, IsStatic]>;
956def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
957          (MOV64mi32 addr:$dst, tjumptable:$src)>,
958          Requires<[NearData, IsStatic]>;
959def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
960          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
961          Requires<[NearData, IsStatic]>;
962def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
963          (MOV64mi32 addr:$dst, texternalsym:$src)>,
964          Requires<[NearData, IsStatic]>;
965def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
966          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
967          Requires<[NearData, IsStatic]>;
968
969
970
971// Calls
972
973// tls has some funny stuff here...
974// This corresponds to movabs $foo@tpoff, %rax
975def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
976          (MOV64ri tglobaltlsaddr :$dst)>;
977// This corresponds to add $foo@tpoff, %rax
978def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
979          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
980
981
982// Direct PC relative function call for small code model. 32-bit displacement
983// sign extended to 64-bit.
984def : Pat<(X86call (i64 tglobaladdr:$dst)),
985          (CALL64pcrel32 tglobaladdr:$dst)>;
986def : Pat<(X86call (i64 texternalsym:$dst)),
987          (CALL64pcrel32 texternalsym:$dst)>;
988
989// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
990// can never use callee-saved registers. That is the purpose of the GR64_TC
991// register classes.
992//
993// The only volatile register that is never used by the calling convention is
994// %r11. This happens when calling a vararg function with 6 arguments.
995//
996// Match an X86tcret that uses less than 7 volatile registers.
997def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
998                             (X86tcret node:$ptr, node:$off), [{
999  // X86tcret args: (*chain, ptr, imm, regs..., glue)
1000  unsigned NumRegs = 0;
1001  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1002    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1003      return false;
1004  return true;
1005}]>;
1006
1007def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1008          (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1009          Requires<[In32BitMode]>;
1010
1011// FIXME: This is disabled for 32-bit PIC mode because the global base
1012// register which is part of the address mode may be assigned a
1013// callee-saved register.
1014def : Pat<(X86tcret (load addr:$dst), imm:$off),
1015          (TCRETURNmi addr:$dst, imm:$off)>,
1016          Requires<[In32BitMode, IsNotPIC]>;
1017
1018def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1019          (TCRETURNdi texternalsym:$dst, imm:$off)>,
1020          Requires<[In32BitMode]>;
1021
1022def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1023          (TCRETURNdi texternalsym:$dst, imm:$off)>,
1024          Requires<[In32BitMode]>;
1025
1026def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1027          (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1028          Requires<[In64BitMode]>;
1029
1030// Don't fold loads into X86tcret requiring more than 6 regs.
1031// There wouldn't be enough scratch registers for base+index.
1032def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1033          (TCRETURNmi64 addr:$dst, imm:$off)>,
1034          Requires<[In64BitMode]>;
1035
1036def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1037          (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1038          Requires<[In64BitMode]>;
1039
1040def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1041          (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1042          Requires<[In64BitMode]>;
1043
1044// Normal calls, with various flavors of addresses.
1045def : Pat<(X86call (i32 tglobaladdr:$dst)),
1046          (CALLpcrel32 tglobaladdr:$dst)>;
1047def : Pat<(X86call (i32 texternalsym:$dst)),
1048          (CALLpcrel32 texternalsym:$dst)>;
1049def : Pat<(X86call (i32 imm:$dst)),
1050          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1051
1052// Comparisons.
1053
1054// TEST R,R is smaller than CMP R,0
1055def : Pat<(X86cmp GR8:$src1, 0),
1056          (TEST8rr GR8:$src1, GR8:$src1)>;
1057def : Pat<(X86cmp GR16:$src1, 0),
1058          (TEST16rr GR16:$src1, GR16:$src1)>;
1059def : Pat<(X86cmp GR32:$src1, 0),
1060          (TEST32rr GR32:$src1, GR32:$src1)>;
1061def : Pat<(X86cmp GR64:$src1, 0),
1062          (TEST64rr GR64:$src1, GR64:$src1)>;
1063
1064// Conditional moves with folded loads with operands swapped and conditions
1065// inverted.
