1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This transformation implements the well known scalar replacement of
11 /// aggregates transformation. It tries to identify promotable elements of an
12 /// aggregate alloca, and promote them to registers. It will also try to
13 /// convert uses of an element (or set of elements) of an alloca into a vector
14 /// or bitfield-style integer scalar if appropriate.
15 ///
16 /// It works to do this with minimal slicing of the alloca so that regions
17 /// which are merely transferred in and out of external memory remain unchanged
18 /// and are not decomposed to scalar code.
19 ///
20 /// Because this also performs alloca promotion, it can be thought of as also
21 /// serving the purpose of SSA formation. The algorithm iterates on the
22 /// function until all opportunities for promotion have been realized.
23 ///
24 //===----------------------------------------------------------------------===//
25
26 #define DEBUG_TYPE "sroa"
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/Dominators.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/PtrUseVisitor.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/DIBuilder.h"
37 #include "llvm/DebugInfo.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/InstVisitor.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
57 #include "llvm/Transforms/Utils/SSAUpdater.h"
58 using namespace llvm;
59
60 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
61 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
62 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
63 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
64 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
65 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
66 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
67 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
68 STATISTIC(NumDeleted, "Number of instructions deleted");
69 STATISTIC(NumVectorized, "Number of vectorized aggregates");
70
71 /// Hidden option to force the pass to not use DomTree and mem2reg, instead
72 /// forming SSA values through the SSAUpdater infrastructure.
73 static cl::opt<bool>
74 ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
75
76 namespace {
77 /// \brief A custom IRBuilder inserter which prefixes all names if they are
78 /// preserved.
79 template <bool preserveNames = true>
80 class IRBuilderPrefixedInserter :
81 public IRBuilderDefaultInserter<preserveNames> {
82 std::string Prefix;
83
84 public:
SetNamePrefix(const Twine & P)85 void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
86
87 protected:
InsertHelper(Instruction * I,const Twine & Name,BasicBlock * BB,BasicBlock::iterator InsertPt) const88 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
89 BasicBlock::iterator InsertPt) const {
90 IRBuilderDefaultInserter<preserveNames>::InsertHelper(
91 I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
92 }
93 };
94
95 // Specialization for not preserving the name is trivial.
96 template <>
97 class IRBuilderPrefixedInserter<false> :
98 public IRBuilderDefaultInserter<false> {
99 public:
SetNamePrefix(const Twine & P)100 void SetNamePrefix(const Twine &P) {}
101 };
102
103 /// \brief Provide a typedef for IRBuilder that drops names in release builds.
104 #ifndef NDEBUG
105 typedef llvm::IRBuilder<true, ConstantFolder,
106 IRBuilderPrefixedInserter<true> > IRBuilderTy;
107 #else
108 typedef llvm::IRBuilder<false, ConstantFolder,
109 IRBuilderPrefixedInserter<false> > IRBuilderTy;
110 #endif
111 }
112
113 namespace {
114 /// \brief A used slice of an alloca.
115 ///
116 /// This structure represents a slice of an alloca used by some instruction. It
117 /// stores both the begin and end offsets of this use, a pointer to the use
118 /// itself, and a flag indicating whether we can classify the use as splittable
119 /// or not when forming partitions of the alloca.
120 class Slice {
121 /// \brief The beginning offset of the range.
122 uint64_t BeginOffset;
123
124 /// \brief The ending offset, not included in the range.
125 uint64_t EndOffset;
126
127 /// \brief Storage for both the use of this slice and whether it can be
128 /// split.
129 PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
130
131 public:
Slice()132 Slice() : BeginOffset(), EndOffset() {}
Slice(uint64_t BeginOffset,uint64_t EndOffset,Use * U,bool IsSplittable)133 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
134 : BeginOffset(BeginOffset), EndOffset(EndOffset),
135 UseAndIsSplittable(U, IsSplittable) {}
136
beginOffset() const137 uint64_t beginOffset() const { return BeginOffset; }
endOffset() const138 uint64_t endOffset() const { return EndOffset; }
139
isSplittable() const140 bool isSplittable() const { return UseAndIsSplittable.getInt(); }
makeUnsplittable()141 void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
142
getUse() const143 Use *getUse() const { return UseAndIsSplittable.getPointer(); }
144
isDead() const145 bool isDead() const { return getUse() == 0; }
kill()146 void kill() { UseAndIsSplittable.setPointer(0); }
147
148 /// \brief Support for ordering ranges.
149 ///
150 /// This provides an ordering over ranges such that start offsets are
151 /// always increasing, and within equal start offsets, the end offsets are
152 /// decreasing. Thus the spanning range comes first in a cluster with the
153 /// same start position.
operator <(const Slice & RHS) const154 bool operator<(const Slice &RHS) const {
155 if (beginOffset() < RHS.beginOffset()) return true;
156 if (beginOffset() > RHS.beginOffset()) return false;
157 if (isSplittable() != RHS.isSplittable()) return !isSplittable();
158 if (endOffset() > RHS.endOffset()) return true;
159 return false;
160 }
161
162 /// \brief Support comparison with a single offset to allow binary searches.
operator <(const Slice & LHS,uint64_t RHSOffset)163 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
164 uint64_t RHSOffset) {
165 return LHS.beginOffset() < RHSOffset;
166 }
operator <(uint64_t LHSOffset,const Slice & RHS)167 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
168 const Slice &RHS) {
169 return LHSOffset < RHS.beginOffset();
170 }
171
operator ==(const Slice & RHS) const172 bool operator==(const Slice &RHS) const {
173 return isSplittable() == RHS.isSplittable() &&
174 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
175 }
operator !=(const Slice & RHS) const176 bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
177 };
178 } // end anonymous namespace
179
180 namespace llvm {
181 template <typename T> struct isPodLike;
182 template <> struct isPodLike<Slice> {
183 static const bool value = true;
184 };
185 }
186
187 namespace {
188 /// \brief Representation of the alloca slices.
