1 //===- OptimalEdgeProfiling.cpp - Insert counters for opt. edge profiling -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass instruments the specified program with counters for edge profiling.
11 // Edge profiling can give a reasonable approximation of the hot paths through a
12 // program, and is used for a wide variety of program transformations.
13 //
14 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "insert-optimal-edge-profiling"
16 #include "llvm/Transforms/Instrumentation.h"
17 #include "MaximumSpanningTree.h"
18 #include "ProfilingUtils.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/Passes.h"
22 #include "llvm/Analysis/ProfileInfo.h"
23 #include "llvm/Analysis/ProfileInfoLoader.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 using namespace llvm;
31
32 STATISTIC(NumEdgesInserted, "The # of edges inserted.");
33
34 namespace {
35 class OptimalEdgeProfiler : public ModulePass {
36 bool runOnModule(Module &M);
37 public:
38 static char ID; // Pass identification, replacement for typeid
OptimalEdgeProfiler()39 OptimalEdgeProfiler() : ModulePass(ID) {
40 initializeOptimalEdgeProfilerPass(*PassRegistry::getPassRegistry());
41 }
42
getAnalysisUsage(AnalysisUsage & AU) const43 void getAnalysisUsage(AnalysisUsage &AU) const {
44 AU.addRequiredID(ProfileEstimatorPassID);
45 AU.addRequired<ProfileInfo>();
46 }
47
getPassName() const48 virtual const char *getPassName() const {
49 return "Optimal Edge Profiler";
50 }
51 };
52 }
53
54 char OptimalEdgeProfiler::ID = 0;
55 INITIALIZE_PASS_BEGIN(OptimalEdgeProfiler, "insert-optimal-edge-profiling",
56 "Insert optimal instrumentation for edge profiling",
57 false, false)
INITIALIZE_PASS_DEPENDENCY(ProfileEstimatorPass)58 INITIALIZE_PASS_DEPENDENCY(ProfileEstimatorPass)
59 INITIALIZE_AG_DEPENDENCY(ProfileInfo)
60 INITIALIZE_PASS_END(OptimalEdgeProfiler, "insert-optimal-edge-profiling",
61 "Insert optimal instrumentation for edge profiling",
62 false, false)
63
64 ModulePass *llvm::createOptimalEdgeProfilerPass() {
65 return new OptimalEdgeProfiler();
66 }
67
printEdgeCounter(ProfileInfo::Edge e,BasicBlock * b,unsigned i)68 inline static void printEdgeCounter(ProfileInfo::Edge e,
69 BasicBlock* b,
70 unsigned i) {
71 DEBUG(dbgs() << "--Edge Counter for " << (e) << " in " \
72 << ((b)?(b)->getName():"0") << " (# " << (i) << ")\n");
73 }
74
runOnModule(Module & M)75 bool OptimalEdgeProfiler::runOnModule(Module &M) {
76 Function *Main = M.getFunction("main");
77 if (Main == 0) {
78 errs() << "WARNING: cannot insert edge profiling into a module"
79 << " with no main function!\n";
80 return false; // No main, no instrumentation!
81 }
82
83 // NumEdges counts all the edges that may be instrumented. Later on its
84 // decided which edges to actually instrument, to achieve optimal profiling.
85 // For the entry block a virtual edge (0,entry) is reserved, for each block
86 // with no successors an edge (BB,0) is reserved. These edges are necessary
87 // to calculate a truly optimal maximum spanning tree and thus an optimal
88 // instrumentation.
89 unsigned NumEdges = 0;
90
91 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
92 if (F->isDeclaration()) continue;
93 // Reserve space for (0,entry) edge.
94 ++NumEdges;
95 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
96 // Keep track of which blocks need to be instrumented. We don't want to
97 // instrument blocks that are added as the result of breaking critical
98 // edges!
99 if (BB->getTerminator()->getNumSuccessors() == 0) {
100 // Reserve space for (BB,0) edge.
101 ++NumEdges;
102 } else {
103 NumEdges += BB->getTerminator()->getNumSuccessors();
104 }
105 }
106 }
107
108 // In the profiling output a counter for each edge is reserved, but only few
109 // are used. This is done to be able to read back in the profile without
110 // calulating the maximum spanning tree again, instead each edge counter that
111 // is not used is initialised with -1 to signal that this edge counter has to
112 // be calculated from other edge counters on reading the profile info back
113 // in.
114
115 Type *Int32 = Type::getInt32Ty(M.getContext());
116 ArrayType *ATy = ArrayType::get(Int32, NumEdges);
117 GlobalVariable *Counters =
118 new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
119 Constant::getNullValue(ATy), "OptEdgeProfCounters");
120 NumEdgesInserted = 0;
121
122 std::vector<Constant*> Initializer(NumEdges);
123 Constant *Zero = ConstantInt::get(Int32, 0);
124 Constant *Uncounted = ConstantInt::get(Int32, ProfileInfoLoader::Uncounted);
125
126 // Instrument all of the edges not in MST...
