1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global value numbering to eliminate fully redundant
11 // instructions. It also performs simple dead load elimination.
12 //
13 // Note that this pass does the value numbering itself; it does not use the
14 // ValueNumbering analysis passes.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "gvn"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/Hashing.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/CFG.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/Dominators.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
33 #include "llvm/Analysis/PHITransAddr.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Assembly/Writer.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/Support/Allocator.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/PatternMatch.h"
46 #include "llvm/Target/TargetLibraryInfo.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include "llvm/Transforms/Utils/SSAUpdater.h"
49 #include <vector>
50 using namespace llvm;
51 using namespace PatternMatch;
52
53 STATISTIC(NumGVNInstr, "Number of instructions deleted");
54 STATISTIC(NumGVNLoad, "Number of loads deleted");
55 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
56 STATISTIC(NumGVNBlocks, "Number of blocks merged");
57 STATISTIC(NumGVNSimpl, "Number of instructions simplified");
58 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
59 STATISTIC(NumPRELoad, "Number of loads PRE'd");
60
61 static cl::opt<bool> EnablePRE("enable-pre",
62 cl::init(true), cl::Hidden);
63 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
64
65 // Maximum allowed recursion depth.
66 static cl::opt<uint32_t>
67 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
68 cl::desc("Max recurse depth (default = 1000)"));
69
70 //===----------------------------------------------------------------------===//
71 // ValueTable Class
72 //===----------------------------------------------------------------------===//
73
74 /// This class holds the mapping between values and value numbers. It is used
75 /// as an efficient mechanism to determine the expression-wise equivalence of
76 /// two values.
77 namespace {
78 struct Expression {
79 uint32_t opcode;
80 Type *type;
81 SmallVector<uint32_t, 4> varargs;
82
Expression__anon1a4f572a0111::Expression83 Expression(uint32_t o = ~2U) : opcode(o) { }
84
operator ==__anon1a4f572a0111::Expression85 bool operator==(const Expression &other) const {
86 if (opcode != other.opcode)
87 return false;
88 if (opcode == ~0U || opcode == ~1U)
89 return true;
90 if (type != other.type)
91 return false;
92 if (varargs != other.varargs)
93 return false;
94 return true;
95 }
96
hash_value(const Expression & Value)97 friend hash_code hash_value(const Expression &Value) {
98 return hash_combine(Value.opcode, Value.type,
99 hash_combine_range(Value.varargs.begin(),
100 Value.varargs.end()));
101 }
102 };
103
104 class ValueTable {
105 DenseMap<Value*, uint32_t> valueNumbering;
106 DenseMap<Expression, uint32_t> expressionNumbering;
107 AliasAnalysis *AA;
108 MemoryDependenceAnalysis *MD;
109 DominatorTree *DT;
110
111 uint32_t nextValueNumber;
112
113 Expression create_expression(Instruction* I);
114 Expression create_cmp_expression(unsigned Opcode,
115 CmpInst::Predicate Predicate,
116 Value *LHS, Value *RHS);
117 Expression create_extractvalue_expression(ExtractValueInst* EI);
118 uint32_t lookup_or_add_call(CallInst* C);
119 public:
ValueTable()120 ValueTable() : nextValueNumber(1) { }
121 uint32_t lookup_or_add(Value *V);
122 uint32_t lookup(Value *V) const;
123 uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
124 Value *LHS, Value *RHS);
125 void add(Value *V, uint32_t num);
126 void clear();
127 void erase(Value *v);
setAliasAnalysis(AliasAnalysis * A)128 void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
getAliasAnalysis() const129 AliasAnalysis *getAliasAnalysis() const { return AA; }
setMemDep(MemoryDependenceAnalysis * M)130 void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
setDomTree(DominatorTree * D)131 void setDomTree(DominatorTree* D) { DT = D; }
getNextUnusedValueNumber()132 uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
133 void verifyRemoved(const Value *) const;
134 };
135 }
136
137 namespace llvm {
138 template <> struct DenseMapInfo<Expression> {
getEmptyKeyllvm::DenseMapInfo139 static inline Expression getEmptyKey() {
140 return ~0U;
141 }
142
getTombstoneKeyllvm::DenseMapInfo143 static inline Expression getTombstoneKey() {
144 return ~1U;
145 }
146
getHashValuellvm::DenseMapInfo147 static unsigned getHashValue(const Expression e) {
148 using llvm::hash_value;
149 return static_cast<unsigned>(hash_value(e));
150 }
isEqualllvm::DenseMapInfo151 static bool isEqual(const Expression &LHS, const Expression &RHS) {
152 return LHS == RHS;
153 }
154 };
155
156 }
157
158 //===----------------------------------------------------------------------===//
159 // ValueTable Internal Functions
160 //===----------------------------------------------------------------------===//
161
create_expression(Instruction * I)162 Expression ValueTable::create_expression(Instruction *I) {
163 Expression e;
164 e.type = I->getType();
165 e.opcode = I->getOpcode();
166 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
167 OI != OE; ++OI)
168 e.varargs.push_back(lookup_or_add(*OI));
169 if (I->isCommutative()) {
170 // Ensure that commutative instructions that only differ by a permutation
171 // of their operands get the same value number by sorting the operand value
172 // numbers. Since all commutative instructions have two operands it is more
173 // efficient to sort by hand rather than using, say, std::sort.
174 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
175 if (e.varargs[0] > e.varargs[1])
176 std::swap(e.varargs[0], e.varargs[1]);
177 }
178
179 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
180 // Sort the operand value numbers so x<y and y>x get the same value number.
181 CmpInst::Predicate Predicate = C->getPredicate();
182 if (e.varargs[0] > e.varargs[1]) {
183 std::swap(e.varargs[0], e.varargs[1]);
184 Predicate = CmpInst::getSwappedPredicate(Predicate);
185 }
186 e.opcode = (C->getOpcode() << 8) | Predicate;
187 } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
188 for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
189 II != IE; ++II)
190 e.varargs.push_back(*II);
191 }
192
193 return e;
194 }
195
create_cmp_expression(unsigned Opcode,CmpInst::Predicate Predicate,Value * LHS,Value * RHS)196 Expression ValueTable::create_cmp_expression(unsigned Opcode,
197 CmpInst::Predicate Predicate,
198 Value *LHS, Value *RHS) {
199 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
200 "Not a comparison!");
201 Expression e;
202 e.type = CmpInst::makeCmpResultType(LHS->getType());
203 e.varargs.push_back(lookup_or_add(LHS));
204 e.varargs.push_back(lookup_or_add(RHS));
205
206 // Sort the operand value numbers so x<y and y>x get the same value number.
207 if (e.varargs[0] > e.varargs[1]) {
208 std::swap(e.varargs[0], e.varargs[1]);
209 Predicate = CmpInst::getSwappedPredicate(Predicate);
210 }
211 e.opcode = (Opcode << 8) | Predicate;
212 return e;
213 }
214
create_extractvalue_expression(ExtractValueInst * EI)215 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
216 assert(EI != 0 && "Not an ExtractValueInst?");
217 Expression e;
218 e.type = EI->getType();
219 e.opcode = 0;
220
221 IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
222 if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
223 // EI might be an extract from one of our recognised intrinsics. If it
224 // is we'll synthesize a semantically equivalent expression instead on
225 // an extract value expression.
226 switch (I->getIntrinsicID()) {
227 case Intrinsic::sadd_with_overflow:
228 case Intrinsic::uadd_with_overflow:
229 e.opcode = Instruction::Add;
230 break;
231 case Intrinsic::ssub_with_overflow:
232 case Intrinsic::usub_with_overflow:
233 e.opcode = Instruction::Sub;
234 break;
235 case Intrinsic::smul_with_overflow:
236 case Intrinsic::umul_with_overflow:
237 e.opcode = Instruction::Mul;
238 break;
239 default:
240 break;
241 }
242
243 if (e.opcode != 0) {
244 // Intrinsic recognized. Grab its args to finish building the expression.
245 assert(I->getNumArgOperands() == 2 &&
246 "Expect two args for recognised intrinsics.");
247 e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
248 e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
249 return e;
250 }
251 }
252
253 // Not a recognised intrinsic. Fall back to producing an extract value
254 // expression.
255 e.opcode = EI->getOpcode();
256 for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
257 OI != OE; ++OI)
258 e.varargs.push_back(lookup_or_add(*OI));
259
260 for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
261 II != IE; ++II)
262 e.varargs.push_back(*II);
263
264 return e;
265 }
266
267 //===----------------------------------------------------------------------===//
268 // ValueTable External Functions
269 //===----------------------------------------------------------------------===//
270
271 /// add - Insert a value into the table with a specified value number.
add(Value * V,uint32_t num)272 void ValueTable::add(Value *V, uint32_t num) {
273 valueNumbering.insert(std::make_pair(V, num));
274 }
275
lookup_or_add_call(CallInst * C)276 uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
277 if (AA->doesNotAccessMemory(C)) {
278 Expression exp = create_expression(C);
279 uint32_t &e = expressionNumbering[exp];
280 if (!e) e = nextValueNumber++;
281 valueNumbering[C] = e;
282 return e;
283 } else if (AA->onlyReadsMemory(C)) {
284 Expression exp = create_expression(C);
285 uint32_t &e = expressionNumbering[exp];
286 if (!e) {
287 e = nextValueNumber++;
288 valueNumbering[C] = e;
289 return e;
290 }
291 if (!MD) {
292 e = nextValueNumber++;
293 valueNumbering[C] = e;
294 return e;
295 }
296
297 MemDepResult local_dep = MD->getDependency(C);
298
299 if (!local_dep.isDef() && !local_dep.isNonLocal()) {
300 valueNumbering[C] = nextValueNumber;
301 return nextValueNumber++;
302 }
303
304 if (local_dep.isDef()) {
305 CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
306
307 if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
308 valueNumbering[C] = nextValueNumber;
309 return nextValueNumber++;
310 }
311
312 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
313 uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
314 uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
315 if (c_vn != cd_vn) {
316 valueNumbering[C] = nextValueNumber;
317 return nextValueNumber++;
318 }
319 }
320
321 uint32_t v = lookup_or_add(local_cdep);
322 valueNumbering[C] = v;
323 return v;
324 }
325
326 // Non-local case.
327 const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
328 MD->getNonLocalCallDependency(CallSite(C));
329 // FIXME: Move the checking logic to MemDep!
330 CallInst* cdep = 0;
331
332 // Check to see if we have a single dominating call instruction that is
333 // identical to C.
334 for (unsigned i = 0, e = deps.size(); i != e; ++i) {
335 const NonLocalDepEntry *I = &deps[i];
336 if (I->getResult().isNonLocal())
337 continue;
338
339 // We don't handle non-definitions. If we already have a call, reject
340 // instruction dependencies.
341 if (!I->getResult().isDef() || cdep != 0) {
342 cdep = 0;
343 break;
344 }
345
346 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
347 // FIXME: All duplicated with non-local case.
