1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11 // srem, urem, frem.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombine.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/Support/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22
23 /// simplifyValueKnownNonZero - The specific integer value is used in a context
24 /// where it is known to be non-zero. If this allows us to simplify the
25 /// computation, do so and return the new operand, otherwise return null.
simplifyValueKnownNonZero(Value * V,InstCombiner & IC)26 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
27 // If V has multiple uses, then we would have to do more analysis to determine
28 // if this is safe. For example, the use could be in dynamically unreached
29 // code.
30 if (!V->hasOneUse()) return 0;
31
32 bool MadeChange = false;
33
34 // ((1 << A) >>u B) --> (1 << (A-B))
35 // Because V cannot be zero, we know that B is less than A.
36 Value *A = 0, *B = 0, *PowerOf2 = 0;
37 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
38 m_Value(B))) &&
39 // The "1" can be any value known to be a power of 2.
40 isKnownToBeAPowerOfTwo(PowerOf2)) {
41 A = IC.Builder->CreateSub(A, B);
42 return IC.Builder->CreateShl(PowerOf2, A);
43 }
44
45 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
46 // inexact. Similarly for <<.
47 if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
48 if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
49 // We know that this is an exact/nuw shift and that the input is a
50 // non-zero context as well.
51 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
52 I->setOperand(0, V2);
53 MadeChange = true;
54 }
55
56 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
57 I->setIsExact();
58 MadeChange = true;
59 }
60
61 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
62 I->setHasNoUnsignedWrap();
63 MadeChange = true;
64 }
65 }
66
67 // TODO: Lots more we could do here:
68 // If V is a phi node, we can call this on each of its operands.
69 // "select cond, X, 0" can simplify to "X".
70
71 return MadeChange ? V : 0;
72 }
73
74
75 /// MultiplyOverflows - True if the multiply can not be expressed in an int
76 /// this size.
MultiplyOverflows(ConstantInt * C1,ConstantInt * C2,bool sign)77 static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
78 uint32_t W = C1->getBitWidth();
79 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
80 if (sign) {
81 LHSExt = LHSExt.sext(W * 2);
82 RHSExt = RHSExt.sext(W * 2);
83 } else {
84 LHSExt = LHSExt.zext(W * 2);
85 RHSExt = RHSExt.zext(W * 2);
86 }
87
88 APInt MulExt = LHSExt * RHSExt;
89
90 if (!sign)
91 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
92
93 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
94 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
95 return MulExt.slt(Min) || MulExt.sgt(Max);
96 }
97
98 /// \brief A helper routine of InstCombiner::visitMul().
99 ///
100 /// If C is a vector of known powers of 2, then this function returns
101 /// a new vector obtained from C replacing each element with its logBase2.
102 /// Return a null pointer otherwise.
getLogBase2Vector(ConstantDataVector * CV)103 static Constant *getLogBase2Vector(ConstantDataVector *CV) {
104 const APInt *IVal;
105 SmallVector<Constant *, 4> Elts;
106
107 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
108 Constant *Elt = CV->getElementAsConstant(I);
109 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
110 return 0;
111 Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2()));
112 }
113
114 return ConstantVector::get(Elts);
115 }
116
visitMul(BinaryOperator & I)117 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
118 bool Changed = SimplifyAssociativeOrCommutative(I);
119 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
120
121 if (Value *V = SimplifyMulInst(Op0, Op1, TD))
122 return ReplaceInstUsesWith(I, V);
123
124 if (Value *V = SimplifyUsingDistributiveLaws(I))
125 return ReplaceInstUsesWith(I, V);
126
127 if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
128 return BinaryOperator::CreateNeg(Op0, I.getName());
129
130 // Also allow combining multiply instructions on vectors.
131 {
132 Value *NewOp;
133 Constant *C1, *C2;
134 const APInt *IVal;
135 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
136 m_Constant(C1))) &&
137 match(C1, m_APInt(IVal)))
138 // ((X << C1)*C2) == (X * (C2 << C1))
139 return BinaryOperator::CreateMul(NewOp, ConstantExpr::getShl(C1, C2));
140
141 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
142 Constant *NewCst = 0;
143 if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2())
144 // Replace X*(2^C) with X << C, where C is either a scalar or a splat.
145 NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2());
146 else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1))
147 // Replace X*(2^C) with X << C, where C is a vector of known
148 // constant powers of 2.
149 NewCst = getLogBase2Vector(CV);
150
151 if (NewCst) {
152 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
153 if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
154 if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
155 return Shl;
156 }
157 }
158 }
159
160 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
161 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
162 { Value *X; ConstantInt *C1;
163 if (Op0->hasOneUse() &&
164 match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
165 Value *Add = Builder->CreateMul(X, CI);
166 return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
167 }
168 }
169
170 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
171 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
172 // The "* (2**n)" thus becomes a potential shifting opportunity.