1066multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1067                  Instruction Inst64> {
1068  let Predicates = [HasCMov] in {
1069    def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1070              (Inst16 GR16:$src2, addr:$src1)>;
1071    def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1072              (Inst32 GR32:$src2, addr:$src1)>;
1073    def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1074              (Inst64 GR64:$src2, addr:$src1)>;
1075  }
1076}
1077
1078defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1079defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1080defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1081defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1082defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1083defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1084defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1085defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1086defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1087defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1088defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1089defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1090defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1091defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1092defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1093defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1094
1095// zextload bool -> zextload byte
1096def : Pat<(zextloadi8i1  addr:$src), (MOV8rm     addr:$src)>;
1097def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1098def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1099def : Pat<(zextloadi64i1 addr:$src),
1100          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1101
1102// extload bool -> extload byte
1103// When extloading from 16-bit and smaller memory locations into 64-bit
1104// registers, use zero-extending loads so that the entire 64-bit register is
1105// defined, avoiding partial-register updates.
1106
1107def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1108def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
1109def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1110def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
1111def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1112def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1113
1114// For other extloads, use subregs, since the high contents of the register are
1115// defined after an extload.
1116def : Pat<(extloadi64i1 addr:$src),
1117          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1118def : Pat<(extloadi64i8 addr:$src),
1119          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1120def : Pat<(extloadi64i16 addr:$src),
1121          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1122def : Pat<(extloadi64i32 addr:$src),
1123          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1124
1125// anyext. Define these to do an explicit zero-extend to
1126// avoid partial-register updates.
1127def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1128                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1129def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1130
1131// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1132def : Pat<(i32 (anyext GR16:$src)),
1133          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1134
1135def : Pat<(i64 (anyext GR8 :$src)),
1136          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
1137def : Pat<(i64 (anyext GR16:$src)),
1138          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1139def : Pat<(i64 (anyext GR32:$src)),
1140          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1141
1142
1143// Any instruction that defines a 32-bit result leaves the high half of the
1144// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1145// be copying from a truncate. And x86's cmov doesn't do anything if the
1146// condition is false. But any other 32-bit operation will zero-extend
1147// up to 64 bits.
1148def def32 : PatLeaf<(i32 GR32:$src), [{
1149  return N->getOpcode() != ISD::TRUNCATE &&
1150         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1151         N->getOpcode() != ISD::CopyFromReg &&
1152         N->getOpcode() != X86ISD::CMOV;
1153}]>;
1154
1155// In the case of a 32-bit def that is known to implicitly zero-extend,
1156// we can use a SUBREG_TO_REG.
1157def : Pat<(i64 (zext def32:$src)),
1158          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1159
1160//===----------------------------------------------------------------------===//
1161// Pattern match OR as ADD
1162//===----------------------------------------------------------------------===//
1163
1164// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1165// 3-addressified into an LEA instruction to avoid copies.  However, we also
1166// want to finally emit these instructions as an or at the end of the code
1167// generator to make the generated code easier to read.  To do this, we select
1168// into "disjoint bits" pseudo ops.
1169
1170// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1171def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1172  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1173    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1174
1175  APInt KnownZero0, KnownOne0;
1176  CurDAG->ComputeMaskedBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1177  APInt KnownZero1, KnownOne1;
1178  CurDAG->ComputeMaskedBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1179  return (~KnownZero0 & ~KnownZero1) == 0;
1180}]>;
1181
1182
1183// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1184// Try this before the selecting to OR.
1185let AddedComplexity = 5, SchedRW = [WriteALU] in {
1186
1187let isConvertibleToThreeAddress = 1,
1188    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1189let isCommutable = 1 in {
1190def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1191                    "", // orw/addw REG, REG
1192                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1193def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1194                    "", // orl/addl REG, REG
1195                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1196def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1197                    "", // orq/addq REG, REG
1198                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1199} // isCommutable
1200
1201// NOTE: These are order specific, we want the ri8 forms to be listed
1202// first so that they are slightly preferred to the ri forms.