348 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
349 cdep = NonLocalDepCall;
350 continue;
351 }
352
353 cdep = 0;
354 break;
355 }
356
357 if (!cdep) {
358 valueNumbering[C] = nextValueNumber;
359 return nextValueNumber++;
360 }
361
362 if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
363 valueNumbering[C] = nextValueNumber;
364 return nextValueNumber++;
365 }
366 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
367 uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
368 uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
369 if (c_vn != cd_vn) {
370 valueNumbering[C] = nextValueNumber;
371 return nextValueNumber++;
372 }
373 }
374
375 uint32_t v = lookup_or_add(cdep);
376 valueNumbering[C] = v;
377 return v;
378
379 } else {
380 valueNumbering[C] = nextValueNumber;
381 return nextValueNumber++;
382 }
383 }
384
385 /// lookup_or_add - Returns the value number for the specified value, assigning
386 /// it a new number if it did not have one before.
lookup_or_add(Value * V)387 uint32_t ValueTable::lookup_or_add(Value *V) {
388 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
389 if (VI != valueNumbering.end())
390 return VI->second;
391
392 if (!isa<Instruction>(V)) {
393 valueNumbering[V] = nextValueNumber;
394 return nextValueNumber++;
395 }
396
397 Instruction* I = cast<Instruction>(V);
398 Expression exp;
399 switch (I->getOpcode()) {
400 case Instruction::Call:
401 return lookup_or_add_call(cast<CallInst>(I));
402 case Instruction::Add:
403 case Instruction::FAdd:
404 case Instruction::Sub:
405 case Instruction::FSub:
406 case Instruction::Mul:
407 case Instruction::FMul:
408 case Instruction::UDiv:
409 case Instruction::SDiv:
410 case Instruction::FDiv:
411 case Instruction::URem:
412 case Instruction::SRem:
413 case Instruction::FRem:
414 case Instruction::Shl:
415 case Instruction::LShr:
416 case Instruction::AShr:
417 case Instruction::And:
418 case Instruction::Or:
419 case Instruction::Xor:
420 case Instruction::ICmp:
421 case Instruction::FCmp:
422 case Instruction::Trunc:
423 case Instruction::ZExt:
424 case Instruction::SExt:
425 case Instruction::FPToUI:
426 case Instruction::FPToSI:
427 case Instruction::UIToFP:
428 case Instruction::SIToFP:
429 case Instruction::FPTrunc:
430 case Instruction::FPExt:
431 case Instruction::PtrToInt:
432 case Instruction::IntToPtr:
433 case Instruction::BitCast:
434 case Instruction::Select:
435 case Instruction::ExtractElement:
436 case Instruction::InsertElement:
437 case Instruction::ShuffleVector:
438 case Instruction::InsertValue:
439 case Instruction::GetElementPtr:
440 exp = create_expression(I);
441 break;
442 case Instruction::ExtractValue:
443 exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
444 break;
445 default:
446 valueNumbering[V] = nextValueNumber;
447 return nextValueNumber++;
448 }
449
450 uint32_t& e = expressionNumbering[exp];
451 if (!e) e = nextValueNumber++;
452 valueNumbering[V] = e;
453 return e;
454 }
455
456 /// lookup - Returns the value number of the specified value. Fails if
457 /// the value has not yet been numbered.
lookup(Value * V) const458 uint32_t ValueTable::lookup(Value *V) const {
459 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
460 assert(VI != valueNumbering.end() && "Value not numbered?");
461 return VI->second;
462 }
463
464 /// lookup_or_add_cmp - Returns the value number of the given comparison,
465 /// assigning it a new number if it did not have one before. Useful when
466 /// we deduced the result of a comparison, but don't immediately have an
467 /// instruction realizing that comparison to hand.
lookup_or_add_cmp(unsigned Opcode,CmpInst::Predicate Predicate,Value * LHS,Value * RHS)468 uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
469 CmpInst::Predicate Predicate,
470 Value *LHS, Value *RHS) {
471 Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
472 uint32_t& e = expressionNumbering[exp];
473 if (!e) e = nextValueNumber++;
474 return e;
475 }
476
477 /// clear - Remove all entries from the ValueTable.
clear()478 void ValueTable::clear() {
479 valueNumbering.clear();
480 expressionNumbering.clear();
481 nextValueNumber = 1;
482 }
483
484 /// erase - Remove a value from the value numbering.
erase(Value * V)485 void ValueTable::erase(Value *V) {
486 valueNumbering.erase(V);
487 }
488
489 /// verifyRemoved - Verify that the value is removed from all internal data
490 /// structures.
verifyRemoved(const Value * V) const491 void ValueTable::verifyRemoved(const Value *V) const {
492 for (DenseMap<Value*, uint32_t>::const_iterator
493 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
494 assert(I->first != V && "Inst still occurs in value numbering map!");
495 }
496 }
497
498 //===----------------------------------------------------------------------===//
499 // GVN Pass
500 //===----------------------------------------------------------------------===//
501
502 namespace {
503 class GVN;
504 struct AvailableValueInBlock {
505 /// BB - The basic block in question.
506 BasicBlock *BB;
507 enum ValType {
508 SimpleVal, // A simple offsetted value that is accessed.
509 LoadVal, // A value produced by a load.
510 MemIntrin // A memory intrinsic which is loaded from.
511 };
512
513 /// V - The value that is live out of the block.
514 PointerIntPair<Value *, 2, ValType> Val;
515
516 /// Offset - The byte offset in Val that is interesting for the load query.
517 unsigned Offset;
518
get__anon1a4f572a0211::AvailableValueInBlock519 static AvailableValueInBlock get(BasicBlock *BB, Value *V,
520 unsigned Offset = 0) {
521 AvailableValueInBlock Res;
522 Res.BB = BB;
523 Res.Val.setPointer(V);
524 Res.Val.setInt(SimpleVal);
525 Res.Offset = Offset;
526 return Res;
527 }
528
getMI__anon1a4f572a0211::AvailableValueInBlock529 static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
530 unsigned Offset = 0) {
531 AvailableValueInBlock Res;
532 Res.BB = BB;
533 Res.Val.setPointer(MI);
534 Res.Val.setInt(MemIntrin);
535 Res.Offset = Offset;
536 return Res;
537 }
538
getLoad__anon1a4f572a0211::AvailableValueInBlock539 static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
540 unsigned Offset = 0) {
541 AvailableValueInBlock Res;
542 Res.BB = BB;
543 Res.Val.setPointer(LI);
544 Res.Val.setInt(LoadVal);
545 Res.Offset = Offset;
546 return Res;
547 }
548
isSimpleValue__anon1a4f572a0211::AvailableValueInBlock549 bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
isCoercedLoadValue__anon1a4f572a0211::AvailableValueInBlock550 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
isMemIntrinValue__anon1a4f572a0211::AvailableValueInBlock551 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
552
getSimpleValue__anon1a4f572a0211::AvailableValueInBlock553 Value *getSimpleValue() const {
554 assert(isSimpleValue() && "Wrong accessor");
555 return Val.getPointer();
556 }
557
getCoercedLoadValue__anon1a4f572a0211::AvailableValueInBlock558 LoadInst *getCoercedLoadValue() const {
559 assert(isCoercedLoadValue() && "Wrong accessor");
560 return cast<LoadInst>(Val.getPointer());
561 }
562
getMemIntrinValue__anon1a4f572a0211::AvailableValueInBlock563 MemIntrinsic *getMemIntrinValue() const {
564 assert(isMemIntrinValue() && "Wrong accessor");
565 return cast<MemIntrinsic>(Val.getPointer());
566 }
567
568 /// MaterializeAdjustedValue - Emit code into this block to adjust the value
569 /// defined here to the specified type. This handles various coercion cases.
570 Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const;
571 };
572
573 class GVN : public FunctionPass {
574 bool NoLoads;
575 MemoryDependenceAnalysis *MD;
576 DominatorTree *DT;
577 const DataLayout *TD;
578 const TargetLibraryInfo *TLI;
579
580 ValueTable VN;
581
582 /// LeaderTable - A mapping from value numbers to lists of Value*'s that
583 /// have that value number. Use findLeader to query it.
584 struct LeaderTableEntry {
585 Value *Val;
586 const BasicBlock *BB;
587 LeaderTableEntry *Next;
588 };
589 DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
590 BumpPtrAllocator TableAllocator;
591
592 SmallVector<Instruction*, 8> InstrsToErase;
593
594 typedef SmallVector<NonLocalDepResult, 64> LoadDepVect;
595 typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect;
596 typedef SmallVector<BasicBlock*, 64> UnavailBlkVect;
597
598 public:
599 static char ID; // Pass identification, replacement for typeid
GVN(bool noloads=false)600 explicit GVN(bool noloads = false)
601 : FunctionPass(ID), NoLoads(noloads), MD(0) {
602 initializeGVNPass(*PassRegistry::getPassRegistry());
603 }
604
605 bool runOnFunction(Function &F);
606
607 /// markInstructionForDeletion - This removes the specified instruction from
608 /// our various maps and marks it for deletion.
markInstructionForDeletion(Instruction * I)609 void markInstructionForDeletion(Instruction *I) {
610 VN.erase(I);
611 InstrsToErase.push_back(I);
612 }
613
getDataLayout() const614 const DataLayout *getDataLayout() const { return TD; }
getDominatorTree() const615 DominatorTree &getDominatorTree() const { return *DT; }
getAliasAnalysis() const616 AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
getMemDep() const617 MemoryDependenceAnalysis &getMemDep() const { return *MD; }
618 private:
619 /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
620 /// its value number.
addToLeaderTable(uint32_t N,Value * V,const BasicBlock * BB)621 void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
622 LeaderTableEntry &Curr = LeaderTable[N];
623 if (!Curr.Val) {
624 Curr.Val = V;
625 Curr.BB = BB;
626 return;
627 }
628
629 LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
630 Node->Val = V;
631 Node->BB = BB;
632 Node->Next = Curr.Next;
633 Curr.Next = Node;
634 }
635
636 /// removeFromLeaderTable - Scan the list of values corresponding to a given
637 /// value number, and remove the given instruction if encountered.
removeFromLeaderTable(uint32_t N,Instruction * I,BasicBlock * BB)638 void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
639 LeaderTableEntry* Prev = 0;
640 LeaderTableEntry* Curr = &LeaderTable[N];
641
642 while (Curr->Val != I || Curr->BB != BB) {
643 Prev = Curr;
644 Curr = Curr->Next;
645 }
646
647 if (Prev) {
648 Prev->Next = Curr->Next;
649 } else {
650 if (!Curr->Next) {
651 Curr->Val = 0;
652 Curr->BB = 0;
653 } else {
654 LeaderTableEntry* Next = Curr->Next;
655 Curr->Val = Next->Val;
656 Curr->BB = Next->BB;
657 Curr->Next = Next->Next;
658 }
659 }
660 }
661
662 // List of critical edges to be split between iterations.