189 ///
190 /// This class represents the slices of an alloca which are formed by its
191 /// various uses. If a pointer escapes, we can't fully build a representation
192 /// for the slices used and we reflect that in this structure. The uses are
193 /// stored, sorted by increasing beginning offset and with unsplittable slices
194 /// starting at a particular offset before splittable slices.
195 class AllocaSlices {
196 public:
197 /// \brief Construct the slices of a particular alloca.
198 AllocaSlices(const DataLayout &DL, AllocaInst &AI);
199
200 /// \brief Test whether a pointer to the allocation escapes our analysis.
201 ///
202 /// If this is true, the slices are never fully built and should be
203 /// ignored.
isEscaped() const204 bool isEscaped() const { return PointerEscapingInstr; }
205
206 /// \brief Support for iterating over the slices.
207 /// @{
208 typedef SmallVectorImpl<Slice>::iterator iterator;
begin()209 iterator begin() { return Slices.begin(); }
end()210 iterator end() { return Slices.end(); }
211
212 typedef SmallVectorImpl<Slice>::const_iterator const_iterator;
begin() const213 const_iterator begin() const { return Slices.begin(); }
end() const214 const_iterator end() const { return Slices.end(); }
215 /// @}
216
217 /// \brief Allow iterating the dead users for this alloca.
218 ///
219 /// These are instructions which will never actually use the alloca as they
220 /// are outside the allocated range. They are safe to replace with undef and
221 /// delete.
222 /// @{
223 typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
dead_user_begin() const224 dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
dead_user_end() const225 dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
226 /// @}
227
228 /// \brief Allow iterating the dead expressions referring to this alloca.
229 ///
230 /// These are operands which have cannot actually be used to refer to the
231 /// alloca as they are outside its range and the user doesn't correct for
232 /// that. These mostly consist of PHI node inputs and the like which we just
233 /// need to replace with undef.
234 /// @{
235 typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
dead_op_begin() const236 dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
dead_op_end() const237 dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
238 /// @}
239
240 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
241 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
242 void printSlice(raw_ostream &OS, const_iterator I,
243 StringRef Indent = " ") const;
244 void printUse(raw_ostream &OS, const_iterator I,
245 StringRef Indent = " ") const;
246 void print(raw_ostream &OS) const;
247 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
248 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
249 #endif
250
251 private:
252 template <typename DerivedT, typename RetT = void> class BuilderBase;
253 class SliceBuilder;
254 friend class AllocaSlices::SliceBuilder;
255
256 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
257 /// \brief Handle to alloca instruction to simplify method interfaces.
258 AllocaInst &AI;
259 #endif
260
261 /// \brief The instruction responsible for this alloca not having a known set
262 /// of slices.
263 ///
264 /// When an instruction (potentially) escapes the pointer to the alloca, we
265 /// store a pointer to that here and abort trying to form slices of the
266 /// alloca. This will be null if the alloca slices are analyzed successfully.
267 Instruction *PointerEscapingInstr;
268
269 /// \brief The slices of the alloca.
270 ///
271 /// We store a vector of the slices formed by uses of the alloca here. This
272 /// vector is sorted by increasing begin offset, and then the unsplittable
273 /// slices before the splittable ones. See the Slice inner class for more
274 /// details.
275 SmallVector<Slice, 8> Slices;
276
277 /// \brief Instructions which will become dead if we rewrite the alloca.
278 ///
279 /// Note that these are not separated by slice. This is because we expect an
280 /// alloca to be completely rewritten or not rewritten at all. If rewritten,
281 /// all these instructions can simply be removed and replaced with undef as
282 /// they come from outside of the allocated space.
283 SmallVector<Instruction *, 8> DeadUsers;
284
285 /// \brief Operands which will become dead if we rewrite the alloca.
286 ///
287 /// These are operands that in their particular use can be replaced with
288 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
289 /// to PHI nodes and the like. They aren't entirely dead (there might be
290 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
291 /// want to swap this particular input for undef to simplify the use lists of
292 /// the alloca.
293 SmallVector<Use *, 8> DeadOperands;
294 };
295 }
296
foldSelectInst(SelectInst & SI)297 static Value *foldSelectInst(SelectInst &SI) {
298 // If the condition being selected on is a constant or the same value is
299 // being selected between, fold the select. Yes this does (rarely) happen
300 // early on.
301 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
302 return SI.getOperand(1+CI->isZero());
303 if (SI.getOperand(1) == SI.getOperand(2))
304 return SI.getOperand(1);
305
306 return 0;
307 }
308
309 /// \brief Builder for the alloca slices.
310 ///
311 /// This class builds a set of alloca slices by recursively visiting the uses
312 /// of an alloca and making a slice for each load and store at each offset.
313 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
314 friend class PtrUseVisitor<SliceBuilder>;
315 friend class InstVisitor<SliceBuilder>;
316 typedef PtrUseVisitor<SliceBuilder> Base;
317
318 const uint64_t AllocSize;
319 AllocaSlices &S;
320
321 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
322 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
323
324 /// \brief Set to de-duplicate dead instructions found in the use walk.
325 SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
326
327 public:
SliceBuilder(const DataLayout & DL,AllocaInst & AI,AllocaSlices & S)328 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S)
329 : PtrUseVisitor<SliceBuilder>(DL),
330 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {}
331
332 private:
markAsDead(Instruction & I)333 void markAsDead(Instruction &I) {
334 if (VisitedDeadInsts.insert(&I))
335 S.DeadUsers.push_back(&I);
336 }
337
insertUse(Instruction & I,const APInt & Offset,uint64_t Size,bool IsSplittable=false)338 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
339 bool IsSplittable = false) {
340 // Completely skip uses which have a zero size or start either before or
341 // past the end of the allocation.
342 if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) {
343 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
344 << " which has zero size or starts outside of the "
345 << AllocSize << " byte alloca:\n"
346 << " alloca: " << S.AI << "\n"
347 << " use: " << I << "\n");
348 return markAsDead(I);
349 }
350
351 uint64_t BeginOffset = Offset.getZExtValue();
352 uint64_t EndOffset = BeginOffset + Size;
353
354 // Clamp the end offset to the end of the allocation. Note that this is
355 // formulated to handle even the case where "BeginOffset + Size" overflows.