1203
1204def ADD16ri8_DB : I<0, Pseudo,
1205                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1206                    "", // orw/addw REG, imm8
1207                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1208def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1209                    "", // orw/addw REG, imm
1210                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1211
1212def ADD32ri8_DB : I<0, Pseudo,
1213                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1214                    "", // orl/addl REG, imm8
1215                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1216def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1217                    "", // orl/addl REG, imm
1218                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1219
1220
1221def ADD64ri8_DB : I<0, Pseudo,
1222                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1223                    "", // orq/addq REG, imm8
1224                    [(set GR64:$dst, (or_is_add GR64:$src1,
1225                                                i64immSExt8:$src2))]>;
1226def ADD64ri32_DB : I<0, Pseudo,
1227                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1228                      "", // orq/addq REG, imm
1229                      [(set GR64:$dst, (or_is_add GR64:$src1,
1230                                                  i64immSExt32:$src2))]>;
1231}
1232} // AddedComplexity, SchedRW
1233
1234
1235//===----------------------------------------------------------------------===//
1236// Some peepholes
1237//===----------------------------------------------------------------------===//
1238
1239// Odd encoding trick: -128 fits into an 8-bit immediate field while
1240// +128 doesn't, so in this special case use a sub instead of an add.
1241def : Pat<(add GR16:$src1, 128),
1242          (SUB16ri8 GR16:$src1, -128)>;
1243def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1244          (SUB16mi8 addr:$dst, -128)>;
1245
1246def : Pat<(add GR32:$src1, 128),
1247          (SUB32ri8 GR32:$src1, -128)>;
1248def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1249          (SUB32mi8 addr:$dst, -128)>;
1250
1251def : Pat<(add GR64:$src1, 128),
1252          (SUB64ri8 GR64:$src1, -128)>;
1253def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1254          (SUB64mi8 addr:$dst, -128)>;
1255
1256// The same trick applies for 32-bit immediate fields in 64-bit
1257// instructions.
1258def : Pat<(add GR64:$src1, 0x0000000080000000),
1259          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1260def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1261          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1262
1263// To avoid needing to materialize an immediate in a register, use a 32-bit and
1264// with implicit zero-extension instead of a 64-bit and if the immediate has at
1265// least 32 bits of leading zeros. If in addition the last 32 bits can be
1266// represented with a sign extension of a 8 bit constant, use that.
1267
1268def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1269          (SUBREG_TO_REG
1270            (i64 0),
1271            (AND32ri8
1272              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1273              (i32 (GetLo8XForm imm:$imm))),
1274            sub_32bit)>;
1275
1276def : Pat<(and GR64:$src, i64immZExt32:$imm),
1277          (SUBREG_TO_REG
1278            (i64 0),
1279            (AND32ri
1280              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1281              (i32 (GetLo32XForm imm:$imm))),
1282            sub_32bit)>;
1283
1284
1285// r & (2^16-1) ==> movz
1286def : Pat<(and GR32:$src1, 0xffff),
1287          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1288// r & (2^8-1) ==> movz
1289def : Pat<(and GR32:$src1, 0xff),
1290          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1291                                                             GR32_ABCD)),
1292                                      sub_8bit))>,
1293      Requires<[In32BitMode]>;
1294// r & (2^8-1) ==> movz
1295def : Pat<(and GR16:$src1, 0xff),
1296           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1297            (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1298             sub_16bit)>,
1299      Requires<[In32BitMode]>;
1300
1301// r & (2^32-1) ==> movz
1302def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1303          (SUBREG_TO_REG (i64 0),
1304                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1305                         sub_32bit)>;
1306// r & (2^16-1) ==> movz
1307def : Pat<(and GR64:$src, 0xffff),
1308          (SUBREG_TO_REG (i64 0),
1309                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1310                      sub_32bit)>;
1311// r & (2^8-1) ==> movz
1312def : Pat<(and GR64:$src, 0xff),
1313          (SUBREG_TO_REG (i64 0),
1314                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1315                         sub_32bit)>;
1316// r & (2^8-1) ==> movz
1317def : Pat<(and GR32:$src1, 0xff),
1318           (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1319      Requires<[In64BitMode]>;
1320// r & (2^8-1) ==> movz
1321def : Pat<(and GR16:$src1, 0xff),
1322           (EXTRACT_SUBREG (MOVZX32rr8 (i8