663 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
664
665 // This transformation requires dominator postdominator info
getAnalysisUsage(AnalysisUsage & AU) const666 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
667 AU.addRequired<DominatorTree>();
668 AU.addRequired<TargetLibraryInfo>();
669 if (!NoLoads)
670 AU.addRequired<MemoryDependenceAnalysis>();
671 AU.addRequired<AliasAnalysis>();
672
673 AU.addPreserved<DominatorTree>();
674 AU.addPreserved<AliasAnalysis>();
675 }
676
677
678 // Helper fuctions of redundant load elimination
679 bool processLoad(LoadInst *L);
680 bool processNonLocalLoad(LoadInst *L);
681 void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
682 AvailValInBlkVect &ValuesPerBlock,
683 UnavailBlkVect &UnavailableBlocks);
684 bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
685 UnavailBlkVect &UnavailableBlocks);
686
687 // Other helper routines
688 bool processInstruction(Instruction *I);
689 bool processBlock(BasicBlock *BB);
690 void dump(DenseMap<uint32_t, Value*> &d);
691 bool iterateOnFunction(Function &F);
692 bool performPRE(Function &F);
693 Value *findLeader(const BasicBlock *BB, uint32_t num);
694 void cleanupGlobalSets();
695 void verifyRemoved(const Instruction *I) const;
696 bool splitCriticalEdges();
697 BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ);
698 unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
699 const BasicBlockEdge &Root);
700 bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
701 };
702
703 char GVN::ID = 0;
704 }
705
706 // createGVNPass - The public interface to this file...
createGVNPass(bool NoLoads)707 FunctionPass *llvm::createGVNPass(bool NoLoads) {
708 return new GVN(NoLoads);
709 }
710
711 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)712 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
713 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
714 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
715 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
716 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
717
718 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
719 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
720 errs() << "{\n";
721 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
722 E = d.end(); I != E; ++I) {
723 errs() << I->first << "\n";
724 I->second->dump();
725 }
726 errs() << "}\n";
727 }
728 #endif
729
730 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
731 /// we're analyzing is fully available in the specified block. As we go, keep
732 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
733 /// map is actually a tri-state map with the following values:
734 /// 0) we know the block *is not* fully available.
735 /// 1) we know the block *is* fully available.
736 /// 2) we do not know whether the block is fully available or not, but we are
737 /// currently speculating that it will be.
738 /// 3) we are speculating for this block and have used that to speculate for
739 /// other blocks.
IsValueFullyAvailableInBlock(BasicBlock * BB,DenseMap<BasicBlock *,char> & FullyAvailableBlocks,uint32_t RecurseDepth)740 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
741 DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
742 uint32_t RecurseDepth) {
743 if (RecurseDepth > MaxRecurseDepth)
744 return false;
745
746 // Optimistically assume that the block is fully available and check to see
747 // if we already know about this block in one lookup.
748 std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
749 FullyAvailableBlocks.insert(std::make_pair(BB, 2));
750
751 // If the entry already existed for this block, return the precomputed value.
752 if (!IV.second) {
753 // If this is a speculative "available" value, mark it as being used for
754 // speculation of other blocks.
755 if (IV.first->second == 2)
756 IV.first->second = 3;
757 return IV.first->second != 0;
758 }
759
760 // Otherwise, see if it is fully available in all predecessors.
761 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
762
763 // If this block has no predecessors, it isn't live-in here.
764 if (PI == PE)
765 goto SpeculationFailure;
766
767 for (; PI != PE; ++PI)
768 // If the value isn't fully available in one of our predecessors, then it
769 // isn't fully available in this block either. Undo our previous
770 // optimistic assumption and bail out.
771 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
772 goto SpeculationFailure;
773
774 return true;
775
776 // SpeculationFailure - If we get here, we found out that this is not, after
777 // all, a fully-available block. We have a problem if we speculated on this and
778 // used the speculation to mark other blocks as available.
779 SpeculationFailure:
780 char &BBVal = FullyAvailableBlocks[BB];
781
782 // If we didn't speculate on this, just return with it set to false.
783 if (BBVal == 2) {
784 BBVal = 0;
785 return false;
786 }
787
788 // If we did speculate on this value, we could have blocks set to 1 that are
789 // incorrect. Walk the (transitive) successors of this block and mark them as
790 // 0 if set to one.
791 SmallVector<BasicBlock*, 32> BBWorklist;
792 BBWorklist.push_back(BB);
793
794 do {
795 BasicBlock *Entry = BBWorklist.pop_back_val();
796 // Note that this sets blocks to 0 (unavailable) if they happen to not
797 // already be in FullyAvailableBlocks. This is safe.
798 char &EntryVal = FullyAvailableBlocks[Entry];
799 if (EntryVal == 0) continue; // Already unavailable.
800
801 // Mark as unavailable.
802 EntryVal = 0;
803
804 for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
805 BBWorklist.push_back(*I);
806 } while (!BBWorklist.empty());
807
808 return false;
809 }
810
811
812 /// CanCoerceMustAliasedValueToLoad - Return true if
813 /// CoerceAvailableValueToLoadType will succeed.
CanCoerceMustAliasedValueToLoad(Value * StoredVal,Type * LoadTy,const DataLayout & TD)814 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
815 Type *LoadTy,
816 const DataLayout &TD) {
817 // If the loaded or stored value is an first class array or struct, don't try
818 // to transform them. We need to be able to bitcast to integer.
819 if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
820 StoredVal->getType()->isStructTy() ||
821 StoredVal->getType()->isArrayTy())
822 return false;
823
824 // The store has to be at least as big as the load.
825 if (TD.getTypeSizeInBits(StoredVal->getType()) <
826 TD.getTypeSizeInBits(LoadTy))
827 return false;
828
829 return true;
830 }
831
832 /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
833 /// then a load from a must-aliased pointer of a different type, try to coerce
834 /// the stored value. LoadedTy is the type of the load we want to replace and
835 /// InsertPt is the place to insert new instructions.
836 ///
837 /// If we can't do it, return null.
CoerceAvailableValueToLoadType(Value * StoredVal,Type * LoadedTy,Instruction * InsertPt,const DataLayout & TD)838 static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
839 Type *LoadedTy,
840 Instruction *InsertPt,
841 const DataLayout &TD) {
842 if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
843 return 0;
844
845 // If this is already the right type, just return it.
846 Type *StoredValTy = StoredVal->getType();
847
848 uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
849 uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
850
851 // If the store and reload are the same size, we can always reuse it.
852 if (StoreSize == LoadSize) {
853 // Pointer to Pointer -> use bitcast.
854 if (StoredValTy->getScalarType()->isPointerTy() &&
855 LoadedTy->getScalarType()->isPointerTy())
856 return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
857
858 // Convert source pointers to integers, which can be bitcast.
859 if (StoredValTy->getScalarType()->isPointerTy()) {
860 StoredValTy = TD.getIntPtrType(StoredValTy);
861 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
862 }
863
864 Type *TypeToCastTo = LoadedTy;
865 if (TypeToCastTo->getScalarType()->isPointerTy())
866 TypeToCastTo = TD.getIntPtrType(TypeToCastTo);
867
868 if (StoredValTy != TypeToCastTo)
869 StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
870
871 // Cast to pointer if the load needs a pointer type.
872 if (LoadedTy->getScalarType()->isPointerTy())
873 StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
874
875 return StoredVal;
876 }
877
878 // If the loaded value is smaller than the available value, then we can
879 // extract out a piece from it. If the available value is too small, then we
880 // can't do anything.
881 assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
882
883 // Convert source pointers to integers, which can be manipulated.
884 if (StoredValTy->getScalarType()->isPointerTy()) {
885 StoredValTy = TD.getIntPtrType(StoredValTy);
886 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
887 }
888
889 // Convert vectors and fp to integer, which can be manipulated.
890 if (!StoredValTy->isIntegerTy()) {
891 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
892 StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
893 }
894
895 // If this is a big-endian system, we need to shift the value down to the low
896 // bits so that a truncate will work.
897 if (TD.isBigEndian()) {
898 Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
899 StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
900 }
901
902 // Truncate the integer to the right size now.
903 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
904 StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
905
906 if (LoadedTy == NewIntTy)
907 return StoredVal;
908
909 // If the result is a pointer, inttoptr.
910 if (LoadedTy->getScalarType()->isPointerTy())
911 return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
912
913 // Otherwise, bitcast.
914 return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
915 }
916
917 /// AnalyzeLoadFromClobberingWrite - This function is called when we have a
918 /// memdep query of a load that ends up being a clobbering memory write (store,
919 /// memset, memcpy, memmove). This means that the write *may* provide bits used
920 /// by the load but we can't be sure because the pointers don't mustalias.
921 ///
922 /// Check this case to see if there is anything more we can do before we give
923 /// up. This returns -1 if we have to give up, or a byte number in the stored
924 /// value of the piece that feeds the load.
AnalyzeLoadFromClobberingWrite(Type * LoadTy,Value * LoadPtr,Value * WritePtr,uint64_t WriteSizeInBits,const DataLayout & TD)925 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
926 Value *WritePtr,
927 uint64_t WriteSizeInBits,
928 const DataLayout &TD) {
929 // If the loaded or stored value is a first class array or struct, don't try
930 // to transform them. We need to be able to bitcast to integer.
931 if (LoadTy->isStructTy() || LoadTy->isArrayTy())
932 return -1;
933
934 int64_t StoreOffset = 0, LoadOffset = 0;
935 Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&TD);
936 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &TD);
937 if (StoreBase != LoadBase)
938 return -1;
939
940 // If the load and store are to the exact same address, they should have been
941 // a must alias. AA must have gotten confused.
942 // FIXME: Study to see if/when this happens. One case is forwarding a memset
943 // to a load from the base of the memset.
944 #if 0
945 if (LoadOffset == StoreOffset) {
946 dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
947 << "Base = " << *StoreBase << "\n"
948 << "Store Ptr = " << *WritePtr << "\n"
949 << "Store Offs = " << StoreOffset << "\n"
950 << "Load Ptr = " << *LoadPtr << "\n";
951 abort();
952 }
953 #endif
954
955 // If the load and store don't overlap at all, the store doesn't provide
956 // anything to the load. In this case, they really don't alias at all, AA
957 // must have gotten confused.
958 uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
959
960 if ((WriteSizeInBits & 7) | (LoadSize & 7))
961 return -1;
962 uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes.
963 LoadSize >>= 3;
964
965
966 bool isAAFailure = false;
967 if (StoreOffset < LoadOffset)
968 isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
969 else
970 isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
971
972 if (isAAFailure) {
973 #if 0
974 dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
975 << "Base = " << *StoreBase << "\n"
976 << "Store Ptr = " << *WritePtr << "\n"
977 << "Store Offs = " << StoreOffset << "\n"
978 << "Load Ptr = " << *LoadPtr << "\n";
979 abort();
980 #endif
981 return -1;
982 }
983
984 // If the Load isn't completely contained within the stored bits, we don't
985 // have all the bits to feed it. We could do something crazy in the future
986 // (issue a smaller load then merge the bits in) but this seems unlikely to be
987 // valuable.
988 if (StoreOffset > LoadOffset ||
989 StoreOffset+StoreSize < LoadOffset+LoadSize)
990 return -1;
991
992 // Okay, we can do this transformation. Return the number of bytes into the
993 // store that the load is.
994 return LoadOffset-StoreOffset;
995 }
996
997 /// AnalyzeLoadFromClobberingStore - This function is called when we have a
998 /// memdep query of a load that ends up being a clobbering store.
AnalyzeLoadFromClobberingStore(Type * LoadTy,Value * LoadPtr,StoreInst * DepSI,const DataLayout & TD)999 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
1000 StoreInst *DepSI,
1001 const DataLayout &TD) {
1002 // Cannot handle reading from store of first-class aggregate yet.