173 {
174 const APInt & Val = CI->getValue();
175 const APInt &PosVal = Val.abs();
176 if (Val.isNegative() && PosVal.isPowerOf2()) {
177 Value *X = 0, *Y = 0;
178 if (Op0->hasOneUse()) {
179 ConstantInt *C1;
180 Value *Sub = 0;
181 if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
182 Sub = Builder->CreateSub(X, Y, "suba");
183 else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
184 Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
185 if (Sub)
186 return
187 BinaryOperator::CreateMul(Sub,
188 ConstantInt::get(Y->getType(), PosVal));
189 }
190 }
191 }
192 }
193
194 // Simplify mul instructions with a constant RHS.
195 if (isa<Constant>(Op1)) {
196 // Try to fold constant mul into select arguments.
197 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
198 if (Instruction *R = FoldOpIntoSelect(I, SI))
199 return R;
200
201 if (isa<PHINode>(Op0))
202 if (Instruction *NV = FoldOpIntoPhi(I))
203 return NV;
204 }
205
206 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
207 if (Value *Op1v = dyn_castNegVal(Op1))
208 return BinaryOperator::CreateMul(Op0v, Op1v);
209
210 // (X / Y) * Y = X - (X % Y)
211 // (X / Y) * -Y = (X % Y) - X
212 {
213 Value *Op1C = Op1;
214 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
215 if (!BO ||
216 (BO->getOpcode() != Instruction::UDiv &&
217 BO->getOpcode() != Instruction::SDiv)) {
218 Op1C = Op0;
219 BO = dyn_cast<BinaryOperator>(Op1);
220 }
221 Value *Neg = dyn_castNegVal(Op1C);
222 if (BO && BO->hasOneUse() &&
223 (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
224 (BO->getOpcode() == Instruction::UDiv ||
225 BO->getOpcode() == Instruction::SDiv)) {
226 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
227
228 // If the division is exact, X % Y is zero, so we end up with X or -X.
229 if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
230 if (SDiv->isExact()) {
231 if (Op1BO == Op1C)
232 return ReplaceInstUsesWith(I, Op0BO);
233 return BinaryOperator::CreateNeg(Op0BO);
234 }
235
236 Value *Rem;
237 if (BO->getOpcode() == Instruction::UDiv)
238 Rem = Builder->CreateURem(Op0BO, Op1BO);
239 else
240 Rem = Builder->CreateSRem(Op0BO, Op1BO);
241 Rem->takeName(BO);
242
243 if (Op1BO == Op1C)
244 return BinaryOperator::CreateSub(Op0BO, Rem);
245 return BinaryOperator::CreateSub(Rem, Op0BO);
246 }
247 }
248
249 /// i1 mul -> i1 and.
250 if (I.getType()->isIntegerTy(1))
251 return BinaryOperator::CreateAnd(Op0, Op1);
252
253 // X*(1 << Y) --> X << Y
254 // (1 << Y)*X --> X << Y
255 {
256 Value *Y;
257 if (match(Op0, m_Shl(m_One(), m_Value(Y))))
258 return BinaryOperator::CreateShl(Op1, Y);
259 if (match(Op1, m_Shl(m_One(), m_Value(Y))))
260 return BinaryOperator::CreateShl(Op0, Y);
261 }
262
263 // If one of the operands of the multiply is a cast from a boolean value, then
264 // we know the bool is either zero or one, so this is a 'masking' multiply.
265 // X * Y (where Y is 0 or 1) -> X & (0-Y)
266 if (!I.getType()->isVectorTy()) {
267 // -2 is "-1 << 1" so it is all bits set except the low one.
268 APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
269
270 Value *BoolCast = 0, *OtherOp = 0;
271 if (MaskedValueIsZero(Op0, Negative2))
272 BoolCast = Op0, OtherOp = Op1;
273 else if (MaskedValueIsZero(Op1, Negative2))
274 BoolCast = Op1, OtherOp = Op0;
275
276 if (BoolCast) {
277 Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
278 BoolCast);
279 return BinaryOperator::CreateAnd(V, OtherOp);
280 }
281 }
282
283 return Changed ? &I : 0;
284 }
285
286 //
287 // Detect pattern:
288 //
289 // log2(Y*0.5)
290 //
291 // And check for corresponding fast math flags
292 //
293
detectLog2OfHalf(Value * & Op,Value * & Y,IntrinsicInst * & Log2)294 static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
295
296 if (!Op->hasOneUse())
297 return;
298
299 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
300 if (!II)
301 return;
302 if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
303 return;
304 Log2 = II;
305
306 Value *OpLog2Of = II->getArgOperand(0);
307 if (!OpLog2Of->hasOneUse())
308 return;
309
310 Instruction *I = dyn_cast<Instruction>(OpLog2Of);
311 if (!I)
312 return;
313 if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
314 return;
315
316 ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
317 if (CFP && CFP->isExactlyValue(0.5)) {
318 Y = I->getOperand(1);
319 return;
320 }
321 CFP = dyn_cast<ConstantFP>(I->getOperand(1));
322 if (CFP && CFP->isExactlyValue(0.5))
323 Y = I->getOperand(0);
324 }
325
326 /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
327 /// true iff the given value is FMul or FDiv with one and only one operand
328 /// being a normal constant (i.e. not Zero/NaN/Infinity).