1323            (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1324      Requires<[In64BitMode]>;
1325
1326
1327// sext_inreg patterns
1328def : Pat<(sext_inreg GR32:$src, i16),
1329          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1330def : Pat<(sext_inreg GR32:$src, i8),
1331          (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1332                                                             GR32_ABCD)),
1333                                      sub_8bit))>,
1334      Requires<[In32BitMode]>;
1335
1336def : Pat<(sext_inreg GR16:$src, i8),
1337           (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1338            (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1339             sub_16bit)>,
1340      Requires<[In32BitMode]>;
1341
1342def : Pat<(sext_inreg GR64:$src, i32),
1343          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1344def : Pat<(sext_inreg GR64:$src, i16),
1345          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1346def : Pat<(sext_inreg GR64:$src, i8),
1347          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1348def : Pat<(sext_inreg GR32:$src, i8),
1349          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1350      Requires<[In64BitMode]>;
1351def : Pat<(sext_inreg GR16:$src, i8),
1352           (EXTRACT_SUBREG (MOVSX32rr8
1353            (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1354      Requires<[In64BitMode]>;
1355
1356// sext, sext_load, zext, zext_load
1357def: Pat<(i16 (sext GR8:$src)),
1358          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1359def: Pat<(sextloadi16i8 addr:$src),
1360          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1361def: Pat<(i16 (zext GR8:$src)),
1362          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1363def: Pat<(zextloadi16i8 addr:$src),
1364          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1365
1366// trunc patterns
1367def : Pat<(i16 (trunc GR32:$src)),
1368          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1369def : Pat<(i8 (trunc GR32:$src)),
1370          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1371                          sub_8bit)>,
1372      Requires<[In32BitMode]>;
1373def : Pat<(i8 (trunc GR16:$src)),
1374          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1375                          sub_8bit)>,
1376      Requires<[In32BitMode]>;
1377def : Pat<(i32 (trunc GR64:$src)),
1378          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1379def : Pat<(i16 (trunc GR64:$src)),
1380          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1381def : Pat<(i8 (trunc GR64:$src)),
1382          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1383def : Pat<(i8 (trunc GR32:$src)),
1384          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1385      Requires<[In64BitMode]>;
1386def : Pat<(i8 (trunc GR16:$src)),
1387          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1388      Requires<[In64BitMode]>;
1389
1390// h-register tricks
1391def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1392          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1393                          sub_8bit_hi)>,
1394      Requires<[In32BitMode]>;
1395def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1396          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1397                          sub_8bit_hi)>,
1398      Requires<[In32BitMode]>;
1399def : Pat<(srl GR16:$src, (i8 8)),
1400          (EXTRACT_SUBREG
1401            (MOVZX32rr8
1402              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1403                              sub_8bit_hi)),
1404            sub_16bit)>,
1405      Requires<[In32BitMode]>;
1406def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1407          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1408                                                             GR16_ABCD)),
1409                                      sub_8bit_hi))>,
1410      Requires<[In32BitMode]>;
1411def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1412          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1413                                                             GR16_ABCD)),
1414                                      sub_8bit_hi))>,
1415      Requires<[In32BitMode]>;
1416def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1417          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1418                                                             GR32_ABCD)),
1419                                      sub_8bit_hi))>,
1420      Requires<[In32BitMode]>;
1421def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1422          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1423                                                             GR32_ABCD)),
1424                                      sub_8bit_hi))>,
1425      Requires<[In32BitMode]>;
1426
1427// h-register tricks.
1428// For now, be conservative on x86-64 and use an h-register extract only if the
1429// value is immediately zero-extended or stored, which are somewhat common
1430// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1431// from being allocated in the same instruction as the h register, as there's
1432// currently no way to describe this requirement to the register allocator.
1433
1434// h-register extract and zero-extend.