356 // This may appear superficially to be something we could ignore entirely,
357 // but that is not so! There may be widened loads or PHI-node uses where
358 // some instructions are dead but not others. We can't completely ignore
359 // them, and so have to record at least the information here.
360 assert(AllocSize >= BeginOffset); // Established above.
361 if (Size > AllocSize - BeginOffset) {
362 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
363 << " to remain within the " << AllocSize << " byte alloca:\n"
364 << " alloca: " << S.AI << "\n"
365 << " use: " << I << "\n");
366 EndOffset = AllocSize;
367 }
368
369 S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
370 }
371
visitBitCastInst(BitCastInst & BC)372 void visitBitCastInst(BitCastInst &BC) {
373 if (BC.use_empty())
374 return markAsDead(BC);
375
376 return Base::visitBitCastInst(BC);
377 }
378
visitGetElementPtrInst(GetElementPtrInst & GEPI)379 void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
380 if (GEPI.use_empty())
381 return markAsDead(GEPI);
382
383 return Base::visitGetElementPtrInst(GEPI);
384 }
385
handleLoadOrStore(Type * Ty,Instruction & I,const APInt & Offset,uint64_t Size,bool IsVolatile)386 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
387 uint64_t Size, bool IsVolatile) {
388 // We allow splitting of loads and stores where the type is an integer type
389 // and cover the entire alloca. This prevents us from splitting over
390 // eagerly.
391 // FIXME: In the great blue eventually, we should eagerly split all integer
392 // loads and stores, and then have a separate step that merges adjacent
393 // alloca partitions into a single partition suitable for integer widening.
394 // Or we should skip the merge step and rely on GVN and other passes to
395 // merge adjacent loads and stores that survive mem2reg.
396 bool IsSplittable =
397 Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize;
398
399 insertUse(I, Offset, Size, IsSplittable);
400 }
401
visitLoadInst(LoadInst & LI)402 void visitLoadInst(LoadInst &LI) {
403 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
404 "All simple FCA loads should have been pre-split");
405
406 if (!IsOffsetKnown)
407 return PI.setAborted(&LI);
408
409 uint64_t Size = DL.getTypeStoreSize(LI.getType());
410 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
411 }
412
visitStoreInst(StoreInst & SI)413 void visitStoreInst(StoreInst &SI) {
414 Value *ValOp = SI.getValueOperand();
415 if (ValOp == *U)
416 return PI.setEscapedAndAborted(&SI);
417 if (!IsOffsetKnown)
418 return PI.setAborted(&SI);
419
420 uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
421
422 // If this memory access can be shown to *statically* extend outside the
423 // bounds of of the allocation, it's behavior is undefined, so simply
424 // ignore it. Note that this is more strict than the generic clamping
425 // behavior of insertUse. We also try to handle cases which might run the
426 // risk of overflow.
427 // FIXME: We should instead consider the pointer to have escaped if this
428 // function is being instrumented for addressing bugs or race conditions.
429 if (Offset.isNegative() || Size > AllocSize ||
430 Offset.ugt(AllocSize - Size)) {
431 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
432 << " which extends past the end of the " << AllocSize
433 << " byte alloca:\n"
434 << " alloca: " << S.AI << "\n"
435 << " use: " << SI << "\n");
436 return markAsDead(SI);
437 }
438
439 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
440 "All simple FCA stores should have been pre-split");
441 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
442 }
443
444
visitMemSetInst(MemSetInst & II)445 void visitMemSetInst(MemSetInst &II) {
446 assert(II.getRawDest() == *U && "Pointer use is not the destination?");
447 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
448 if ((Length && Length->getValue() == 0) ||
449 (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
450 // Zero-length mem transfer intrinsics can be ignored entirely.
451 return markAsDead(II);
452
453 if (!IsOffsetKnown)
454 return PI.setAborted(&II);
455
456 insertUse(II, Offset,
457 Length ? Length->getLimitedValue()
458 : AllocSize - Offset.getLimitedValue(),
459 (bool)Length);
460 }
461
visitMemTransferInst(MemTransferInst & II)462 void visitMemTransferInst(MemTransferInst &II) {
463 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
464 if ((Length && Length->getValue() == 0) ||
465 (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
466 // Zero-length mem transfer intrinsics can be ignored entirely.
467 return markAsDead(II);
468
469 if (!IsOffsetKnown)
470 return PI.setAborted(&II);
471
472 uint64_t RawOffset = Offset.getLimitedValue();
473 uint64_t Size = Length ? Length->getLimitedValue()
474 : AllocSize - RawOffset;
475
476 // Check for the special case where the same exact value is used for both
477 // source and dest.
478 if (*U == II.getRawDest() && *U == II.getRawSource()) {
479 // For non-volatile transfers this is a no-op.
480 if (!II.isVolatile())
481 return markAsDead(II);
482
483 return insertUse(II, Offset, Size, /*IsSplittable=*/false);
484 }
485
486 // If we have seen both source and destination for a mem transfer, then
487 // they both point to the same alloca.
488 bool Inserted;
489 SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
490 llvm::tie(MTPI, Inserted) =
491 MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size()));
492 unsigned PrevIdx = MTPI->second;
493 if (!Inserted) {
494 Slice &PrevP = S.Slices[PrevIdx];
495
496 // Check if the begin offsets match and this is a non-volatile transfer.
497 // In that case, we can completely elide the transfer.
498 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
499 PrevP.kill();
500 return markAsDead(II);
501 }
502
503 // Otherwise we have an offset transfer within the same alloca. We can't
504 // split those.
505 PrevP.makeUnsplittable();
506 }
507
508 // Insert the use now that we've fixed up the splittable nature.
509 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
510
511 // Check that we ended up with a valid index in the map.