isFMulOrFDivWithConstant(Value * V)329 static bool isFMulOrFDivWithConstant(Value *V) {
330 Instruction *I = dyn_cast<Instruction>(V);
331 if (!I || (I->getOpcode() != Instruction::FMul &&
332 I->getOpcode() != Instruction::FDiv))
333 return false;
334
335 ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
336 ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
337
338 if (C0 && C1)
339 return false;
340
341 return (C0 && C0->getValueAPF().isFiniteNonZero()) ||
342 (C1 && C1->getValueAPF().isFiniteNonZero());
343 }
344
isNormalFp(const ConstantFP * C)345 static bool isNormalFp(const ConstantFP *C) {
346 const APFloat &Flt = C->getValueAPF();
347 return Flt.isNormal();
348 }
349
350 /// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
351 /// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
352 /// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
353 /// This function is to simplify "FMulOrDiv * C" and returns the
354 /// resulting expression. Note that this function could return NULL in
355 /// case the constants cannot be folded into a normal floating-point.
356 ///
foldFMulConst(Instruction * FMulOrDiv,ConstantFP * C,Instruction * InsertBefore)357 Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
358 Instruction *InsertBefore) {
359 assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
360
361 Value *Opnd0 = FMulOrDiv->getOperand(0);
362 Value *Opnd1 = FMulOrDiv->getOperand(1);
363
364 ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
365 ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
366
367 BinaryOperator *R = 0;
368
369 // (X * C0) * C => X * (C0*C)
370 if (FMulOrDiv->getOpcode() == Instruction::FMul) {
371 Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
372 if (isNormalFp(cast<ConstantFP>(F)))
373 R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
374 } else {
375 if (C0) {
376 // (C0 / X) * C => (C0 * C) / X
377 ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
378 if (isNormalFp(F))
379 R = BinaryOperator::CreateFDiv(F, Opnd1);
380 } else {
381 // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
382 ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
383 if (isNormalFp(F)) {
384 R = BinaryOperator::CreateFMul(Opnd0, F);
385 } else {
386 // (X / C1) * C => X / (C1/C)
387 Constant *F = ConstantExpr::getFDiv(C1, C);
388 if (isNormalFp(cast<ConstantFP>(F)))
389 R = BinaryOperator::CreateFDiv(Opnd0, F);
390 }
391 }
392 }
393
394 if (R) {
395 R->setHasUnsafeAlgebra(true);
396 InsertNewInstWith(R, *InsertBefore);
397 }
398
399 return R;
400 }
401
visitFMul(BinaryOperator & I)402 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
403 bool Changed = SimplifyAssociativeOrCommutative(I);
404 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
405
406 if (isa<Constant>(Op0))
407 std::swap(Op0, Op1);
408
409 if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD))
410 return ReplaceInstUsesWith(I, V);
411
412 bool AllowReassociate = I.hasUnsafeAlgebra();
413
414 // Simplify mul instructions with a constant RHS.
415 if (isa<Constant>(Op1)) {
416 // Try to fold constant mul into select arguments.
417 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
418 if (Instruction *R = FoldOpIntoSelect(I, SI))
419 return R;
420
421 if (isa<PHINode>(Op0))
422 if (Instruction *NV = FoldOpIntoPhi(I))
423 return NV;
424
425 ConstantFP *C = dyn_cast<ConstantFP>(Op1);
426 if (C && AllowReassociate && C->getValueAPF().isFiniteNonZero()) {
427 // Let MDC denote an expression in one of these forms:
428 // X * C, C/X, X/C, where C is a constant.
429 //
430 // Try to simplify "MDC * Constant"
431 if (isFMulOrFDivWithConstant(Op0)) {
432 Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
433 if (V)
434 return ReplaceInstUsesWith(I, V);
435 }
436
437 // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
438 Instruction *FAddSub = dyn_cast<Instruction>(Op0);
439 if (FAddSub &&
440 (FAddSub->getOpcode() == Instruction::FAdd ||
441 FAddSub->getOpcode() == Instruction::FSub)) {
442 Value *Opnd0 = FAddSub->getOperand(0);
443 Value *Opnd1 = FAddSub->getOperand(1);
444 ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
445 ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
446 bool Swap = false;
447 if (C0) {
448 std::swap(C0, C1);
449 std::swap(Opnd0, Opnd1);
450 Swap = true;
451 }
452
453 if (C1 && C1->getValueAPF().isFiniteNonZero() &&
454 isFMulOrFDivWithConstant(Opnd0)) {
455 Value *M1 = ConstantExpr::getFMul(C1, C);
456 Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ?
457 foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
458 0;
459 if (M0 && M1) {
460 if (Swap && FAddSub->getOpcode() == Instruction::FSub)
461 std::swap(M0, M1);
462
463 Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ?