1003 if (DepSI->getValueOperand()->getType()->isStructTy() ||
1004 DepSI->getValueOperand()->getType()->isArrayTy())
1005 return -1;
1006
1007 Value *StorePtr = DepSI->getPointerOperand();
1008 uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
1009 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1010 StorePtr, StoreSize, TD);
1011 }
1012
1013 /// AnalyzeLoadFromClobberingLoad - This function is called when we have a
1014 /// memdep query of a load that ends up being clobbered by another load. See if
1015 /// the other load can feed into the second load.
AnalyzeLoadFromClobberingLoad(Type * LoadTy,Value * LoadPtr,LoadInst * DepLI,const DataLayout & TD)1016 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
1017 LoadInst *DepLI, const DataLayout &TD){
1018 // Cannot handle reading from store of first-class aggregate yet.
1019 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
1020 return -1;
1021
1022 Value *DepPtr = DepLI->getPointerOperand();
1023 uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
1024 int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
1025 if (R != -1) return R;
1026
1027 // If we have a load/load clobber an DepLI can be widened to cover this load,
1028 // then we should widen it!
1029 int64_t LoadOffs = 0;
1030 const Value *LoadBase =
1031 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &TD);
1032 unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1033
1034 unsigned Size = MemoryDependenceAnalysis::
1035 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
1036 if (Size == 0) return -1;
1037
1038 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
1039 }
1040
1041
1042
AnalyzeLoadFromClobberingMemInst(Type * LoadTy,Value * LoadPtr,MemIntrinsic * MI,const DataLayout & TD)1043 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
1044 MemIntrinsic *MI,
1045 const DataLayout &TD) {
1046 // If the mem operation is a non-constant size, we can't handle it.
1047 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1048 if (SizeCst == 0) return -1;
1049 uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1050
1051 // If this is memset, we just need to see if the offset is valid in the size
1052 // of the memset..
1053 if (MI->getIntrinsicID() == Intrinsic::memset)
1054 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1055 MemSizeInBits, TD);
1056
1057 // If we have a memcpy/memmove, the only case we can handle is if this is a
1058 // copy from constant memory. In that case, we can read directly from the
1059 // constant memory.
1060 MemTransferInst *MTI = cast<MemTransferInst>(MI);
1061
1062 Constant *Src = dyn_cast<Constant>(MTI->getSource());
1063 if (Src == 0) return -1;
1064
1065 GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
1066 if (GV == 0 || !GV->isConstant()) return -1;
1067
1068 // See if the access is within the bounds of the transfer.
1069 int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1070 MI->getDest(), MemSizeInBits, TD);
1071 if (Offset == -1)
1072 return Offset;
1073
1074 // Otherwise, see if we can constant fold a load from the constant with the
1075 // offset applied as appropriate.
1076 Src = ConstantExpr::getBitCast(Src,
1077 llvm::Type::getInt8PtrTy(Src->getContext()));
1078 Constant *OffsetCst =
1079 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1080 Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1081 Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1082 if (ConstantFoldLoadFromConstPtr(Src, &TD))
1083 return Offset;
1084 return -1;
1085 }
1086
1087
1088 /// GetStoreValueForLoad - This function is called when we have a
1089 /// memdep query of a load that ends up being a clobbering store. This means
1090 /// that the store provides bits used by the load but we the pointers don't
1091 /// mustalias. Check this case to see if there is anything more we can do
1092 /// before we give up.
GetStoreValueForLoad(Value * SrcVal,unsigned Offset,Type * LoadTy,Instruction * InsertPt,const DataLayout & TD)1093 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1094 Type *LoadTy,
1095 Instruction *InsertPt, const DataLayout &TD){
1096 LLVMContext &Ctx = SrcVal->getType()->getContext();
1097
1098 uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1099 uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1100
1101 IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1102
1103 // Compute which bits of the stored value are being used by the load. Convert
1104 // to an integer type to start with.
1105 if (SrcVal->getType()->getScalarType()->isPointerTy())
1106 SrcVal = Builder.CreatePtrToInt(SrcVal,
1107 TD.getIntPtrType(SrcVal->getType()));
1108 if (!SrcVal->getType()->isIntegerTy())
1109 SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1110
1111 // Shift the bits to the least significant depending on endianness.
1112 unsigned ShiftAmt;
1113 if (TD.isLittleEndian())
1114 ShiftAmt = Offset*8;
1115 else
1116 ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1117
1118 if (ShiftAmt)
1119 SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1120
1121 if (LoadSize != StoreSize)
1122 SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1123
1124 return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1125 }
1126
1127 /// GetLoadValueForLoad - This function is called when we have a
1128 /// memdep query of a load that ends up being a clobbering load. This means
1129 /// that the load *may* provide bits used by the load but we can't be sure
1130 /// because the pointers don't mustalias. Check this case to see if there is
1131 /// anything more we can do before we give up.
GetLoadValueForLoad(LoadInst * SrcVal,unsigned Offset,Type * LoadTy,Instruction * InsertPt,GVN & gvn)1132 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1133 Type *LoadTy, Instruction *InsertPt,
1134 GVN &gvn) {
1135 const DataLayout &TD = *gvn.getDataLayout();
1136 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1137 // widen SrcVal out to a larger load.
1138 unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
1139 unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1140 if (Offset+LoadSize > SrcValSize) {
1141 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1142 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1143 // If we have a load/load clobber an DepLI can be widened to cover this
1144 // load, then we should widen it to the next power of 2 size big enough!
1145 unsigned NewLoadSize = Offset+LoadSize;
1146 if (!isPowerOf2_32(NewLoadSize))
1147 NewLoadSize = NextPowerOf2(NewLoadSize);
1148
1149 Value *PtrVal = SrcVal->getPointerOperand();
1150
1151 // Insert the new load after the old load. This ensures that subsequent
1152 // memdep queries will find the new load. We can't easily remove the old
1153 // load completely because it is already in the value numbering table.
1154 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1155 Type *DestPTy =
1156 IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1157 DestPTy = PointerType::get(DestPTy,
1158 cast<PointerType>(PtrVal->getType())->getAddressSpace());
1159 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1160 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1161 LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1162 NewLoad->takeName(SrcVal);
1163 NewLoad->setAlignment(SrcVal->getAlignment());
1164
1165 DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1166 DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1167
1168 // Replace uses of the original load with the wider load. On a big endian
1169 // system, we need to shift down to get the relevant bits.
1170 Value *RV = NewLoad;
1171 if (TD.isBigEndian())
1172 RV = Builder.CreateLShr(RV,
1173 NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1174 RV = Builder.CreateTrunc(RV, SrcVal->getType());
1175 SrcVal->replaceAllUsesWith(RV);
1176
1177 // We would like to use gvn.markInstructionForDeletion here, but we can't
1178 // because the load is already memoized into the leader map table that GVN
1179 // tracks. It is potentially possible to remove the load from the table,
1180 // but then there all of the operations based on it would need to be
1181 // rehashed. Just leave the dead load around.
1182 gvn.getMemDep().removeInstruction(SrcVal);
1183 SrcVal = NewLoad;
1184 }
1185
1186 return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1187 }
1188
1189
1190 /// GetMemInstValueForLoad - This function is called when we have a
1191 /// memdep query of a load that ends up being a clobbering mem intrinsic.
GetMemInstValueForLoad(MemIntrinsic * SrcInst,unsigned Offset,Type * LoadTy,Instruction * InsertPt,const DataLayout & TD)1192 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1193 Type *LoadTy, Instruction *InsertPt,
1194 const DataLayout &TD){
1195 LLVMContext &Ctx = LoadTy->getContext();
1196 uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1197
1198 IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1199
1200 // We know that this method is only called when the mem transfer fully
1201 // provides the bits for the load.
1202 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1203 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1204 // independently of what the offset is.
1205 Value *Val = MSI->getValue();
1206 if (LoadSize != 1)
1207 Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1208
1209 Value *OneElt = Val;
1210
1211 // Splat the value out to the right number of bits.
1212 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1213 // If we can double the number of bytes set, do it.
1214 if (NumBytesSet*2 <= LoadSize) {
1215 Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1216 Val = Builder.CreateOr(Val, ShVal);
1217 NumBytesSet <<= 1;
1218 continue;
1219 }
1220
1221 // Otherwise insert one byte at a time.
1222 Value *ShVal = Builder.CreateShl(Val, 1*8);
1223 Val = Builder.CreateOr(OneElt, ShVal);
1224 ++NumBytesSet;
1225 }
1226
1227 return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1228 }
1229
1230 // Otherwise, this is a memcpy/memmove from a constant global.
1231 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1232 Constant *Src = cast<Constant>(MTI->getSource());
1233
1234 // Otherwise, see if we can constant fold a load from the constant with the
1235 // offset applied as appropriate.
1236 Src = ConstantExpr::getBitCast(Src,
1237 llvm::Type::getInt8PtrTy(Src->getContext()));
1238 Constant *OffsetCst =
1239 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1240 Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1241 Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1242 return ConstantFoldLoadFromConstPtr(Src, &TD);
1243 }
1244
1245
1246 /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1247 /// construct SSA form, allowing us to eliminate LI. This returns the value
1248 /// that should be used at LI's definition site.
ConstructSSAForLoadSet(LoadInst * LI,SmallVectorImpl<AvailableValueInBlock> & ValuesPerBlock,GVN & gvn)1249 static Value *ConstructSSAForLoadSet(LoadInst *LI,
1250 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1251 GVN &gvn) {
1252 // Check for the fully redundant, dominating load case. In this case, we can
1253 // just use the dominating value directly.
1254 if (ValuesPerBlock.size() == 1 &&
1255 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1256 LI->getParent()))
1257 return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1258
1259 // Otherwise, we have to construct SSA form.
1260 SmallVector<PHINode*, 8> NewPHIs;
1261 SSAUpdater SSAUpdate(&NewPHIs);
1262 SSAUpdate.Initialize(LI->getType(), LI->getName());
1263
1264 Type *LoadTy = LI->getType();
1265
1266 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1267 const AvailableValueInBlock &AV = ValuesPerBlock[i];
1268 BasicBlock *BB = AV.BB;
1269
1270 if (SSAUpdate.HasValueForBlock(BB))
1271 continue;
1272
1273 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1274 }
1275
1276 // Perform PHI construction.
1277 Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1278
1279 // If new PHI nodes were created, notify alias analysis.
1280 if (V->getType()->getScalarType()->isPointerTy()) {
1281 AliasAnalysis *AA = gvn.getAliasAnalysis();
1282
1283 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1284 AA->copyValue(LI, NewPHIs[i]);
1285
1286 // Now that we've copied information to the new PHIs, scan through
1287 // them again and inform alias analysis that we've added potentially
1288 // escaping uses to any values that are operands to these PHIs.