512 assert(S.Slices[PrevIdx].getUse()->getUser() == &II &&
513 "Map index doesn't point back to a slice with this user.");
514 }
515
516 // Disable SRoA for any intrinsics except for lifetime invariants.
517 // FIXME: What about debug intrinsics? This matches old behavior, but
518 // doesn't make sense.
visitIntrinsicInst(IntrinsicInst & II)519 void visitIntrinsicInst(IntrinsicInst &II) {
520 if (!IsOffsetKnown)
521 return PI.setAborted(&II);
522
523 if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
524 II.getIntrinsicID() == Intrinsic::lifetime_end) {
525 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
526 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
527 Length->getLimitedValue());
528 insertUse(II, Offset, Size, true);
529 return;
530 }
531
532 Base::visitIntrinsicInst(II);
533 }
534
hasUnsafePHIOrSelectUse(Instruction * Root,uint64_t & Size)535 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
536 // We consider any PHI or select that results in a direct load or store of
537 // the same offset to be a viable use for slicing purposes. These uses
538 // are considered unsplittable and the size is the maximum loaded or stored
539 // size.
540 SmallPtrSet<Instruction *, 4> Visited;
541 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
542 Visited.insert(Root);
543 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
544 // If there are no loads or stores, the access is dead. We mark that as
545 // a size zero access.
546 Size = 0;
547 do {
548 Instruction *I, *UsedI;
549 llvm::tie(UsedI, I) = Uses.pop_back_val();
550
551 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
552 Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
553 continue;
554 }
555 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
556 Value *Op = SI->getOperand(0);
557 if (Op == UsedI)
558 return SI;
559 Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
560 continue;
561 }
562
563 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
564 if (!GEP->hasAllZeroIndices())
565 return GEP;
566 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
567 !isa<SelectInst>(I)) {
568 return I;
569 }
570
571 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
572 ++UI)
573 if (Visited.insert(cast<Instruction>(*UI)))
574 Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
575 } while (!Uses.empty());
576
577 return 0;
578 }
579
visitPHINode(PHINode & PN)580 void visitPHINode(PHINode &PN) {
581 if (PN.use_empty())
582 return markAsDead(PN);
583 if (!IsOffsetKnown)
584 return PI.setAborted(&PN);
585
586 // See if we already have computed info on this node.
587 uint64_t &PHISize = PHIOrSelectSizes[&PN];
588 if (!PHISize) {
589 // This is a new PHI node, check for an unsafe use of the PHI node.
590 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize))
591 return PI.setAborted(UnsafeI);
592 }
593
594 // For PHI and select operands outside the alloca, we can't nuke the entire
595 // phi or select -- the other side might still be relevant, so we special
596 // case them here and use a separate structure to track the operands
597 // themselves which should be replaced with undef.
598 // FIXME: This should instead be escaped in the event we're instrumenting
599 // for address sanitization.
600 if ((Offset.isNegative() && (-Offset).uge(PHISize)) ||
601 (!Offset.isNegative() && Offset.uge(AllocSize))) {
602 S.DeadOperands.push_back(U);
603 return;
604 }
605
606 insertUse(PN, Offset, PHISize);
607 }
608
visitSelectInst(SelectInst & SI)609 void visitSelectInst(SelectInst &SI) {
610 if (SI.use_empty())
611 return markAsDead(SI);
612 if (Value *Result = foldSelectInst(SI)) {
613 if (Result == *U)
614 // If the result of the constant fold will be the pointer, recurse
615 // through the select as if we had RAUW'ed it.
616 enqueueUsers(SI);
617 else
618 // Otherwise the operand to the select is dead, and we can replace it
619 // with undef.
620 S.DeadOperands.push_back(U);
621
622 return;
623 }
624 if (!IsOffsetKnown)
625 return PI.setAborted(&SI);
626
627 // See if we already have computed info on this node.
628 uint64_t &SelectSize = PHIOrSelectSizes[&SI];
629 if (!SelectSize) {
630 // This is a new Select, check for an unsafe use of it.
631 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize))
632 return PI.setAborted(UnsafeI);
633 }
634
635 // For PHI and select operands outside the alloca, we can't nuke the entire
636 // phi or select -- the other side might still be relevant, so we special
637 // case them here and use a separate structure to track the operands
638 // themselves which should be replaced with undef.
639 // FIXME: This should instead be escaped in the event we're instrumenting
640 // for address sanitization.
641 if ((Offset.isNegative() && Offset.uge(SelectSize)) ||
642 (!Offset.isNegative() && Offset.uge(AllocSize))) {
643 S.DeadOperands.push_back(U);
644 return;
645 }
646
647 insertUse(SI, Offset, SelectSize);
648 }
649
650 /// \brief Disable SROA entirely if there are unhandled users of the alloca.
visitInstruction(Instruction & I)651 void visitInstruction(Instruction &I) {
652 PI.setAborted(&I);
653 }
654 };
655
AllocaSlices(const DataLayout & DL,AllocaInst & AI)656 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
657 :
658 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
659 AI(AI),
660 #endif
661 PointerEscapingInstr(0) {
662 SliceBuilder PB(DL, AI, *this);
663 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
664 if (PtrI.isEscaped() || PtrI.isAborted()) {
665 // FIXME: We should sink the escape vs. abort info into the caller nicely,
666 // possibly by just storing the PtrInfo in the AllocaSlices.
667 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
668 : PtrI.getAbortingInst();
669 assert(PointerEscapingInstr && "Did not track a bad instruction");
670 return;
671 }
672
673 Slices.erase(std::remove_if(Slices.begin(), Slices.end(),
674 std::mem_fun_ref(&Slice::isDead)),
675 Slices.end());
676
677 // Sort the uses. This arranges for the offsets to be in ascending order,
678 // and the sizes to be in descending order.