464 BinaryOperator::CreateFAdd(M0, M1) :
465 BinaryOperator::CreateFSub(M0, M1);
466 Instruction *RI = cast<Instruction>(R);
467 RI->copyFastMathFlags(&I);
468 return RI;
469 }
470 }
471 }
472 }
473 }
474
475
476 // Under unsafe algebra do:
477 // X * log2(0.5*Y) = X*log2(Y) - X
478 if (I.hasUnsafeAlgebra()) {
479 Value *OpX = NULL;
480 Value *OpY = NULL;
481 IntrinsicInst *Log2;
482 detectLog2OfHalf(Op0, OpY, Log2);
483 if (OpY) {
484 OpX = Op1;
485 } else {
486 detectLog2OfHalf(Op1, OpY, Log2);
487 if (OpY) {
488 OpX = Op0;
489 }
490 }
491 // if pattern detected emit alternate sequence
492 if (OpX && OpY) {
493 Log2->setArgOperand(0, OpY);
494 Value *FMulVal = Builder->CreateFMul(OpX, Log2);
495 Instruction *FMul = cast<Instruction>(FMulVal);
496 FMul->copyFastMathFlags(Log2);
497 Instruction *FSub = BinaryOperator::CreateFSub(FMulVal, OpX);
498 FSub->copyFastMathFlags(Log2);
499 return FSub;
500 }
501 }
502
503 // Handle symmetric situation in a 2-iteration loop
504 Value *Opnd0 = Op0;
505 Value *Opnd1 = Op1;
506 for (int i = 0; i < 2; i++) {
507 bool IgnoreZeroSign = I.hasNoSignedZeros();
508 if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
509 Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
510 Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
511
512 // -X * -Y => X*Y
513 if (N1)
514 return BinaryOperator::CreateFMul(N0, N1);
515
516 if (Opnd0->hasOneUse()) {
517 // -X * Y => -(X*Y) (Promote negation as high as possible)
518 Value *T = Builder->CreateFMul(N0, Opnd1);
519 cast<Instruction>(T)->setDebugLoc(I.getDebugLoc());
520 Instruction *Neg = BinaryOperator::CreateFNeg(T);
521 if (I.getFastMathFlags().any()) {
522 cast<Instruction>(T)->copyFastMathFlags(&I);
523 Neg->copyFastMathFlags(&I);
524 }
525 return Neg;
526 }
527 }
528
529 // (X*Y) * X => (X*X) * Y where Y != X
530 // The purpose is two-fold:
531 // 1) to form a power expression (of X).
532 // 2) potentially shorten the critical path: After transformation, the
533 // latency of the instruction Y is amortized by the expression of X*X,
534 // and therefore Y is in a "less critical" position compared to what it
535 // was before the transformation.
536 //
537 if (AllowReassociate) {
538 Value *Opnd0_0, *Opnd0_1;
539 if (Opnd0->hasOneUse() &&
540 match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
541 Value *Y = 0;
542 if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
543 Y = Opnd0_1;
544 else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
545 Y = Opnd0_0;
546
547 if (Y) {
548 Instruction *T = cast<Instruction>(Builder->CreateFMul(Opnd1, Opnd1));
549 T->copyFastMathFlags(&I);
550 T->setDebugLoc(I.getDebugLoc());
551
552 Instruction *R = BinaryOperator::CreateFMul(T, Y);
553 R->copyFastMathFlags(&I);
554 return R;
555 }
556 }
557 }
558
559 // B * (uitofp i1 C) -> select C, B, 0
560 if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
561 Value *LHS = Op0, *RHS = Op1;
562 Value *B, *C;
563 if (!match(RHS, m_UIToFP(m_Value(C))))
564 std::swap(LHS, RHS);
565
566 if (match(RHS, m_UIToFP(m_Value(C))) && C->getType()->isIntegerTy(1)) {
567 B = LHS;
568 Value *Zero = ConstantFP::getNegativeZero(B->getType());
569 return SelectInst::Create(C, B, Zero);
570 }
571 }
572
573 // A * (1 - uitofp i1 C) -> select C, 0, A
574 if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) {
575 Value *LHS = Op0, *RHS = Op1;
576 Value *A, *C;
577 if (!match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))))
578 std::swap(LHS, RHS);
579
580 if (match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))) &&
581 C->getType()->isIntegerTy(1)) {
582 A = LHS;
583 Value *Zero = ConstantFP::getNegativeZero(A->getType());
584 return SelectInst::Create(C, Zero, A);
585 }
586 }
587
588 if (!isa<Constant>(Op1))
589 std::swap(Opnd0, Opnd1);
590 else
591 break;
592 }
593
594 return Changed ? &I : 0;
595 }
596
597 /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
598 /// instruction.
SimplifyDivRemOfSelect(BinaryOperator & I)599 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
600 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
601
602 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
603 int NonNullOperand = -1;
604 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
605 if (ST->isNullValue())
606 NonNullOperand = 2;
607 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
608 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
609 if (ST->isNullValue())
610 NonNullOperand = 1;
611
612 if (NonNullOperand == -1)
613 return false;
614
615 Value *SelectCond = SI->getOperand(0);
616
617 // Change the div/rem to use 'Y' instead of the select.