1289 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1290 PHINode *P = NewPHIs[i];
1291 for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1292 unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1293 AA->addEscapingUse(P->getOperandUse(jj));
1294 }
1295 }
1296 }
1297
1298 return V;
1299 }
1300
MaterializeAdjustedValue(Type * LoadTy,GVN & gvn) const1301 Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1302 Value *Res;
1303 if (isSimpleValue()) {
1304 Res = getSimpleValue();
1305 if (Res->getType() != LoadTy) {
1306 const DataLayout *TD = gvn.getDataLayout();
1307 assert(TD && "Need target data to handle type mismatch case");
1308 Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1309 *TD);
1310
1311 DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
1312 << *getSimpleValue() << '\n'
1313 << *Res << '\n' << "\n\n\n");
1314 }
1315 } else if (isCoercedLoadValue()) {
1316 LoadInst *Load = getCoercedLoadValue();
1317 if (Load->getType() == LoadTy && Offset == 0) {
1318 Res = Load;
1319 } else {
1320 Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1321 gvn);
1322
1323 DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " "
1324 << *getCoercedLoadValue() << '\n'
1325 << *Res << '\n' << "\n\n\n");
1326 }
1327 } else {
1328 const DataLayout *TD = gvn.getDataLayout();
1329 assert(TD && "Need target data to handle type mismatch case");
1330 Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1331 LoadTy, BB->getTerminator(), *TD);
1332 DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1333 << " " << *getMemIntrinValue() << '\n'
1334 << *Res << '\n' << "\n\n\n");
1335 }
1336 return Res;
1337 }
1338
isLifetimeStart(const Instruction * Inst)1339 static bool isLifetimeStart(const Instruction *Inst) {
1340 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1341 return II->getIntrinsicID() == Intrinsic::lifetime_start;
1342 return false;
1343 }
1344
AnalyzeLoadAvailability(LoadInst * LI,LoadDepVect & Deps,AvailValInBlkVect & ValuesPerBlock,UnavailBlkVect & UnavailableBlocks)1345 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
1346 AvailValInBlkVect &ValuesPerBlock,
1347 UnavailBlkVect &UnavailableBlocks) {
1348
1349 // Filter out useless results (non-locals, etc). Keep track of the blocks
1350 // where we have a value available in repl, also keep track of whether we see
1351 // dependencies that produce an unknown value for the load (such as a call
1352 // that could potentially clobber the load).
1353 unsigned NumDeps = Deps.size();
1354 for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1355 BasicBlock *DepBB = Deps[i].getBB();
1356 MemDepResult DepInfo = Deps[i].getResult();
1357
1358 if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1359 UnavailableBlocks.push_back(DepBB);
1360 continue;
1361 }
1362
1363 if (DepInfo.isClobber()) {
1364 // The address being loaded in this non-local block may not be the same as
1365 // the pointer operand of the load if PHI translation occurs. Make sure
1366 // to consider the right address.
1367 Value *Address = Deps[i].getAddress();
1368
1369 // If the dependence is to a store that writes to a superset of the bits
1370 // read by the load, we can extract the bits we need for the load from the
1371 // stored value.
1372 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1373 if (TD && Address) {
1374 int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1375 DepSI, *TD);
1376 if (Offset != -1) {
1377 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1378 DepSI->getValueOperand(),
1379 Offset));
1380 continue;
1381 }
1382 }
1383 }
1384
1385 // Check to see if we have something like this:
1386 // load i32* P
1387 // load i8* (P+1)
1388 // if we have this, replace the later with an extraction from the former.
1389 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1390 // If this is a clobber and L is the first instruction in its block, then
1391 // we have the first instruction in the entry block.
1392 if (DepLI != LI && Address && TD) {
1393 int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1394 LI->getPointerOperand(),
1395 DepLI, *TD);
1396
1397 if (Offset != -1) {
1398 ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1399 Offset));
1400 continue;
1401 }
1402 }
1403 }
1404
1405 // If the clobbering value is a memset/memcpy/memmove, see if we can
1406 // forward a value on from it.
1407 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1408 if (TD && Address) {
1409 int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1410 DepMI, *TD);
1411 if (Offset != -1) {
1412 ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1413 Offset));
1414 continue;
1415 }
1416 }
1417 }
1418
1419 UnavailableBlocks.push_back(DepBB);
1420 continue;
1421 }
1422
1423 // DepInfo.isDef() here
1424
1425 Instruction *DepInst = DepInfo.getInst();
1426
1427 // Loading the allocation -> undef.
1428 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1429 // Loading immediately after lifetime begin -> undef.
1430 isLifetimeStart(DepInst)) {
1431 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1432 UndefValue::get(LI->getType())));
1433 continue;
1434 }
1435
1436 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1437 // Reject loads and stores that are to the same address but are of
1438 // different types if we have to.
1439 if (S->getValueOperand()->getType() != LI->getType()) {
1440 // If the stored value is larger or equal to the loaded value, we can
1441 // reuse it.
1442 if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1443 LI->getType(), *TD)) {
1444 UnavailableBlocks.push_back(DepBB);
1445 continue;
1446 }
1447 }
1448
1449 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1450 S->getValueOperand()));
1451 continue;
1452 }
1453
1454 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1455 // If the types mismatch and we can't handle it, reject reuse of the load.
1456 if (LD->getType() != LI->getType()) {
1457 // If the stored value is larger or equal to the loaded value, we can
1458 // reuse it.
1459 if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1460 UnavailableBlocks.push_back(DepBB);
1461 continue;
1462 }
1463 }
1464 ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1465 continue;
1466 }
1467
1468 UnavailableBlocks.push_back(DepBB);
1469 }
1470 }
1471
PerformLoadPRE(LoadInst * LI,AvailValInBlkVect & ValuesPerBlock,UnavailBlkVect & UnavailableBlocks)1472 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1473 UnavailBlkVect &UnavailableBlocks) {
1474 // Okay, we have *some* definitions of the value. This means that the value
1475 // is available in some of our (transitive) predecessors. Lets think about
1476 // doing PRE of this load. This will involve inserting a new load into the
1477 // predecessor when it's not available. We could do this in general, but
1478 // prefer to not increase code size. As such, we only do this when we know
1479 // that we only have to insert *one* load (which means we're basically moving
1480 // the load, not inserting a new one).
1481
1482 SmallPtrSet<BasicBlock *, 4> Blockers;
1483 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1484 Blockers.insert(UnavailableBlocks[i]);
1485
1486 // Let's find the first basic block with more than one predecessor. Walk
1487 // backwards through predecessors if needed.
1488 BasicBlock *LoadBB = LI->getParent();
1489 BasicBlock *TmpBB = LoadBB;
1490
1491 while (TmpBB->getSinglePredecessor()) {
1492 TmpBB = TmpBB->getSinglePredecessor();
1493 if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1494 return false;
1495 if (Blockers.count(TmpBB))
1496 return false;
1497
1498 // If any of these blocks has more than one successor (i.e. if the edge we
1499 // just traversed was critical), then there are other paths through this
1500 // block along which the load may not be anticipated. Hoisting the load
1501 // above this block would be adding the load to execution paths along
1502 // which it was not previously executed.
1503 if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1504 return false;
1505 }
1506
1507 assert(TmpBB);
1508 LoadBB = TmpBB;
1509
1510 // Check to see how many predecessors have the loaded value fully
1511 // available.
1512 DenseMap<BasicBlock*, Value*> PredLoads;
1513 DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1514 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1515 FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1516 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1517 FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1518
1519 SmallVector<BasicBlock *, 4> CriticalEdgePred;
1520 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1521 PI != E; ++PI) {
1522 BasicBlock *Pred = *PI;
1523 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1524 continue;
1525 }
1526 PredLoads[Pred] = 0;
1527
1528 if (Pred->getTerminator()->getNumSuccessors() != 1) {
1529 if (isa<IndirectBrInst>(Pred->getTerminator())) {
1530 DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1531 << Pred->getName() << "': " << *LI << '\n');
1532 return false;
1533 }
1534
1535 if (LoadBB->isLandingPad()) {
1536 DEBUG(dbgs()
1537 << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1538 << Pred->getName() << "': " << *LI << '\n');
1539 return false;
1540 }
1541
1542 CriticalEdgePred.push_back(Pred);
1543 }
1544 }
1545
1546 // Decide whether PRE is profitable for this load.
1547 unsigned NumUnavailablePreds = PredLoads.size();
1548 assert(NumUnavailablePreds != 0 &&
1549 "Fully available value should already be eliminated!");
1550
1551 // If this load is unavailable in multiple predecessors, reject it.
1552 // FIXME: If we could restructure the CFG, we could make a common pred with
1553 // all the preds that don't have an available LI and insert a new load into
1554 // that one block.
1555 if (NumUnavailablePreds != 1)
1556 return false;
1557
1558 // Split critical edges, and update the unavailable predecessors accordingly.
1559 for (SmallVectorImpl<BasicBlock *>::iterator I = CriticalEdgePred.begin(),
1560 E = CriticalEdgePred.end(); I != E; I++) {
1561 BasicBlock *OrigPred = *I;
1562 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1563 PredLoads.erase(OrigPred);
1564 PredLoads[NewPred] = 0;
1565 DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1566 << LoadBB->getName() << '\n');
1567 }
1568
1569 // Check if the load can safely be moved to all the unavailable predecessors.
1570 bool CanDoPRE = true;
1571 SmallVector<Instruction*, 8> NewInsts;
1572 for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1573 E = PredLoads.end(); I != E; ++I) {
1574 BasicBlock *UnavailablePred = I->first;
1575
1576 // Do PHI translation to get its value in the predecessor if necessary. The
1577 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1578
1579 // If all preds have a single successor, then we know it is safe to insert
1580 // the load on the pred (?!?), so we can insert code to materialize the
1581 // pointer if it is not available.
1582 PHITransAddr Address(LI->getPointerOperand(), TD);
1583 Value *LoadPtr = 0;
1584 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1585 *DT, NewInsts);
1586
1587 // If we couldn't find or insert a computation of this phi translated value,
1588 // we fail PRE.
1589 if (LoadPtr == 0) {
1590 DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1591 << *LI->getPointerOperand() << "\n");
1592 CanDoPRE = false;
1593 break;
1594 }
1595
1596 I->second = LoadPtr;
1597 }
1598
1599 if (!CanDoPRE) {
1600 while (!NewInsts.empty()) {
1601 Instruction *I = NewInsts.pop_back_val();
1602 if (MD) MD->removeInstruction(I);
1603 I->eraseFromParent();
1604 }
1605 // HINT:Don't revert the edge-splitting as following transformation may
1606 // also need to split these critial edges.
1607 return !CriticalEdgePred.empty();
1608 }
1609
1610 // Okay, we can eliminate this load by inserting a reload in the predecessor
1611 // and using PHI construction to get the value in the other predecessors, do
1612 // it.
1613 DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1614 DEBUG(if (!NewInsts.empty())
1615 dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1616 << *NewInsts.back() << '\n');
1617
1618 // Assign value numbers to the new instructions.
1619 for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1620 // FIXME: We really _ought_ to insert these value numbers into their
1621 // parent's availability map. However, in doing so, we risk getting into
1622 // ordering issues. If a block hasn't been processed yet, we would be
1623 // marking a value as AVAIL-IN, which isn't what we intend.
1624 VN.lookup_or_add(NewInsts[i]);
1625 }
1626
1627 for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1628 E = PredLoads.end(); I != E; ++I) {
1629 BasicBlock *UnavailablePred = I->first;
1630 Value *LoadPtr = I->second;
1631
1632 Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1633 LI->getAlignment(),
1634 UnavailablePred->getTerminator());
1635
1636 // Transfer the old load's TBAA tag to the new load.
1637 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1638 NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1639
1640 // Transfer DebugLoc.
1641 NewLoad->setDebugLoc(LI->getDebugLoc());
1642
1643 // Add the newly created load.
1644 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1645 NewLoad));
1646 MD->invalidateCachedPointerInfo(LoadPtr);
1647 DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1648 }
1649
1650 // Perform PHI construction.