1435def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1436          (SUBREG_TO_REG
1437            (i64 0),
1438            (MOVZX32_NOREXrr8
1439              (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1440                              sub_8bit_hi)),
1441            sub_32bit)>;
1442def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1443          (MOVZX32_NOREXrr8
1444            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1445                            sub_8bit_hi))>,
1446      Requires<[In64BitMode]>;
1447def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1448          (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1449                                                                   GR32_ABCD)),
1450                                             sub_8bit_hi))>,
1451      Requires<[In64BitMode]>;
1452def : Pat<(srl GR16:$src, (i8 8)),
1453          (EXTRACT_SUBREG
1454            (MOVZX32_NOREXrr8
1455              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1456                              sub_8bit_hi)),
1457            sub_16bit)>,
1458      Requires<[In64BitMode]>;
1459def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1460          (MOVZX32_NOREXrr8
1461            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1462                            sub_8bit_hi))>,
1463      Requires<[In64BitMode]>;
1464def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1465          (MOVZX32_NOREXrr8
1466            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1467                            sub_8bit_hi))>,
1468      Requires<[In64BitMode]>;
1469def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1470          (SUBREG_TO_REG
1471            (i64 0),
1472            (MOVZX32_NOREXrr8
1473              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1474                              sub_8bit_hi)),
1475            sub_32bit)>;
1476def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1477          (SUBREG_TO_REG
1478            (i64 0),
1479            (MOVZX32_NOREXrr8
1480              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1481                              sub_8bit_hi)),
1482            sub_32bit)>;
1483
1484// h-register extract and store.
1485def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1486          (MOV8mr_NOREX
1487            addr:$dst,
1488            (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1489                            sub_8bit_hi))>;
1490def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1491          (MOV8mr_NOREX
1492            addr:$dst,
1493            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1494                            sub_8bit_hi))>,
1495      Requires<[In64BitMode]>;
1496def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1497          (MOV8mr_NOREX
1498            addr:$dst,
1499            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1500                            sub_8bit_hi))>,
1501      Requires<[In64BitMode]>;
1502
1503
1504// (shl x, 1) ==> (add x, x)
1505// Note that if x is undef (immediate or otherwise), we could theoretically
1506// end up with the two uses of x getting different values, producing a result
1507// where the least significant bit is not 0. However, the probability of this
1508// happening is considered low enough that this is officially not a
1509// "real problem".
1510def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1511def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1512def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1513def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1514
1515// Helper imms that check if a mask doesn't change significant shift bits.
1516def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
1517def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;
1518
1519// (shl x (and y, 31)) ==> (shl x, y)
1520def : Pat<(shl GR8:$src1, (and CL, immShift32)),
1521          (SHL8rCL GR8:$src1)>;
1522def : Pat<(shl GR16:$src1, (and CL, immShift32)),
1523          (SHL16rCL GR16:$src1)>;
1524def : Pat<(shl GR32:$src1, (and CL, immShift32)),
1525          (SHL32rCL GR32:$src1)>;
1526def : Pat<(store (shl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1527          (SHL8mCL addr:$dst)>;
1528def : Pat<(store (shl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1529          (SHL16mCL addr:$dst)>;
1530def : Pat<(store (shl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1531          (SHL32mCL addr:$dst)>;
1532
1533def : Pat<(srl GR8:$src1, (and CL, immShift32)),
1534          (SHR8rCL GR8:$src1)>;
1535def : Pat<(srl GR16:$src1, (and CL, immShift32)),
1536          (SHR16rCL GR16:$src1)>;
1537def : Pat<(srl GR32:$src1, (and CL, immShift32)),
1538          (SHR32rCL GR32:$src1)>;
1539def : Pat<(store (srl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1540          (SHR8mCL addr:$dst)>;
1541def : Pat<(store (srl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1542          (SHR16mCL addr:$dst)>;
1543def : Pat<(store (srl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1544          (SHR32mCL addr:$dst)>;
1545
1546def : Pat<(sra GR8:$src1, (and CL, immShift32)),
1547          (SAR8rCL GR8:$src1)>;
1548def : Pat<(sra GR16:$src1, (and CL, immShift32)),
1549          (SAR16rCL GR16:$src1)>;
1550def : Pat<(sra GR32:$src1, (and CL, immShift32)),
1551          (SAR32rCL GR32:$src1)>;