618 I.setOperand(1, SI->getOperand(NonNullOperand));
619
620 // Okay, we know we replace the operand of the div/rem with 'Y' with no
621 // problem. However, the select, or the condition of the select may have
622 // multiple uses. Based on our knowledge that the operand must be non-zero,
623 // propagate the known value for the select into other uses of it, and
624 // propagate a known value of the condition into its other users.
625
626 // If the select and condition only have a single use, don't bother with this,
627 // early exit.
628 if (SI->use_empty() && SelectCond->hasOneUse())
629 return true;
630
631 // Scan the current block backward, looking for other uses of SI.
632 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
633
634 while (BBI != BBFront) {
635 --BBI;
636 // If we found a call to a function, we can't assume it will return, so
637 // information from below it cannot be propagated above it.
638 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
639 break;
640
641 // Replace uses of the select or its condition with the known values.
642 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
643 I != E; ++I) {
644 if (*I == SI) {
645 *I = SI->getOperand(NonNullOperand);
646 Worklist.Add(BBI);
647 } else if (*I == SelectCond) {
648 *I = Builder->getInt1(NonNullOperand == 1);
649 Worklist.Add(BBI);
650 }
651 }
652
653 // If we past the instruction, quit looking for it.
654 if (&*BBI == SI)
655 SI = 0;
656 if (&*BBI == SelectCond)
657 SelectCond = 0;
658
659 // If we ran out of things to eliminate, break out of the loop.
660 if (SelectCond == 0 && SI == 0)
661 break;
662
663 }
664 return true;
665 }
666
667
668 /// This function implements the transforms common to both integer division
669 /// instructions (udiv and sdiv). It is called by the visitors to those integer
670 /// division instructions.
671 /// @brief Common integer divide transforms
commonIDivTransforms(BinaryOperator & I)672 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
673 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
674
675 // The RHS is known non-zero.
676 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
677 I.setOperand(1, V);
678 return &I;
679 }
680
681 // Handle cases involving: [su]div X, (select Cond, Y, Z)
682 // This does not apply for fdiv.
683 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
684 return &I;
685
686 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
687 // (X / C1) / C2 -> X / (C1*C2)
688 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
689 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
690 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
691 if (MultiplyOverflows(RHS, LHSRHS,
692 I.getOpcode()==Instruction::SDiv))
693 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
694 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
695 ConstantExpr::getMul(RHS, LHSRHS));
696 }
697
698 if (!RHS->isZero()) { // avoid X udiv 0
699 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
700 if (Instruction *R = FoldOpIntoSelect(I, SI))
701 return R;
702 if (isa<PHINode>(Op0))
703 if (Instruction *NV = FoldOpIntoPhi(I))
704 return NV;
705 }
706 }
707
708 // See if we can fold away this div instruction.
709 if (SimplifyDemandedInstructionBits(I))
710 return &I;
711
712 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
713 Value *X = 0, *Z = 0;
714 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
715 bool isSigned = I.getOpcode() == Instruction::SDiv;
716 if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
717 (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
718 return BinaryOperator::Create(I.getOpcode(), X, Op1);
719 }
720
721 return 0;
722 }
723
724 /// dyn_castZExtVal - Checks if V is a zext or constant that can
725 /// be truncated to Ty without losing bits.
dyn_castZExtVal(Value * V,Type * Ty)726 static Value *dyn_castZExtVal(Value *V, Type *Ty) {
727 if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
728 if (Z->getSrcTy() == Ty)
729 return Z->getOperand(0);
730 } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
731 if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
732 return ConstantExpr::getTrunc(C, Ty);
733 }
734 return 0;
735 }
736
737 namespace {
738 const unsigned MaxDepth = 6;
739 typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1,
740 const BinaryOperator &I,
741 InstCombiner &IC);
742
743 /// \brief Used to maintain state for visitUDivOperand().
744 struct UDivFoldAction {
745 FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this
746 ///< operand. This can be zero if this action
747 ///< joins two actions together.
748
749 Value *OperandToFold; ///< Which operand to fold.
750 union {
751 Instruction *FoldResult; ///< The instruction returned when FoldAction is
752 ///< invoked.
753
754 size_t SelectLHSIdx; ///< Stores the LHS action index if this action
755 ///< joins two actions together.