679 std::sort(Slices.begin(), Slices.end());
680 }
681
682 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
683
print(raw_ostream & OS,const_iterator I,StringRef Indent) const684 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
685 StringRef Indent) const {
686 printSlice(OS, I, Indent);
687 printUse(OS, I, Indent);
688 }
689
printSlice(raw_ostream & OS,const_iterator I,StringRef Indent) const690 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
691 StringRef Indent) const {
692 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
693 << " slice #" << (I - begin())
694 << (I->isSplittable() ? " (splittable)" : "") << "\n";
695 }
696
printUse(raw_ostream & OS,const_iterator I,StringRef Indent) const697 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
698 StringRef Indent) const {
699 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n";
700 }
701
print(raw_ostream & OS) const702 void AllocaSlices::print(raw_ostream &OS) const {
703 if (PointerEscapingInstr) {
704 OS << "Can't analyze slices for alloca: " << AI << "\n"
705 << " A pointer to this alloca escaped by:\n"
706 << " " << *PointerEscapingInstr << "\n";
707 return;
708 }
709
710 OS << "Slices of alloca: " << AI << "\n";
711 for (const_iterator I = begin(), E = end(); I != E; ++I)
712 print(OS, I);
713 }
714
dump(const_iterator I) const715 void AllocaSlices::dump(const_iterator I) const { print(dbgs(), I); }
dump() const716 void AllocaSlices::dump() const { print(dbgs()); }
717
718 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
719
720 namespace {
721 /// \brief Implementation of LoadAndStorePromoter for promoting allocas.
722 ///
723 /// This subclass of LoadAndStorePromoter adds overrides to handle promoting
724 /// the loads and stores of an alloca instruction, as well as updating its
725 /// debug information. This is used when a domtree is unavailable and thus
726 /// mem2reg in its full form can't be used to handle promotion of allocas to
727 /// scalar values.
728 class AllocaPromoter : public LoadAndStorePromoter {
729 AllocaInst &AI;
730 DIBuilder &DIB;
731
732 SmallVector<DbgDeclareInst *, 4> DDIs;
733 SmallVector<DbgValueInst *, 4> DVIs;
734
735 public:
AllocaPromoter(const SmallVectorImpl<Instruction * > & Insts,SSAUpdater & S,AllocaInst & AI,DIBuilder & DIB)736 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
737 AllocaInst &AI, DIBuilder &DIB)
738 : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
739
run(const SmallVectorImpl<Instruction * > & Insts)740 void run(const SmallVectorImpl<Instruction*> &Insts) {
741 // Retain the debug information attached to the alloca for use when
742 // rewriting loads and stores.
743 if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
744 for (Value::use_iterator UI = DebugNode->use_begin(),
745 UE = DebugNode->use_end();
746 UI != UE; ++UI)
747 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
748 DDIs.push_back(DDI);
749 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
750 DVIs.push_back(DVI);
751 }
752
753 LoadAndStorePromoter::run(Insts);
754
755 // While we have the debug information, clear it off of the alloca. The
756 // caller takes care of deleting the alloca.
757 while (!DDIs.empty())
758 DDIs.pop_back_val()->eraseFromParent();
759 while (!DVIs.empty())
760 DVIs.pop_back_val()->eraseFromParent();
761 }
762
isInstInList(Instruction * I,const SmallVectorImpl<Instruction * > & Insts) const763 virtual bool isInstInList(Instruction *I,
764 const SmallVectorImpl<Instruction*> &Insts) const {
765 if (LoadInst *LI = dyn_cast<LoadInst>(I))
766 return LI->getOperand(0) == &AI;
767 return cast<StoreInst>(I)->getPointerOperand() == &AI;
768 }
769
updateDebugInfo(Instruction * Inst) const770 virtual void updateDebugInfo(Instruction *Inst) const {
771 for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
772 E = DDIs.end(); I != E; ++I) {
773 DbgDeclareInst *DDI = *I;
774 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
775 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
776 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
777 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
778 }
779 for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
780 E = DVIs.end(); I != E; ++I) {
781 DbgValueInst *DVI = *I;
782 Value *Arg = 0;
783 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
784 // If an argument is zero extended then use argument directly. The ZExt
785 // may be zapped by an optimization pass in future.
786 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
787 Arg = dyn_cast<Argument>(ZExt->getOperand(0));
788 else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
789 Arg = dyn_cast<Argument>(SExt->getOperand(0));
790 if (!Arg)
791 Arg = SI->getValueOperand();
792 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
793 Arg = LI->getPointerOperand();
794 } else {
795 continue;
796 }
797 Instruction *DbgVal =
798 DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
799 Inst);
800 DbgVal->setDebugLoc(DVI->getDebugLoc());
801 }
802 }
803 };
804 } // end anon namespace
805
806
807 namespace {
808 /// \brief An optimization pass providing Scalar Replacement of Aggregates.
809 ///
810 /// This pass takes allocations which can be completely analyzed (that is, they
811 /// don't escape) and tries to turn them into scalar SSA values. There are
812 /// a few steps to this process.
813 ///
814 /// 1) It takes allocations of aggregates and analyzes the ways in which they
815 /// are used to try to split them into smaller allocations, ideally of
816 /// a single scalar data type. It will split up memcpy and memset accesses
817 /// as necessary and try to isolate individual scalar accesses.
818 /// 2) It will transform accesses into forms which are suitable for SSA value
819 /// promotion. This can be replacing a memset with a scalar store of an
820 /// integer value, or it can involve speculating operations on a PHI or
821 /// select to be a PHI or select of the results.
822 /// 3) Finally, this will try to detect a pattern of accesses which map cleanly
823 /// onto insert and extract operations on a vector value, and convert them to
824 /// this form. By doing so, it will enable promotion of vector aggregates to
825 /// SSA vector values.
826 class SROA : public FunctionPass {
827 const bool RequiresDomTree;
828
829 LLVMContext *C;
830 const DataLayout *DL;
831 DominatorTree *DT;
832
833 /// \brief Worklist of alloca instructions to simplify.
834 ///
835 /// Each alloca in the function is added to this. Each new alloca formed gets
836 /// added to it as well to recursively simplify unless that alloca can be
837 /// directly promoted. Finally, each time we rewrite a use of an alloca other
838 /// the one being actively rewritten, we add it back onto the list if not
839 /// already present to ensure it is re-visited.