1651 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1652 LI->replaceAllUsesWith(V);
1653 if (isa<PHINode>(V))
1654 V->takeName(LI);
1655 if (V->getType()->getScalarType()->isPointerTy())
1656 MD->invalidateCachedPointerInfo(V);
1657 markInstructionForDeletion(LI);
1658 ++NumPRELoad;
1659 return true;
1660 }
1661
1662 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1663 /// non-local by performing PHI construction.
processNonLocalLoad(LoadInst * LI)1664 bool GVN::processNonLocalLoad(LoadInst *LI) {
1665 // Step 1: Find the non-local dependencies of the load.
1666 LoadDepVect Deps;
1667 AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1668 MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1669
1670 // If we had to process more than one hundred blocks to find the
1671 // dependencies, this load isn't worth worrying about. Optimizing
1672 // it will be too expensive.
1673 unsigned NumDeps = Deps.size();
1674 if (NumDeps > 100)
1675 return false;
1676
1677 // If we had a phi translation failure, we'll have a single entry which is a
1678 // clobber in the current block. Reject this early.
1679 if (NumDeps == 1 &&
1680 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1681 DEBUG(
1682 dbgs() << "GVN: non-local load ";
1683 WriteAsOperand(dbgs(), LI);
1684 dbgs() << " has unknown dependencies\n";
1685 );
1686 return false;
1687 }
1688
1689 // Step 2: Analyze the availability of the load
1690 AvailValInBlkVect ValuesPerBlock;
1691 UnavailBlkVect UnavailableBlocks;
1692 AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1693
1694 // If we have no predecessors that produce a known value for this load, exit
1695 // early.
1696 if (ValuesPerBlock.empty())
1697 return false;
1698
1699 // Step 3: Eliminate fully redundancy.
1700 //
1701 // If all of the instructions we depend on produce a known value for this
1702 // load, then it is fully redundant and we can use PHI insertion to compute
1703 // its value. Insert PHIs and remove the fully redundant value now.
1704 if (UnavailableBlocks.empty()) {
1705 DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1706
1707 // Perform PHI construction.
1708 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1709 LI->replaceAllUsesWith(V);
1710
1711 if (isa<PHINode>(V))
1712 V->takeName(LI);
1713 if (V->getType()->getScalarType()->isPointerTy())
1714 MD->invalidateCachedPointerInfo(V);
1715 markInstructionForDeletion(LI);
1716 ++NumGVNLoad;
1717 return true;
1718 }
1719
1720 // Step 4: Eliminate partial redundancy.
1721 if (!EnablePRE || !EnableLoadPRE)
1722 return false;
1723
1724 return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1725 }
1726
1727
patchReplacementInstruction(Instruction * I,Value * Repl)1728 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
1729 // Patch the replacement so that it is not more restrictive than the value
1730 // being replaced.
1731 BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
1732 BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
1733 if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
1734 isa<OverflowingBinaryOperator>(ReplOp)) {
1735 if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
1736 ReplOp->setHasNoSignedWrap(false);
1737 if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
1738 ReplOp->setHasNoUnsignedWrap(false);
1739 }
1740 if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
1741 SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
1742 ReplInst->getAllMetadataOtherThanDebugLoc(Metadata);
1743 for (int i = 0, n = Metadata.size(); i < n; ++i) {
1744 unsigned Kind = Metadata[i].first;
1745 MDNode *IMD = I->getMetadata(Kind);
1746 MDNode *ReplMD = Metadata[i].second;
1747 switch(Kind) {
1748 default:
1749 ReplInst->setMetadata(Kind, NULL); // Remove unknown metadata
1750 break;
1751 case LLVMContext::MD_dbg:
1752 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1753 case LLVMContext::MD_tbaa:
1754 ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD));
1755 break;
1756 case LLVMContext::MD_range:
1757 ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD));
1758 break;
1759 case LLVMContext::MD_prof:
1760 llvm_unreachable("MD_prof in a non terminator instruction");
1761 break;
1762 case LLVMContext::MD_fpmath:
1763 ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD));
1764 break;
1765 }
1766 }
1767 }
1768 }
1769
patchAndReplaceAllUsesWith(Instruction * I,Value * Repl)1770 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1771 patchReplacementInstruction(I, Repl);
1772 I->replaceAllUsesWith(Repl);
1773 }
1774
1775 /// processLoad - Attempt to eliminate a load, first by eliminating it
1776 /// locally, and then attempting non-local elimination if that fails.
processLoad(LoadInst * L)1777 bool GVN::processLoad(LoadInst *L) {
1778 if (!MD)
1779 return false;
1780
1781 if (!L->isSimple())
1782 return false;
1783
1784 if (L->use_empty()) {
1785 markInstructionForDeletion(L);
1786 return true;
1787 }
1788
1789 // ... to a pointer that has been loaded from before...
1790 MemDepResult Dep = MD->getDependency(L);
1791
1792 // If we have a clobber and target data is around, see if this is a clobber
1793 // that we can fix up through code synthesis.
1794 if (Dep.isClobber() && TD) {
1795 // Check to see if we have something like this:
1796 // store i32 123, i32* %P
1797 // %A = bitcast i32* %P to i8*
1798 // %B = gep i8* %A, i32 1
1799 // %C = load i8* %B
1800 //
1801 // We could do that by recognizing if the clobber instructions are obviously
1802 // a common base + constant offset, and if the previous store (or memset)
1803 // completely covers this load. This sort of thing can happen in bitfield
1804 // access code.
1805 Value *AvailVal = 0;
1806 if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1807 int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1808 L->getPointerOperand(),
1809 DepSI, *TD);
1810 if (Offset != -1)
1811 AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1812 L->getType(), L, *TD);
1813 }
1814
1815 // Check to see if we have something like this:
1816 // load i32* P
1817 // load i8* (P+1)
1818 // if we have this, replace the later with an extraction from the former.
1819 if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1820 // If this is a clobber and L is the first instruction in its block, then
1821 // we have the first instruction in the entry block.
1822 if (DepLI == L)
1823 return false;
1824
1825 int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1826 L->getPointerOperand(),
1827 DepLI, *TD);
1828 if (Offset != -1)
1829 AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1830 }
1831
1832 // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1833 // a value on from it.
1834 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1835 int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1836 L->getPointerOperand(),
1837 DepMI, *TD);
1838 if (Offset != -1)
1839 AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1840 }
1841
1842 if (AvailVal) {
1843 DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1844 << *AvailVal << '\n' << *L << "\n\n\n");
1845
1846 // Replace the load!
1847 L->replaceAllUsesWith(AvailVal);
1848 if (AvailVal->getType()->getScalarType()->isPointerTy())
1849 MD->invalidateCachedPointerInfo(AvailVal);
1850 markInstructionForDeletion(L);
1851 ++NumGVNLoad;
1852 return true;
1853 }
1854 }
1855
1856 // If the value isn't available, don't do anything!
1857 if (Dep.isClobber()) {
1858 DEBUG(
1859 // fast print dep, using operator<< on instruction is too slow.
1860 dbgs() << "GVN: load ";
1861 WriteAsOperand(dbgs(), L);
1862 Instruction *I = Dep.getInst();
1863 dbgs() << " is clobbered by " << *I << '\n';
1864 );
1865 return false;
1866 }
1867
1868 // If it is defined in another block, try harder.
1869 if (Dep.isNonLocal())
1870 return processNonLocalLoad(L);
1871
1872 if (!Dep.isDef()) {
1873 DEBUG(
1874 // fast print dep, using operator<< on instruction is too slow.
1875 dbgs() << "GVN: load ";
1876 WriteAsOperand(dbgs(), L);
1877 dbgs() << " has unknown dependence\n";
1878 );
1879 return false;
1880 }
1881
1882 Instruction *DepInst = Dep.getInst();
1883 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1884 Value *StoredVal = DepSI->getValueOperand();
1885
1886 // The store and load are to a must-aliased pointer, but they may not
1887 // actually have the same type. See if we know how to reuse the stored
1888 // value (depending on its type).
1889 if (StoredVal->getType() != L->getType()) {
1890 if (TD) {
1891 StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1892 L, *TD);
1893 if (StoredVal == 0)
1894 return false;
1895
1896 DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1897 << '\n' << *L << "\n\n\n");
1898 }
1899 else
1900 return false;
1901 }
1902
1903 // Remove it!
1904 L->replaceAllUsesWith(StoredVal);
1905 if (StoredVal->getType()->getScalarType()->isPointerTy())
1906 MD->invalidateCachedPointerInfo(StoredVal);
1907 markInstructionForDeletion(L);
1908 ++NumGVNLoad;
1909 return true;
1910 }
1911
1912 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1913 Value *AvailableVal = DepLI;
1914
1915 // The loads are of a must-aliased pointer, but they may not actually have
1916 // the same type. See if we know how to reuse the previously loaded value
1917 // (depending on its type).
1918 if (DepLI->getType() != L->getType()) {
1919 if (TD) {
1920 AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1921 L, *TD);
1922 if (AvailableVal == 0)
1923 return false;
1924
1925 DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1926 << "\n" << *L << "\n\n\n");
1927 }
1928 else
1929 return false;
1930 }
1931
1932 // Remove it!
1933 patchAndReplaceAllUsesWith(L, AvailableVal);
1934 if (DepLI->getType()->getScalarType()->isPointerTy())
1935 MD->invalidateCachedPointerInfo(DepLI);
1936 markInstructionForDeletion(L);
1937 ++NumGVNLoad;
1938 return true;
1939 }
1940
1941 // If this load really doesn't depend on anything, then we must be loading an
1942 // undef value. This can happen when loading for a fresh allocation with no
1943 // intervening stores, for example.
1944 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1945 L->replaceAllUsesWith(UndefValue::get(L->getType()));
1946 markInstructionForDeletion(L);
1947 ++NumGVNLoad;
1948 return true;
1949 }
1950
1951 // If this load occurs either right after a lifetime begin,
1952 // then the loaded value is undefined.
1953 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1954 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1955 L->replaceAllUsesWith(UndefValue::get(L->getType()));
1956 markInstructionForDeletion(L);
1957 ++NumGVNLoad;
1958 return true;
1959 }
1960 }
1961
1962 return false;
1963 }
1964
1965 // findLeader - In order to find a leader for a given value number at a
1966 // specific basic block, we first obtain the list of all Values for that number,
1967 // and then scan the list to find one whose block dominates the block in
1968 // question. This is fast because dominator tree queries consist of only
1969 // a few comparisons of DFS numbers.
findLeader(const BasicBlock * BB,uint32_t num)1970 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
1971 LeaderTableEntry Vals = LeaderTable[num];
1972 if (!Vals.Val) return 0;
1973
1974 Value *Val = 0;
1975 if (DT->dominates(Vals.BB, BB)) {
1976 Val = Vals.Val;
1977 if (isa<Constant>(Val)) return Val;
1978 }
1979
1980 LeaderTableEntry* Next = Vals.Next;
1981 while (Next) {
1982 if (DT->dominates(Next->BB, BB)) {
1983 if (isa<Constant>(Next->Val)) return Next->Val;
1984 if (!Val) Val = Next->Val;
1985 }
1986
1987 Next = Next->Next;
1988 }
1989
1990 return Val;
1991 }
1992
1993 /// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
1994 /// use is dominated by the given basic block. Returns the number of uses that
1995 /// were replaced.
replaceAllDominatedUsesWith(Value * From,Value * To,const BasicBlockEdge & Root)1996 unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
1997 const BasicBlockEdge &Root) {
1998 unsigned Count = 0;
1999 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2000 UI != UE; ) {
2001 Use &U = (UI++).getUse();
2002
2003 if (DT->dominates(Root, U)) {
2004 U.set(To);
2005 ++Count;
2006 }
2007 }
2008 return Count;
2009 }
2010
2011 /// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'. Return
2012 /// true if every path from the entry block to 'Dst' passes via this edge. In
2013 /// particular 'Dst' must not be reachable via another edge from 'Src'.
isOnlyReachableViaThisEdge(const BasicBlockEdge & E,DominatorTree * DT)2014 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2015 DominatorTree *DT) {
2016 // While in theory it is interesting to consider the case in which Dst has
2017 // more than one predecessor, because Dst might be part of a loop which is
2018 // only reachable from Src, in practice it is pointless since at the time
2019 // GVN runs all such loops have preheaders, which means that Dst will have
2020 // been changed to have only one predecessor, namely Src.