756 };
757
UDivFoldAction__anonae2b30140111::UDivFoldAction758 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
759 : FoldAction(FA), OperandToFold(InputOperand), FoldResult(0) {}
UDivFoldAction__anonae2b30140111::UDivFoldAction760 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
761 : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
762 };
763 }
764
765 // X udiv 2^C -> X >> C
foldUDivPow2Cst(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombiner & IC)766 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
767 const BinaryOperator &I, InstCombiner &IC) {
768 const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
769 BinaryOperator *LShr = BinaryOperator::CreateLShr(
770 Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
771 if (I.isExact()) LShr->setIsExact();
772 return LShr;
773 }
774
775 // X udiv C, where C >= signbit
foldUDivNegCst(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombiner & IC)776 static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
777 const BinaryOperator &I, InstCombiner &IC) {
778 Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1));
779
780 return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
781 ConstantInt::get(I.getType(), 1));
782 }
783
784 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
foldUDivShl(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombiner & IC)785 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
786 InstCombiner &IC) {
787 Instruction *ShiftLeft = cast<Instruction>(Op1);
788 if (isa<ZExtInst>(ShiftLeft))
789 ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0));
790
791 const APInt &CI =
792 cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger();
793 Value *N = ShiftLeft->getOperand(1);
794 if (CI != 1)
795 N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2()));
796 if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
797 N = IC.Builder->CreateZExt(N, Z->getDestTy());
798 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
799 if (I.isExact()) LShr->setIsExact();
800 return LShr;
801 }
802
803 // \brief Recursively visits the possible right hand operands of a udiv
804 // instruction, seeing through select instructions, to determine if we can
805 // replace the udiv with something simpler. If we find that an operand is not
806 // able to simplify the udiv, we abort the entire transformation.
visitUDivOperand(Value * Op0,Value * Op1,const BinaryOperator & I,SmallVectorImpl<UDivFoldAction> & Actions,unsigned Depth=0)807 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
808 SmallVectorImpl<UDivFoldAction> &Actions,
809 unsigned Depth = 0) {
810 // Check to see if this is an unsigned division with an exact power of 2,
811 // if so, convert to a right shift.
812 if (match(Op1, m_Power2())) {
813 Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
814 return Actions.size();
815 }
816
817 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1))
818 // X udiv C, where C >= signbit
819 if (C->getValue().isNegative()) {
820 Actions.push_back(UDivFoldAction(foldUDivNegCst, C));
821 return Actions.size();
822 }
823
824 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
825 if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
826 match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
827 Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
828 return Actions.size();
829 }
830
831 // The remaining tests are all recursive, so bail out if we hit the limit.
832 if (Depth++ == MaxDepth)
833 return 0;
834
835 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
836 if (size_t LHSIdx = visitUDivOperand(Op0, SI->getOperand(1), I, Actions))
837 if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions)) {
838 Actions.push_back(UDivFoldAction((FoldUDivOperandCb)0, Op1, LHSIdx-1));
839 return Actions.size();
840 }
841
842 return 0;
843 }
844
visitUDiv(BinaryOperator & I)845 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
846 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
847
848 if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
849 return ReplaceInstUsesWith(I, V);
850
851 // Handle the integer div common cases
852 if (Instruction *Common = commonIDivTransforms(I))
853 return Common;
854
855 // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
856 if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
857 Value *X;
858 ConstantInt *C1;
859 if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
860 APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
861 return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
862 }
863 }
864
865 // (zext A) udiv (zext B) --> zext (A udiv B)
866 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
867 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
868 return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
869 I.isExact()),
870 I.getType());
871
872 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
873 SmallVector<UDivFoldAction, 6> UDivActions;
874 if (visitUDivOperand(Op0, Op1, I, UDivActions))
875 for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
876 FoldUDivOperandCb Action = UDivActions[i].FoldAction;
877 Value *ActionOp1 = UDivActions[i].OperandToFold;
878 Instruction *Inst;
879 if (Action)
880 Inst = Action(Op0, ActionOp1, I, *this);
881 else {
882 // This action joins two actions together. The RHS of this action is
883 // simply the last action we processed, we saved the LHS action index in
884 // the joining action.
885 size_t SelectRHSIdx = i - 1;
886 Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
887 size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
888 Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
889 Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
890 SelectLHS, SelectRHS);
891 }
892
893 // If this is the last action to process, return it to the InstCombiner.
894 // Otherwise, we insert it before the UDiv and record it so that we may
895 // use it as part of a joining action (i.e., a SelectInst).
896 if (e - i != 1) {
897 Inst->insertBefore(&I);
898 UDivActions[i].FoldResult = Inst;
899 } else
900 return Inst;
901 }
902
903 return 0;
904 }
905
visitSDiv(BinaryOperator & I)906 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
907 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
908
909 if (Value *V = SimplifySDivInst(Op0, Op1, TD))
910 return ReplaceInstUsesWith(I, V);
911
912 // Handle the integer div common cases
913 if (Instruction *Common = commonIDivTransforms(I))
914 return Common;
915
916 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
917 // sdiv X, -1 == -X
918 if (RHS->isAllOnesValue())
919 return BinaryOperator::CreateNeg(Op0);
920
921 // sdiv X, C --> ashr exact X, log2(C)
922 if (I.isExact() && RHS->getValue().isNonNegative() &&
923 RHS->getValue().isPowerOf2()) {
924 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
925 RHS->getValue().exactLogBase2());
926 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
927 }
928
929 // -X/C --> X/-C provided the negation doesn't overflow.
930 if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
931 if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
932 return BinaryOperator::CreateSDiv(Sub->getOperand(1),
933 ConstantExpr::getNeg(RHS));
934 }
935
936 // If the sign bits of both operands are zero (i.e. we can prove they are
937 // unsigned inputs), turn this into a udiv.