1552def : Pat<(store (sra (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1553          (SAR8mCL addr:$dst)>;
1554def : Pat<(store (sra (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1555          (SAR16mCL addr:$dst)>;
1556def : Pat<(store (sra (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1557          (SAR32mCL addr:$dst)>;
1558
1559// (shl x (and y, 63)) ==> (shl x, y)
1560def : Pat<(shl GR64:$src1, (and CL, immShift64)),
1561          (SHL64rCL GR64:$src1)>;
1562def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1563          (SHL64mCL addr:$dst)>;
1564
1565def : Pat<(srl GR64:$src1, (and CL, immShift64)),
1566          (SHR64rCL GR64:$src1)>;
1567def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1568          (SHR64mCL addr:$dst)>;
1569
1570def : Pat<(sra GR64:$src1, (and CL, immShift64)),
1571          (SAR64rCL GR64:$src1)>;
1572def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1573          (SAR64mCL addr:$dst)>;
1574
1575
1576// (anyext (setcc_carry)) -> (setcc_carry)
1577def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1578          (SETB_C16r)>;
1579def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1580          (SETB_C32r)>;
1581def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1582          (SETB_C32r)>;
1583
1584
1585
1586
1587//===----------------------------------------------------------------------===//
1588// EFLAGS-defining Patterns
1589//===----------------------------------------------------------------------===//
1590
1591// add reg, reg
1592def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1593def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1594def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1595
1596// add reg, mem
1597def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1598          (ADD8rm GR8:$src1, addr:$src2)>;
1599def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1600          (ADD16rm GR16:$src1, addr:$src2)>;
1601def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1602          (ADD32rm GR32:$src1, addr:$src2)>;
1603
1604// add reg, imm
1605def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
1606def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1607def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1608def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1609          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1610def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1611          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1612
1613// sub reg, reg
1614def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
1615def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1616def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1617
1618// sub reg, mem
1619def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1620          (SUB8rm GR8:$src1, addr:$src2)>;
1621def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1622          (SUB16rm GR16:$src1, addr:$src2)>;
1623def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1624          (SUB32rm GR32:$src1, addr:$src2)>;
1625
1626// sub reg, imm
1627def : Pat<(sub GR8:$src1, imm:$src2),
1628          (SUB8ri GR8:$src1, imm:$src2)>;
1629def : Pat<(sub GR16:$src1, imm:$src2),
1630          (SUB16ri GR16:$src1, imm:$src2)>;
1631def : Pat<(sub GR32:$src1, imm:$src2),
1632          (SUB32ri GR32:$src1, imm:$src2)>;
1633def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1634          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1635def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1636          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1637
1638// sub 0, reg
1639def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
1640def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1641def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1642def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1643
1644// mul reg, reg
1645def : Pat<(mul GR16:$src1, GR16:$src2),
1646          (IMUL16rr GR16:$src1, GR16:$src2)>;
1647def : Pat<(mul GR32:$src1, GR32:$src2),
1648          (IMUL32rr GR32:$src1, GR32:$src2)>;
1649
1650// mul reg, mem
1651def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1652          (IMUL16rm GR16:$src1, addr:$src2)>;
1653def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1654          (IMUL32rm GR32:$src1, addr:$src2)>;
1655
1656// mul reg, imm
1657def : Pat<(mul GR16:$src1, imm:$src2),
1658          (IMUL16rri GR16:$src1, imm:$src2)>;
1659def : Pat<(mul GR32:$src1, imm:$src2),
1660          (IMUL32rri GR32:$src1, imm:$src2)>;
1661def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1662          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1663def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1664          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1665
1666// reg = mul mem, imm
1667def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1668          (IMUL16rmi addr:$src1, imm:$src2)>;
1669def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1670          (IMUL32rmi addr:$src1, imm:$src2)>;
1671def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1672          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1673def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1674          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1675
1676// Patterns for nodes that do not produce flags, for instructions that do.