2021 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2022 const BasicBlock *Src = E.getStart();
2023 assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2024 (void)Src;
2025 return Pred != 0;
2026 }
2027
2028 /// propagateEquality - The given values are known to be equal in every block
2029 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
2030 /// 'RHS' everywhere in the scope. Returns whether a change was made.
propagateEquality(Value * LHS,Value * RHS,const BasicBlockEdge & Root)2031 bool GVN::propagateEquality(Value *LHS, Value *RHS,
2032 const BasicBlockEdge &Root) {
2033 SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2034 Worklist.push_back(std::make_pair(LHS, RHS));
2035 bool Changed = false;
2036 // For speed, compute a conservative fast approximation to
2037 // DT->dominates(Root, Root.getEnd());
2038 bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2039
2040 while (!Worklist.empty()) {
2041 std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2042 LHS = Item.first; RHS = Item.second;
2043
2044 if (LHS == RHS) continue;
2045 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2046
2047 // Don't try to propagate equalities between constants.
2048 if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
2049
2050 // Prefer a constant on the right-hand side, or an Argument if no constants.
2051 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2052 std::swap(LHS, RHS);
2053 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2054
2055 // If there is no obvious reason to prefer the left-hand side over the right-
2056 // hand side, ensure the longest lived term is on the right-hand side, so the
2057 // shortest lived term will be replaced by the longest lived. This tends to
2058 // expose more simplifications.
2059 uint32_t LVN = VN.lookup_or_add(LHS);
2060 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2061 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2062 // Move the 'oldest' value to the right-hand side, using the value number as
2063 // a proxy for age.
2064 uint32_t RVN = VN.lookup_or_add(RHS);
2065 if (LVN < RVN) {
2066 std::swap(LHS, RHS);
2067 LVN = RVN;
2068 }
2069 }
2070
2071 // If value numbering later sees that an instruction in the scope is equal
2072 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
2073 // the invariant that instructions only occur in the leader table for their
2074 // own value number (this is used by removeFromLeaderTable), do not do this
2075 // if RHS is an instruction (if an instruction in the scope is morphed into
2076 // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2077 // using the leader table is about compiling faster, not optimizing better).
2078 // The leader table only tracks basic blocks, not edges. Only add to if we
2079 // have the simple case where the edge dominates the end.
2080 if (RootDominatesEnd && !isa<Instruction>(RHS))
2081 addToLeaderTable(LVN, RHS, Root.getEnd());
2082
2083 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
2084 // LHS always has at least one use that is not dominated by Root, this will
2085 // never do anything if LHS has only one use.
2086 if (!LHS->hasOneUse()) {
2087 unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
2088 Changed |= NumReplacements > 0;
2089 NumGVNEqProp += NumReplacements;
2090 }
2091
2092 // Now try to deduce additional equalities from this one. For example, if the
2093 // known equality was "(A != B)" == "false" then it follows that A and B are
2094 // equal in the scope. Only boolean equalities with an explicit true or false
2095 // RHS are currently supported.
2096 if (!RHS->getType()->isIntegerTy(1))
2097 // Not a boolean equality - bail out.
2098 continue;
2099 ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2100 if (!CI)
2101 // RHS neither 'true' nor 'false' - bail out.
2102 continue;
2103 // Whether RHS equals 'true'. Otherwise it equals 'false'.
2104 bool isKnownTrue = CI->isAllOnesValue();
2105 bool isKnownFalse = !isKnownTrue;
2106
2107 // If "A && B" is known true then both A and B are known true. If "A || B"
2108 // is known false then both A and B are known false.
2109 Value *A, *B;
2110 if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2111 (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2112 Worklist.push_back(std::make_pair(A, RHS));
2113 Worklist.push_back(std::make_pair(B, RHS));
2114 continue;
2115 }
2116
2117 // If we are propagating an equality like "(A == B)" == "true" then also
2118 // propagate the equality A == B. When propagating a comparison such as
2119 // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2120 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
2121 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2122
2123 // If "A == B" is known true, or "A != B" is known false, then replace
2124 // A with B everywhere in the scope.
2125 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2126 (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2127 Worklist.push_back(std::make_pair(Op0, Op1));
2128
2129 // If "A >= B" is known true, replace "A < B" with false everywhere.
2130 CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2131 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2132 // Since we don't have the instruction "A < B" immediately to hand, work out
2133 // the value number that it would have and use that to find an appropriate
2134 // instruction (if any).
2135 uint32_t NextNum = VN.getNextUnusedValueNumber();
2136 uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2137 // If the number we were assigned was brand new then there is no point in
2138 // looking for an instruction realizing it: there cannot be one!
2139 if (Num < NextNum) {
2140 Value *NotCmp = findLeader(Root.getEnd(), Num);
2141 if (NotCmp && isa<Instruction>(NotCmp)) {
2142 unsigned NumReplacements =
2143 replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
2144 Changed |= NumReplacements > 0;
2145 NumGVNEqProp += NumReplacements;
2146 }
2147 }
2148 // Ensure that any instruction in scope that gets the "A < B" value number
2149 // is replaced with false.
2150 // The leader table only tracks basic blocks, not edges. Only add to if we
2151 // have the simple case where the edge dominates the end.
2152 if (RootDominatesEnd)
2153 addToLeaderTable(Num, NotVal, Root.getEnd());
2154
2155 continue;
2156 }
2157 }
2158
2159 return Changed;
2160 }
2161
2162 /// processInstruction - When calculating availability, handle an instruction
2163 /// by inserting it into the appropriate sets
processInstruction(Instruction * I)2164 bool GVN::processInstruction(Instruction *I) {
2165 // Ignore dbg info intrinsics.
2166 if (isa<DbgInfoIntrinsic>(I))
2167 return false;
2168
2169 // If the instruction can be easily simplified then do so now in preference
2170 // to value numbering it. Value numbering often exposes redundancies, for
2171 // example if it determines that %y is equal to %x then the instruction
2172 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2173 if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
2174 I->replaceAllUsesWith(V);
2175 if (MD && V->getType()->getScalarType()->isPointerTy())
2176 MD->invalidateCachedPointerInfo(V);
2177 markInstructionForDeletion(I);
2178 ++NumGVNSimpl;
2179 return true;
2180 }
2181
2182 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2183 if (processLoad(LI))
2184 return true;
2185
2186 unsigned Num = VN.lookup_or_add(LI);
2187 addToLeaderTable(Num, LI, LI->getParent());
2188 return false;
2189 }
2190
2191 // For conditional branches, we can perform simple conditional propagation on
2192 // the condition value itself.
2193 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2194 if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
2195 return false;
2196
2197 Value *BranchCond = BI->getCondition();
2198
2199 BasicBlock *TrueSucc = BI->getSuccessor(0);
2200 BasicBlock *FalseSucc = BI->getSuccessor(1);
2201 // Avoid multiple edges early.
2202 if (TrueSucc == FalseSucc)
2203 return false;
2204
2205 BasicBlock *Parent = BI->getParent();
2206 bool Changed = false;
2207
2208 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2209 BasicBlockEdge TrueE(Parent, TrueSucc);
2210 Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
2211
2212 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2213 BasicBlockEdge FalseE(Parent, FalseSucc);
2214 Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
2215
2216 return Changed;
2217 }
2218
2219 // For switches, propagate the case values into the case destinations.
2220 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2221 Value *SwitchCond = SI->getCondition();
2222 BasicBlock *Parent = SI->getParent();
2223 bool Changed = false;
2224
2225 // Remember how many outgoing edges there are to every successor.
2226 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2227 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2228 ++SwitchEdges[SI->getSuccessor(i)];
2229
2230 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2231 i != e; ++i) {
2232 BasicBlock *Dst = i.getCaseSuccessor();
2233 // If there is only a single edge, propagate the case value into it.
2234 if (SwitchEdges.lookup(Dst) == 1) {
2235 BasicBlockEdge E(Parent, Dst);
2236 Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
2237 }
2238 }
2239 return Changed;
2240 }
2241
2242 // Instructions with void type don't return a value, so there's
2243 // no point in trying to find redundancies in them.
2244 if (I->getType()->isVoidTy()) return false;
2245
2246 uint32_t NextNum = VN.getNextUnusedValueNumber();
2247 unsigned Num = VN.lookup_or_add(I);
2248
2249 // Allocations are always uniquely numbered, so we can save time and memory
2250 // by fast failing them.
2251 if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2252 addToLeaderTable(Num, I, I->getParent());
2253 return false;
2254 }
2255
2256 // If the number we were assigned was a brand new VN, then we don't
2257 // need to do a lookup to see if the number already exists
2258 // somewhere in the domtree: it can't!
2259 if (Num >= NextNum) {
2260 addToLeaderTable(Num, I, I->getParent());
2261 return false;
2262 }
2263
2264 // Perform fast-path value-number based elimination of values inherited from
2265 // dominators.
2266 Value *repl = findLeader(I->getParent(), Num);
2267 if (repl == 0) {
2268 // Failure, just remember this instance for future use.
2269 addToLeaderTable(Num, I, I->getParent());
2270 return false;
2271 }
2272
2273 // Remove it!
2274 patchAndReplaceAllUsesWith(I, repl);
2275 if (MD && repl->getType()->getScalarType()->isPointerTy())
2276 MD->invalidateCachedPointerInfo(repl);
2277 markInstructionForDeletion(I);
2278 return true;
2279 }
2280
2281 /// runOnFunction - This is the main transformation entry point for a function.
runOnFunction(Function & F)2282 bool GVN::runOnFunction(Function& F) {
2283 if (!NoLoads)
2284 MD = &getAnalysis<MemoryDependenceAnalysis>();
2285 DT = &getAnalysis<DominatorTree>();
2286 TD = getAnalysisIfAvailable<DataLayout>();
2287 TLI = &getAnalysis<TargetLibraryInfo>();
2288 VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2289 VN.setMemDep(MD);
2290 VN.setDomTree(DT);
2291
2292 bool Changed = false;
2293 bool ShouldContinue = true;
2294
2295 // Merge unconditional branches, allowing PRE to catch more
2296 // optimization opportunities.