938 if (I.getType()->isIntegerTy()) {
939 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
940 if (MaskedValueIsZero(Op0, Mask)) {
941 if (MaskedValueIsZero(Op1, Mask)) {
942 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
943 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
944 }
945
946 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
947 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
948 // Safe because the only negative value (1 << Y) can take on is
949 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
950 // the sign bit set.
951 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
952 }
953 }
954 }
955
956 return 0;
957 }
958
959 /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
960 /// FP value and:
961 /// 1) 1/C is exact, or
962 /// 2) reciprocal is allowed.
963 /// If the conversion was successful, the simplified expression "X * 1/C" is
964 /// returned; otherwise, NULL is returned.
965 ///
CvtFDivConstToReciprocal(Value * Dividend,ConstantFP * Divisor,bool AllowReciprocal)966 static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
967 ConstantFP *Divisor,
968 bool AllowReciprocal) {
969 const APFloat &FpVal = Divisor->getValueAPF();
970 APFloat Reciprocal(FpVal.getSemantics());
971 bool Cvt = FpVal.getExactInverse(&Reciprocal);
972
973 if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
974 Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
975 (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
976 Cvt = !Reciprocal.isDenormal();
977 }
978
979 if (!Cvt)
980 return 0;
981
982 ConstantFP *R;
983 R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
984 return BinaryOperator::CreateFMul(Dividend, R);
985 }
986
visitFDiv(BinaryOperator & I)987 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
988 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
989
990 if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
991 return ReplaceInstUsesWith(I, V);
992
993 if (isa<Constant>(Op0))
994 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
995 if (Instruction *R = FoldOpIntoSelect(I, SI))
996 return R;
997
998 bool AllowReassociate = I.hasUnsafeAlgebra();
999 bool AllowReciprocal = I.hasAllowReciprocal();
1000
1001 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1002 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1003 if (Instruction *R = FoldOpIntoSelect(I, SI))
1004 return R;
1005
1006 if (AllowReassociate) {
1007 ConstantFP *C1 = 0;
1008 ConstantFP *C2 = Op1C;
1009 Value *X;
1010 Instruction *Res = 0;
1011
1012 if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) {
1013 // (X*C1)/C2 => X * (C1/C2)
1014 //
1015 Constant *C = ConstantExpr::getFDiv(C1, C2);
1016 const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
1017 if (F.isNormal())
1018 Res = BinaryOperator::CreateFMul(X, C);
1019 } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) {
1020 // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
1021 //
1022 Constant *C = ConstantExpr::getFMul(C1, C2);
1023 const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
1024 if (F.isNormal()) {
1025 Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C),
1026 AllowReciprocal);
1027 if (!Res)
1028 Res = BinaryOperator::CreateFDiv(X, C);
1029 }
1030 }
1031
1032 if (Res) {
1033 Res->setFastMathFlags(I.getFastMathFlags());
1034 return Res;
1035 }
1036 }
1037
1038 // X / C => X * 1/C
1039 if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal))
1040 return T;
1041
1042 return 0;
1043 }
1044
1045 if (AllowReassociate && isa<ConstantFP>(Op0)) {
1046 ConstantFP *C1 = cast<ConstantFP>(Op0), *C2;
1047 Constant *Fold = 0;
1048 Value *X;
1049 bool CreateDiv = true;
1050
1051 // C1 / (X*C2) => (C1/C2) / X
1052 if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2))))
1053 Fold = ConstantExpr::getFDiv(C1, C2);
1054 else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) {
1055 // C1 / (X/C2) => (C1*C2) / X
1056 Fold = ConstantExpr::getFMul(C1, C2);
1057 } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) {
1058 // C1 / (C2/X) => (C1/C2) * X
1059 Fold = ConstantExpr::getFDiv(C1, C2);
1060 CreateDiv = false;
1061 }
1062
1063 if (Fold) {
1064 const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF();
1065 if (FoldC.isNormal()) {
1066 Instruction *R = CreateDiv ?
1067 BinaryOperator::CreateFDiv(Fold, X) :
1068 BinaryOperator::CreateFMul(X, Fold);
1069 R->setFastMathFlags(I.getFastMathFlags());
1070 return R;
1071 }
1072 }
1073 return 0;
1074 }
1075
1076 if (AllowReassociate) {
1077 Value *X, *Y;
1078 Value *NewInst = 0;
1079 Instruction *SimpR = 0;
1080
1081 if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
1082 // (X/Y) / Z => X / (Y*Z)
1083 //
1084 if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) {
1085 NewInst = Builder->CreateFMul(Y, Op1);
1086 SimpR = BinaryOperator::CreateFDiv(X, NewInst);
1087 }
1088 } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
1089 // Z / (X/Y) => Z*Y / X
1090 //
1091 if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) {
1092 NewInst = Builder->CreateFMul(Op0, Y);
1093 SimpR = BinaryOperator::CreateFDiv(NewInst, X);
1094 }
1095 }
1096
1097 if (NewInst) {
1098 if (Instruction *T = dyn_cast<Instruction>(NewInst))
1099 T->setDebugLoc(I.getDebugLoc());
1100 SimpR->setFastMathFlags(I.getFastMathFlags());
1101 return SimpR;
1102 }
1103 }
1104
1105 return 0;
1106 }
1107
1108 /// This function implements the transforms common to both integer remainder
1109 /// instructions (urem and srem). It is called by the visitors to those integer
1110 /// remainder instructions.