840 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
841
842 /// \brief A collection of instructions to delete.
843 /// We try to batch deletions to simplify code and make things a bit more
844 /// efficient.
845 SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
846
847 /// \brief Post-promotion worklist.
848 ///
849 /// Sometimes we discover an alloca which has a high probability of becoming
850 /// viable for SROA after a round of promotion takes place. In those cases,
851 /// the alloca is enqueued here for re-processing.
852 ///
853 /// Note that we have to be very careful to clear allocas out of this list in
854 /// the event they are deleted.
855 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
856
857 /// \brief A collection of alloca instructions we can directly promote.
858 std::vector<AllocaInst *> PromotableAllocas;
859
860 /// \brief A worklist of PHIs to speculate prior to promoting allocas.
861 ///
862 /// All of these PHIs have been checked for the safety of speculation and by
863 /// being speculated will allow promoting allocas currently in the promotable
864 /// queue.
865 SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs;
866
867 /// \brief A worklist of select instructions to speculate prior to promoting
868 /// allocas.
869 ///
870 /// All of these select instructions have been checked for the safety of
871 /// speculation and by being speculated will allow promoting allocas
872 /// currently in the promotable queue.
873 SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects;
874
875 public:
SROA(bool RequiresDomTree=true)876 SROA(bool RequiresDomTree = true)
877 : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
878 C(0), DL(0), DT(0) {
879 initializeSROAPass(*PassRegistry::getPassRegistry());
880 }
881 bool runOnFunction(Function &F);
882 void getAnalysisUsage(AnalysisUsage &AU) const;
883
getPassName() const884 const char *getPassName() const { return "SROA"; }
885 static char ID;
886
887 private:
888 friend class PHIOrSelectSpeculator;
889 friend class AllocaSliceRewriter;
890
891 bool rewritePartition(AllocaInst &AI, AllocaSlices &S,
892 AllocaSlices::iterator B, AllocaSlices::iterator E,
893 int64_t BeginOffset, int64_t EndOffset,
894 ArrayRef<AllocaSlices::iterator> SplitUses);
895 bool splitAlloca(AllocaInst &AI, AllocaSlices &S);
896 bool runOnAlloca(AllocaInst &AI);
897 void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
898 bool promoteAllocas(Function &F);
899 };
900 }
901
902 char SROA::ID = 0;
903
createSROAPass(bool RequiresDomTree)904 FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
905 return new SROA(RequiresDomTree);
906 }
907
908 INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
909 false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)910 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
911 INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
912 false, false)
913
914 /// Walk the range of a partitioning looking for a common type to cover this
915 /// sequence of slices.
916 static Type *findCommonType(AllocaSlices::const_iterator B,
917 AllocaSlices::const_iterator E,
918 uint64_t EndOffset) {
919 Type *Ty = 0;
920 for (AllocaSlices::const_iterator I = B; I != E; ++I) {
921 Use *U = I->getUse();
922 if (isa<IntrinsicInst>(*U->getUser()))
923 continue;
924 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
925 continue;
926
927 Type *UserTy = 0;
928 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser()))
929 UserTy = LI->getType();
930 else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser()))
931 UserTy = SI->getValueOperand()->getType();
932 else
933 return 0; // Bail if we have weird uses.
934
935 if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
936 // If the type is larger than the partition, skip it. We only encounter
937 // this for split integer operations where we want to use the type of the
938 // entity causing the split.
939 if (ITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
940 continue;
941
942 // If we have found an integer type use covering the alloca, use that
943 // regardless of the other types, as integers are often used for a
944 // "bucket
945 // of bits" type.
946 return ITy;
947 }
948
949 if (Ty && Ty != UserTy)
950 return 0;
951
952 Ty = UserTy;
953 }
954 return Ty;
955 }
956
957 /// PHI instructions that use an alloca and are subsequently loaded can be
958 /// rewritten to load both input pointers in the pred blocks and then PHI the
959 /// results, allowing the load of the alloca to be promoted.
960 /// From this:
961 /// %P2 = phi [i32* %Alloca, i32* %Other]
962 /// %V = load i32* %P2
963 /// to:
964 /// %V1 = load i32* %Alloca -> will be mem2reg'd
965 /// ...
966 /// %V2 = load i32* %Other
967 /// ...
968 /// %V = phi [i32 %V1, i32 %V2]
969 ///
970 /// We can do this to a select if its only uses are loads and if the operands
971 /// to the select can be loaded unconditionally.
972 ///
973 /// FIXME: This should be hoisted into a generic utility, likely in
974 /// Transforms/Util/Local.h
isSafePHIToSpeculate(PHINode & PN,const DataLayout * DL=0)975 static bool isSafePHIToSpeculate(PHINode &PN,
976 const DataLayout *DL = 0) {
977 // For now, we can only do this promotion if the load is in the same block
978 // as the PHI, and if there are no stores between the phi and load.
979 // TODO: Allow recursive phi users.
980 // TODO: Allow stores.
981 BasicBlock *BB = PN.getParent();
982 unsigned MaxAlign = 0;
983 bool HaveLoad = false;
984 for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); UI != UE;
985 ++UI) {
986 LoadInst *LI = dyn_cast<LoadInst>(*UI);
987 if (LI == 0 || !LI->isSimple())
988 return false;
989
990 // For now we only allow loads in the same block as the PHI. This is
991 // a common case that happens when instcombine merges two loads through
992 // a PHI.
993 if (LI->getParent() != BB)
994 return false;
995
996 // Ensure that there are no instructions between the PHI and the load that
997 // could store.
998 for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
999 if (BBI->mayWriteToMemory())
1000 return false;
1001
1002 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1003 HaveLoad = true;
1004 }
1005
1006 if (!HaveLoad)
1007 return false;
1008
1009 // We can only transform this if it is safe to push the loads into the
1010 // predecessor blocks. The only thing to watch out for is that we can't put
1011 // a possibly trapping load in the predecessor if it is a critical edge.