127 unsigned i = 0;
128 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
129 if (F->isDeclaration()) continue;
130 DEBUG(dbgs() << "Working on " << F->getName() << "\n");
131
132 // Calculate a Maximum Spanning Tree with the edge weights determined by
133 // ProfileEstimator. ProfileEstimator also assign weights to the virtual
134 // edges (0,entry) and (BB,0) (for blocks with no successors) and this
135 // edges also participate in the maximum spanning tree calculation.
136 // The third parameter of MaximumSpanningTree() has the effect that not the
137 // actual MST is returned but the edges _not_ in the MST.
138
139 ProfileInfo::EdgeWeights ECs =
140 getAnalysis<ProfileInfo>(*F).getEdgeWeights(F);
141 std::vector<ProfileInfo::EdgeWeight> EdgeVector(ECs.begin(), ECs.end());
142 MaximumSpanningTree<BasicBlock> MST(EdgeVector);
143 std::stable_sort(MST.begin(), MST.end());
144
145 // Check if (0,entry) not in the MST. If not, instrument edge
146 // (IncrementCounterInBlock()) and set the counter initially to zero, if
147 // the edge is in the MST the counter is initialised to -1.
148
149 BasicBlock *entry = &(F->getEntryBlock());
150 ProfileInfo::Edge edge = ProfileInfo::getEdge(0, entry);
151 if (!std::binary_search(MST.begin(), MST.end(), edge)) {
152 printEdgeCounter(edge, entry, i);
153 IncrementCounterInBlock(entry, i, Counters); ++NumEdgesInserted;
154 Initializer[i++] = (Zero);
155 } else{
156 Initializer[i++] = (Uncounted);
157 }
158
159 // InsertedBlocks contains all blocks that were inserted for splitting an
160 // edge, this blocks do not have to be instrumented.
161 DenseSet<BasicBlock*> InsertedBlocks;
162 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
163 // Check if block was not inserted and thus does not have to be
164 // instrumented.
165 if (InsertedBlocks.count(BB)) continue;
166
167 // Okay, we have to add a counter of each outgoing edge not in MST. If
168 // the outgoing edge is not critical don't split it, just insert the
169 // counter in the source or destination of the edge. Also, if the block
170 // has no successors, the virtual edge (BB,0) is processed.
171 TerminatorInst *TI = BB->getTerminator();
172 if (TI->getNumSuccessors() == 0) {
173 ProfileInfo::Edge edge = ProfileInfo::getEdge(BB, 0);
174 if (!std::binary_search(MST.begin(), MST.end(), edge)) {
175 printEdgeCounter(edge, BB, i);
176 IncrementCounterInBlock(BB, i, Counters); ++NumEdgesInserted;
177 Initializer[i++] = (Zero);
178 } else{
179 Initializer[i++] = (Uncounted);
180 }
181 }
182 for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) {
183 BasicBlock *Succ = TI->getSuccessor(s);
184 ProfileInfo::Edge edge = ProfileInfo::getEdge(BB,Succ);
185 if (!std::binary_search(MST.begin(), MST.end(), edge)) {
186
187 // If the edge is critical, split it.
188 bool wasInserted = SplitCriticalEdge(TI, s, this);
189 Succ = TI->getSuccessor(s);
190 if (wasInserted)
191 InsertedBlocks.insert(Succ);
192
193 // Okay, we are guaranteed that the edge is no longer critical. If
194 // we only have a single successor, insert the counter in this block,
195 // otherwise insert it in the successor block.
196 if (TI->getNumSuccessors() == 1) {
197 // Insert counter at the start of the block
198 printEdgeCounter(edge, BB, i);
199 IncrementCounterInBlock(BB, i, Counters); ++NumEdgesInserted;
200 } else {
201 // Insert counter at the start of the block
202 printEdgeCounter(edge, Succ, i);
203 IncrementCounterInBlock(Succ, i, Counters); ++NumEdgesInserted;
204 }
205 Initializer[i++] = (Zero);
206 } else {
207 Initializer[i++] = (Uncounted);
208 }
209 }
210 }
211 }
212
213 // Check if the number of edges counted at first was the number of edges we
214 // considered for instrumentation.
215 assert(i == NumEdges && "the number of edges in counting array is wrong");
216
217 // Assign the now completely defined initialiser to the array.
218 Constant *init = ConstantArray::get(ATy, Initializer);
219 Counters->setInitializer(init);
220
221 // Add the initialization call to main.
222 InsertProfilingInitCall(Main, "llvm_start_opt_edge_profiling", Counters);
223 return true;
224 }
225
226