1111 /// @brief Common integer remainder transforms
commonIRemTransforms(BinaryOperator & I)1112 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1113 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1114
1115 // The RHS is known non-zero.
1116 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
1117 I.setOperand(1, V);
1118 return &I;
1119 }
1120
1121 // Handle cases involving: rem X, (select Cond, Y, Z)
1122 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1123 return &I;
1124
1125 if (isa<ConstantInt>(Op1)) {
1126 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1127 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1128 if (Instruction *R = FoldOpIntoSelect(I, SI))
1129 return R;
1130 } else if (isa<PHINode>(Op0I)) {
1131 if (Instruction *NV = FoldOpIntoPhi(I))
1132 return NV;
1133 }
1134
1135 // See if we can fold away this rem instruction.
1136 if (SimplifyDemandedInstructionBits(I))
1137 return &I;
1138 }
1139 }
1140
1141 return 0;
1142 }
1143
visitURem(BinaryOperator & I)1144 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1145 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1146
1147 if (Value *V = SimplifyURemInst(Op0, Op1, TD))
1148 return ReplaceInstUsesWith(I, V);
1149
1150 if (Instruction *common = commonIRemTransforms(I))
1151 return common;
1152
1153 // (zext A) urem (zext B) --> zext (A urem B)
1154 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
1155 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
1156 return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
1157 I.getType());
1158
1159 // X urem Y -> X and Y-1, where Y is a power of 2,
1160 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) {
1161 Constant *N1 = Constant::getAllOnesValue(I.getType());
1162 Value *Add = Builder->CreateAdd(Op1, N1);
1163 return BinaryOperator::CreateAnd(Op0, Add);
1164 }
1165
1166 // 1 urem X -> zext(X != 1)
1167 if (match(Op0, m_One())) {
1168 Value *Cmp = Builder->CreateICmpNE(Op1, Op0);
1169 Value *Ext = Builder->CreateZExt(Cmp, I.getType());
1170 return ReplaceInstUsesWith(I, Ext);
1171 }
1172
1173 return 0;
1174 }
1175
visitSRem(BinaryOperator & I)1176 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1177 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1178
1179 if (Value *V = SimplifySRemInst(Op0, Op1, TD))
1180 return ReplaceInstUsesWith(I, V);
1181
1182 // Handle the integer rem common cases
1183 if (Instruction *Common = commonIRemTransforms(I))
1184 return Common;
1185
1186 if (Value *RHSNeg = dyn_castNegVal(Op1))
1187 if (!isa<Constant>(RHSNeg) ||
1188 (isa<ConstantInt>(RHSNeg) &&
1189 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
1190 // X % -Y -> X % Y
1191 Worklist.AddValue(I.getOperand(1));
1192 I.setOperand(1, RHSNeg);
1193 return &I;
1194 }
1195
1196 // If the sign bits of both operands are zero (i.e. we can prove they are
1197 // unsigned inputs), turn this into a urem.
1198 if (I.getType()->isIntegerTy()) {
1199 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
1200 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
1201 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1202 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1203 }
1204 }
1205
1206 // If it's a constant vector, flip any negative values positive.
1207 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1208 Constant *C = cast<Constant>(Op1);
1209 unsigned VWidth = C->getType()->getVectorNumElements();
1210
1211 bool hasNegative = false;
1212 bool hasMissing = false;
1213 for (unsigned i = 0; i != VWidth; ++i) {
1214 Constant *Elt = C->getAggregateElement(i);
1215 if (Elt == 0) {
1216 hasMissing = true;
1217 break;
1218 }
1219
1220 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1221 if (RHS->isNegative())
1222 hasNegative = true;
1223 }
1224
1225 if (hasNegative && !hasMissing) {
1226 SmallVector<Constant *, 16> Elts(VWidth);
1227 for (unsigned i = 0; i != VWidth; ++i) {
1228 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
1229 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1230 if (RHS->isNegative())
1231 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1232 }
1233 }
1234
1235 Constant *NewRHSV = ConstantVector::get(Elts);
1236 if (NewRHSV != C) { // Don't loop on -MININT
1237 Worklist.AddValue(I.getOperand(1));
1238 I.setOperand(1, NewRHSV);
1239 return &I;
1240 }
1241 }
1242 }
1243
1244 return 0;
1245 }
1246
visitFRem(BinaryOperator & I)1247 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1248 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1249
1250 if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
1251 return ReplaceInstUsesWith(I, V);
1252
1253 // Handle cases involving: rem X, (select Cond, Y, Z)
1254 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1255 return &I;
1256
1257 return 0;
1258 }
1259