1012 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1013 TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1014 Value *InVal = PN.getIncomingValue(Idx);
1015
1016 // If the value is produced by the terminator of the predecessor (an
1017 // invoke) or it has side-effects, there is no valid place to put a load
1018 // in the predecessor.
1019 if (TI == InVal || TI->mayHaveSideEffects())
1020 return false;
1021
1022 // If the predecessor has a single successor, then the edge isn't
1023 // critical.
1024 if (TI->getNumSuccessors() == 1)
1025 continue;
1026
1027 // If this pointer is always safe to load, or if we can prove that there
1028 // is already a load in the block, then we can move the load to the pred
1029 // block.
1030 if (InVal->isDereferenceablePointer() ||
1031 isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL))
1032 continue;
1033
1034 return false;
1035 }
1036
1037 return true;
1038 }
1039
speculatePHINodeLoads(PHINode & PN)1040 static void speculatePHINodeLoads(PHINode &PN) {
1041 DEBUG(dbgs() << " original: " << PN << "\n");
1042
1043 Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1044 IRBuilderTy PHIBuilder(&PN);
1045 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1046 PN.getName() + ".sroa.speculated");
1047
1048 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1049 // matter which one we get and if any differ.
1050 LoadInst *SomeLoad = cast<LoadInst>(*PN.use_begin());
1051 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1052 unsigned Align = SomeLoad->getAlignment();
1053
1054 // Rewrite all loads of the PN to use the new PHI.
1055 while (!PN.use_empty()) {
1056 LoadInst *LI = cast<LoadInst>(*PN.use_begin());
1057 LI->replaceAllUsesWith(NewPN);
1058 LI->eraseFromParent();
1059 }
1060
1061 // Inject loads into all of the pred blocks.
1062 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1063 BasicBlock *Pred = PN.getIncomingBlock(Idx);
1064 TerminatorInst *TI = Pred->getTerminator();
1065 Value *InVal = PN.getIncomingValue(Idx);
1066 IRBuilderTy PredBuilder(TI);
1067
1068 LoadInst *Load = PredBuilder.CreateLoad(
1069 InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1070 ++NumLoadsSpeculated;
1071 Load->setAlignment(Align);
1072 if (TBAATag)
1073 Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1074 NewPN->addIncoming(Load, Pred);
1075 }
1076
1077 DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
1078 PN.eraseFromParent();
1079 }
1080
1081 /// Select instructions that use an alloca and are subsequently loaded can be
1082 /// rewritten to load both input pointers and then select between the result,
1083 /// allowing the load of the alloca to be promoted.
1084 /// From this:
1085 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1086 /// %V = load i32* %P2
1087 /// to:
1088 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1089 /// %V2 = load i32* %Other
1090 /// %V = select i1 %cond, i32 %V1, i32 %V2
1091 ///
1092 /// We can do this to a select if its only uses are loads and if the operand
1093 /// to the select can be loaded unconditionally.
isSafeSelectToSpeculate(SelectInst & SI,const DataLayout * DL=0)1094 static bool isSafeSelectToSpeculate(SelectInst &SI, const DataLayout *DL = 0) {
1095 Value *TValue = SI.getTrueValue();
1096 Value *FValue = SI.getFalseValue();
1097 bool TDerefable = TValue->isDereferenceablePointer();
1098 bool FDerefable = FValue->isDereferenceablePointer();
1099
1100 for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); UI != UE;
1101 ++UI) {
1102 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1103 if (LI == 0 || !LI->isSimple())
1104 return false;
1105
1106 // Both operands to the select need to be dereferencable, either
1107 // absolutely (e.g. allocas) or at this point because we can see other
1108 // accesses to it.
1109 if (!TDerefable &&
1110 !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL))
1111 return false;
1112 if (!FDerefable &&
1113 !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL))
1114 return false;
1115 }
1116
1117 return true;
1118 }
1119
speculateSelectInstLoads(SelectInst & SI)1120 static void speculateSelectInstLoads(SelectInst &SI) {
1121 DEBUG(dbgs() << " original: " << SI << "\n");
1122
1123 IRBuilderTy IRB(&SI);
1124 Value *TV = SI.getTrueValue();
1125 Value *FV = SI.getFalseValue();
1126 // Replace the loads of the select with a select of two loads.
1127 while (!SI.use_empty()) {
1128 LoadInst *LI = cast<LoadInst>(*SI.use_begin());
1129 assert(LI->isSimple() && "We only speculate simple loads");
1130
1131 IRB.SetInsertPoint(LI);
1132 LoadInst *TL =
1133 IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1134 LoadInst *FL =
1135 IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1136 NumLoadsSpeculated += 2;
1137
1138 // Transfer alignment and TBAA info if present.
1139 TL->setAlignment(LI->getAlignment());
1140 FL->setAlignment(LI->getAlignment());
1141 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1142 TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1143 FL->setMetadata(LLVMContext::MD_tbaa, Tag);
1144 }
1145
1146 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1147 LI->getName() + ".sroa.speculated");
1148
1149 DEBUG(dbgs() << " speculated to: " << *V << "\n");
1150 LI->replaceAllUsesWith(V);
1151 LI->eraseFromParent();
1152 }
1153 SI.eraseFromParent();
1154 }
1155
1156 /// \brief Build a GEP out of a base pointer and indices.
1157 ///
1158 /// This will return the BasePtr if that is valid, or build a new GEP
1159 /// instruction using the IRBuilder if GEP-ing is needed.
buildGEP(IRBuilderTy & IRB,Value * BasePtr,SmallVectorImpl<Value * > & Indices)1160 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1161 SmallVectorImpl<Value *> &Indices) {
1162 if (Indices.empty())
1163 return BasePtr;
1164
1165 // A single zero index is a no-op, so check for this and avoid building a GEP
1166 // in that case.
1167 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1168 return BasePtr;
1169
1170 return IRB.CreateInBoundsGEP(BasePtr, Indices, "idx");
1171 }
1172
1173 /// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1174 /// TargetTy without changing the offset of the pointer.