1677
1678// addition
1679def : Pat<(add GR64:$src1, GR64:$src2),
1680          (ADD64rr GR64:$src1, GR64:$src2)>;
1681def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1682          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1683def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1684          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1685def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1686          (ADD64rm GR64:$src1, addr:$src2)>;
1687
1688// subtraction
1689def : Pat<(sub GR64:$src1, GR64:$src2),
1690          (SUB64rr GR64:$src1, GR64:$src2)>;
1691def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1692          (SUB64rm GR64:$src1, addr:$src2)>;
1693def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1694          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1695def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1696          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1697
1698// Multiply
1699def : Pat<(mul GR64:$src1, GR64:$src2),
1700          (IMUL64rr GR64:$src1, GR64:$src2)>;
1701def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1702          (IMUL64rm GR64:$src1, addr:$src2)>;
1703def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1704          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1705def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1706          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1707def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1708          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1709def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1710          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1711
1712// Increment reg.
1713def : Pat<(add GR8 :$src, 1), (INC8r     GR8 :$src)>;
1714def : Pat<(add GR16:$src, 1), (INC16r    GR16:$src)>, Requires<[In32BitMode]>;
1715def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1716def : Pat<(add GR32:$src, 1), (INC32r    GR32:$src)>, Requires<[In32BitMode]>;
1717def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1718def : Pat<(add GR64:$src, 1), (INC64r    GR64:$src)>;
1719
1720// Decrement reg.
1721def : Pat<(add GR8 :$src, -1), (DEC8r     GR8 :$src)>;
1722def : Pat<(add GR16:$src, -1), (DEC16r    GR16:$src)>, Requires<[In32BitMode]>;
1723def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1724def : Pat<(add GR32:$src, -1), (DEC32r    GR32:$src)>, Requires<[In32BitMode]>;
1725def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1726def : Pat<(add GR64:$src, -1), (DEC64r    GR64:$src)>;
1727
1728// or reg/reg.
1729def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
1730def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1731def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1732def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1733
1734// or reg/mem
1735def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1736          (OR8rm GR8:$src1, addr:$src2)>;
1737def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1738          (OR16rm GR16:$src1, addr:$src2)>;
1739def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1740          (OR32rm GR32:$src1, addr:$src2)>;
1741def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1742          (OR64rm GR64:$src1, addr:$src2)>;
1743
1744// or reg/imm
1745def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
1746def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1747def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1748def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1749          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1750def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1751          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1752def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1753          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1754def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1755          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1756
1757// xor reg/reg
1758def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
1759def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1760def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1761def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1762
1763// xor reg/mem
1764def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1765          (XOR8rm GR8:$src1, addr:$src2)>;
1766def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1767          (XOR16rm GR16:$src1, addr:$src2)>;
1768def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1769          (XOR32rm GR32:$src1, addr:$src2)>;
1770def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1771          (XOR64rm GR64:$src1, addr:$src2)>;
1772
1773// xor reg/imm
1774def : Pat<(xor GR8:$src1, imm:$src2),
1775          (XOR8ri GR8:$src1, imm:$src2)>;
1776def : Pat<(xor GR16:$src1, imm:$src2),
1777          (XOR16ri GR16:$src1, imm:$src2)>;
1778def : Pat<(xor GR32:$src1, imm:$src2),
1779          (XOR32ri GR32:$src1, imm:$src2)>;
1780def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1781          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1782def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1783          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1784def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1785          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1786def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1787          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1788
1789// and reg/reg
1790def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
1791def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1792def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1793def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1794
1795// and reg/mem
1796def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1797          (AND8rm GR8:$src1, addr:$src2)>;
1798def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1799          (AND16rm GR16:$src1, addr:$src2)>;
1800def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1801          (AND32rm GR32:$src1, addr:$src2)>;
1802def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1803          (AND64rm GR64:$src1, addr:$src2)>;
1804
1805// and reg/imm
1806def : Pat<(and GR8:$src1, imm:$src2),
1807          (AND8ri GR8:$src1, imm:$src2)>;
1808def : Pat<(and GR16:$src1, imm:$src2),
1809          (AND16ri GR16:$src1, imm:$src2)>;
1810def : Pat<(and GR32:$src1, imm:$src2),
1811          (AND32ri GR32:$src1, imm:$src2)>;
1812def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1813          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1814def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1815          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1816def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1817          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1818def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1819          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1820
1821// Bit scan instruction patterns to match explicit zero-undef behavior.
1822def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1823def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1824def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1825def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1826def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1827def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1828