2297 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2298 BasicBlock *BB = FI++;
2299
2300 bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2301 if (removedBlock) ++NumGVNBlocks;
2302
2303 Changed |= removedBlock;
2304 }
2305
2306 unsigned Iteration = 0;
2307 while (ShouldContinue) {
2308 DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2309 ShouldContinue = iterateOnFunction(F);
2310 Changed |= ShouldContinue;
2311 ++Iteration;
2312 }
2313
2314 if (EnablePRE) {
2315 bool PREChanged = true;
2316 while (PREChanged) {
2317 PREChanged = performPRE(F);
2318 Changed |= PREChanged;
2319 }
2320 }
2321
2322 // FIXME: Should perform GVN again after PRE does something. PRE can move
2323 // computations into blocks where they become fully redundant. Note that
2324 // we can't do this until PRE's critical edge splitting updates memdep.
2325 // Actually, when this happens, we should just fully integrate PRE into GVN.
2326
2327 cleanupGlobalSets();
2328
2329 return Changed;
2330 }
2331
2332
processBlock(BasicBlock * BB)2333 bool GVN::processBlock(BasicBlock *BB) {
2334 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2335 // (and incrementing BI before processing an instruction).
2336 assert(InstrsToErase.empty() &&
2337 "We expect InstrsToErase to be empty across iterations");
2338 bool ChangedFunction = false;
2339
2340 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2341 BI != BE;) {
2342 ChangedFunction |= processInstruction(BI);
2343 if (InstrsToErase.empty()) {
2344 ++BI;
2345 continue;
2346 }
2347
2348 // If we need some instructions deleted, do it now.
2349 NumGVNInstr += InstrsToErase.size();
2350
2351 // Avoid iterator invalidation.
2352 bool AtStart = BI == BB->begin();
2353 if (!AtStart)
2354 --BI;
2355
2356 for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(),
2357 E = InstrsToErase.end(); I != E; ++I) {
2358 DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2359 if (MD) MD->removeInstruction(*I);
2360 DEBUG(verifyRemoved(*I));
2361 (*I)->eraseFromParent();
2362 }
2363 InstrsToErase.clear();
2364
2365 if (AtStart)
2366 BI = BB->begin();
2367 else
2368 ++BI;
2369 }
2370
2371 return ChangedFunction;
2372 }
2373
2374 /// performPRE - Perform a purely local form of PRE that looks for diamond
2375 /// control flow patterns and attempts to perform simple PRE at the join point.
performPRE(Function & F)2376 bool GVN::performPRE(Function &F) {
2377 bool Changed = false;
2378 SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
2379 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2380 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2381 BasicBlock *CurrentBlock = *DI;
2382
2383 // Nothing to PRE in the entry block.
2384 if (CurrentBlock == &F.getEntryBlock()) continue;
2385
2386 // Don't perform PRE on a landing pad.
2387 if (CurrentBlock->isLandingPad()) continue;
2388
2389 for (BasicBlock::iterator BI = CurrentBlock->begin(),
2390 BE = CurrentBlock->end(); BI != BE; ) {
2391 Instruction *CurInst = BI++;
2392
2393 if (isa<AllocaInst>(CurInst) ||
2394 isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2395 CurInst->getType()->isVoidTy() ||
2396 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2397 isa<DbgInfoIntrinsic>(CurInst))
2398 continue;
2399
2400 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2401 // sinking the compare again, and it would force the code generator to
2402 // move the i1 from processor flags or predicate registers into a general
2403 // purpose register.
2404 if (isa<CmpInst>(CurInst))
2405 continue;
2406
2407 // We don't currently value number ANY inline asm calls.
2408 if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2409 if (CallI->isInlineAsm())
2410 continue;
2411
2412 uint32_t ValNo = VN.lookup(CurInst);
2413
2414 // Look for the predecessors for PRE opportunities. We're
2415 // only trying to solve the basic diamond case, where
2416 // a value is computed in the successor and one predecessor,
2417 // but not the other. We also explicitly disallow cases
2418 // where the successor is its own predecessor, because they're
2419 // more complicated to get right.
2420 unsigned NumWith = 0;
2421 unsigned NumWithout = 0;
2422 BasicBlock *PREPred = 0;
2423 predMap.clear();
2424
2425 for (pred_iterator PI = pred_begin(CurrentBlock),
2426 PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2427 BasicBlock *P = *PI;
2428 // We're not interested in PRE where the block is its
2429 // own predecessor, or in blocks with predecessors
2430 // that are not reachable.
2431 if (P == CurrentBlock) {
2432 NumWithout = 2;
2433 break;
2434 } else if (!DT->isReachableFromEntry(P)) {
2435 NumWithout = 2;
2436 break;
2437 }
2438
2439 Value* predV = findLeader(P, ValNo);
2440 if (predV == 0) {
2441 predMap.push_back(std::make_pair(static_cast<Value *>(0), P));
2442 PREPred = P;
2443 ++NumWithout;
2444 } else if (predV == CurInst) {
2445 /* CurInst dominates this predecessor. */
2446 NumWithout = 2;
2447 break;
2448 } else {
2449 predMap.push_back(std::make_pair(predV, P));
2450 ++NumWith;
2451 }
2452 }
2453
2454 // Don't do PRE when it might increase code size, i.e. when
2455 // we would need to insert instructions in more than one pred.
2456 if (NumWithout != 1 || NumWith == 0)
2457 continue;
2458
2459 // Don't do PRE across indirect branch.
2460 if (isa<IndirectBrInst>(PREPred->getTerminator()))
2461 continue;
2462
2463 // We can't do PRE safely on a critical edge, so instead we schedule
2464 // the edge to be split and perform the PRE the next time we iterate
2465 // on the function.
2466 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2467 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2468 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2469 continue;
2470 }
2471
2472 // Instantiate the expression in the predecessor that lacked it.
2473 // Because we are going top-down through the block, all value numbers
2474 // will be available in the predecessor by the time we need them. Any
2475 // that weren't originally present will have been instantiated earlier
2476 // in this loop.
2477 Instruction *PREInstr = CurInst->clone();
2478 bool success = true;
2479 for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2480 Value *Op = PREInstr->getOperand(i);
2481 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2482 continue;
2483
2484 if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2485 PREInstr->setOperand(i, V);
2486 } else {
2487 success = false;
2488 break;
2489 }
2490 }
2491
2492 // Fail out if we encounter an operand that is not available in
2493 // the PRE predecessor. This is typically because of loads which
2494 // are not value numbered precisely.
2495 if (!success) {
2496 DEBUG(verifyRemoved(PREInstr));
2497 delete PREInstr;
2498 continue;
2499 }
2500
2501 PREInstr->insertBefore(PREPred->getTerminator());
2502 PREInstr->setName(CurInst->getName() + ".pre");
2503 PREInstr->setDebugLoc(CurInst->getDebugLoc());
2504 VN.add(PREInstr, ValNo);
2505 ++NumGVNPRE;
2506
2507 // Update the availability map to include the new instruction.
2508 addToLeaderTable(ValNo, PREInstr, PREPred);
2509
2510 // Create a PHI to make the value available in this block.
2511 PHINode* Phi = PHINode::Create(CurInst->getType(), predMap.size(),
2512 CurInst->getName() + ".pre-phi",
2513 CurrentBlock->begin());
2514 for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2515 if (Value *V = predMap[i].first)
2516 Phi->addIncoming(V, predMap[i].second);
2517 else
2518 Phi->addIncoming(PREInstr, PREPred);
2519 }
2520
2521 VN.add(Phi, ValNo);
2522 addToLeaderTable(ValNo, Phi, CurrentBlock);
2523 Phi->setDebugLoc(CurInst->getDebugLoc());
2524 CurInst->replaceAllUsesWith(Phi);
2525 if (Phi->getType()->getScalarType()->isPointerTy()) {
2526 // Because we have added a PHI-use of the pointer value, it has now
2527 // "escaped" from alias analysis' perspective. We need to inform
2528 // AA of this.
2529 for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2530 ++ii) {
2531 unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2532 VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2533 }
2534
2535 if (MD)
2536 MD->invalidateCachedPointerInfo(Phi);
2537 }
2538 VN.erase(CurInst);
2539 removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2540
2541 DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2542 if (MD) MD->removeInstruction(CurInst);
2543 DEBUG(verifyRemoved(CurInst));
2544 CurInst->eraseFromParent();
2545 Changed = true;
2546 }
2547 }
2548
2549 if (splitCriticalEdges())
2550 Changed = true;
2551
2552 return Changed;
2553 }
2554
2555 /// Split the critical edge connecting the given two blocks, and return
2556 /// the block inserted to the critical edge.
splitCriticalEdges(BasicBlock * Pred,BasicBlock * Succ)2557 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2558 BasicBlock *BB = SplitCriticalEdge(Pred, Succ, this);
2559 if (MD)
2560 MD->invalidateCachedPredecessors();
2561 return BB;
2562 }
2563
2564 /// splitCriticalEdges - Split critical edges found during the previous
2565 /// iteration that may enable further optimization.
splitCriticalEdges()2566 bool GVN::splitCriticalEdges() {
2567 if (toSplit.empty())
2568 return false;
2569 do {
2570 std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2571 SplitCriticalEdge(Edge.first, Edge.second, this);
2572 } while (!toSplit.empty());
2573 if (MD) MD->invalidateCachedPredecessors();
2574 return true;
2575 }
2576
2577 /// iterateOnFunction - Executes one iteration of GVN
iterateOnFunction(Function & F)2578 bool GVN::iterateOnFunction(Function &F) {
2579 cleanupGlobalSets();
2580
2581 // Top-down walk of the dominator tree
2582 bool Changed = false;
2583 #if 0
2584 // Needed for value numbering with phi construction to work.
2585 ReversePostOrderTraversal<Function*> RPOT(&F);
2586 for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2587 RE = RPOT.end(); RI != RE; ++RI)
2588 Changed |= processBlock(*RI);
2589 #else
2590 // Save the blocks this function have before transformation begins. GVN may
2591 // split critical edge, and hence may invalidate the RPO/DT iterator.
2592 //
2593 std::vector<BasicBlock *> BBVect;
2594 BBVect.reserve(256);
2595 for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2596 DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2597 BBVect.push_back(DI->getBlock());
2598
2599 for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
2600 I != E; I++)
2601 Changed |= processBlock(*I);
2602 #endif
2603
2604 return Changed;
2605 }
2606
cleanupGlobalSets()2607 void GVN::cleanupGlobalSets() {
2608 VN.clear();
2609 LeaderTable.clear();
2610 TableAllocator.Reset();
2611 }
2612
2613 /// verifyRemoved - Verify that the specified instruction does not occur in our
2614 /// internal data structures.
verifyRemoved(const Instruction * Inst) const2615 void GVN::verifyRemoved(const Instruction *Inst) const {
2616 VN.verifyRemoved(Inst);
2617
2618 // Walk through the value number scope to make sure the instruction isn't
2619 // ferreted away in it.
2620 for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2621 I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2622 const LeaderTableEntry *Node = &I->second;
2623 assert(Node->Val != Inst && "Inst still in value numbering scope!");
2624
2625 while (Node->Next) {
2626 Node = Node->Next;
2627 assert(Node->Val != Inst && "Inst still in value numbering scope!");
2628 }
2629 }
2630 }
2631