1175 ///
1176 /// This routine assumes we've already established a properly offset GEP with
1177 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1178 /// zero-indices down through type layers until we find one the same as
1179 /// TargetTy. If we can't find one with the same type, we at least try to use
1180 /// one with the same size. If none of that works, we just produce the GEP as
1181 /// indicated by Indices to have the correct offset.
getNaturalGEPWithType(IRBuilderTy & IRB,const DataLayout & DL,Value * BasePtr,Type * Ty,Type * TargetTy,SmallVectorImpl<Value * > & Indices)1182 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1183 Value *BasePtr, Type *Ty, Type *TargetTy,
1184 SmallVectorImpl<Value *> &Indices) {
1185 if (Ty == TargetTy)
1186 return buildGEP(IRB, BasePtr, Indices);
1187
1188 // See if we can descend into a struct and locate a field with the correct
1189 // type.
1190 unsigned NumLayers = 0;
1191 Type *ElementTy = Ty;
1192 do {
1193 if (ElementTy->isPointerTy())
1194 break;
1195 if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1196 ElementTy = SeqTy->getElementType();
1197 // Note that we use the default address space as this index is over an
1198 // array or a vector, not a pointer.
1199 Indices.push_back(IRB.getInt(APInt(DL.getPointerSizeInBits(0), 0)));
1200 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1201 if (STy->element_begin() == STy->element_end())
1202 break; // Nothing left to descend into.
1203 ElementTy = *STy->element_begin();
1204 Indices.push_back(IRB.getInt32(0));
1205 } else {
1206 break;
1207 }
1208 ++NumLayers;
1209 } while (ElementTy != TargetTy);
1210 if (ElementTy != TargetTy)
1211 Indices.erase(Indices.end() - NumLayers, Indices.end());
1212
1213 return buildGEP(IRB, BasePtr, Indices);
1214 }
1215
1216 /// \brief Recursively compute indices for a natural GEP.
1217 ///
1218 /// This is the recursive step for getNaturalGEPWithOffset that walks down the
1219 /// element types adding appropriate indices for the GEP.
getNaturalGEPRecursively(IRBuilderTy & IRB,const DataLayout & DL,Value * Ptr,Type * Ty,APInt & Offset,Type * TargetTy,SmallVectorImpl<Value * > & Indices)1220 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1221 Value *Ptr, Type *Ty, APInt &Offset,
1222 Type *TargetTy,
1223 SmallVectorImpl<Value *> &Indices) {
1224 if (Offset == 0)
1225 return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices);
1226
1227 // We can't recurse through pointer types.
1228 if (Ty->isPointerTy())
1229 return 0;
1230
1231 // We try to analyze GEPs over vectors here, but note that these GEPs are
1232 // extremely poorly defined currently. The long-term goal is to remove GEPing
1233 // over a vector from the IR completely.
1234 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1235 unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
1236 if (ElementSizeInBits % 8)
1237 return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
1238 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1239 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1240 if (NumSkippedElements.ugt(VecTy->getNumElements()))
1241 return 0;
1242 Offset -= NumSkippedElements * ElementSize;
1243 Indices.push_back(IRB.getInt(NumSkippedElements));
1244 return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1245 Offset, TargetTy, Indices);
1246 }
1247
1248 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1249 Type *ElementTy = ArrTy->getElementType();
1250 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1251 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1252 if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1253 return 0;
1254
1255 Offset -= NumSkippedElements * ElementSize;
1256 Indices.push_back(IRB.getInt(NumSkippedElements));
1257 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1258 Indices);
1259 }
1260
1261 StructType *STy = dyn_cast<StructType>(Ty);
1262 if (!STy)
1263 return 0;
1264
1265 const StructLayout *SL = DL.getStructLayout(STy);
1266 uint64_t StructOffset = Offset.getZExtValue();
1267 if (StructOffset >= SL->getSizeInBytes())
1268 return 0;
1269 unsigned Index = SL->getElementContainingOffset(StructOffset);
1270 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1271 Type *ElementTy = STy->getElementType(Index);
1272 if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
1273 return 0; // The offset points into alignment padding.
1274
1275 Indices.push_back(IRB.getInt32(Index));
1276 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1277 Indices);
1278 }
1279
1280 /// \brief Get a natural GEP from a base pointer to a particular offset and
1281 /// resulting in a particular type.
1282 ///
1283 /// The goal is to produce a "natural" looking GEP that works with the existing
1284 /// composite types to arrive at the appropriate offset and element type for
1285 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1286 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1287 /// Indices, and setting Ty to the result subtype.
1288 ///
1289 /// If no natural GEP can be constructed, this function returns null.
getNaturalGEPWithOffset(IRBuilderTy & IRB,const DataLayout & DL,Value * Ptr,APInt Offset,Type * TargetTy,SmallVectorImpl<Value * > & Indices)1290 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1291 Value *Ptr, APInt Offset, Type *TargetTy,
1292 SmallVectorImpl<Value *> &Indices) {
1293 PointerType *Ty = cast<PointerType>(Ptr->getType());
1294
1295 // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1296 // an i8.
1297 if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1298 return 0;
1299
1300 Type *ElementTy = Ty->getElementType();
1301 if (!ElementTy->isSized())
1302 return 0; // We can't GEP through an unsized element.
1303 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1304 if (ElementSize == 0)
1305 return 0; // Zero-length arrays can't help us build a natural GEP.
1306 APInt NumSkippedElements = Offset.sdiv(ElementSize);
1307
1308 Offset -= NumSkippedElements * ElementSize;
1309 Indices.push_back(IRB.getInt(NumSkippedElements));
1310 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1311 Indices);
1312 }
1313
1314 /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1315 /// resulting pointer has PointerTy.
1316 ///
1317 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1318 /// and produces the pointer type desired. Where it cannot, it will try to use
1319 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1320 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1321 /// bitcast to the type.
1322 ///
1323 /// The strategy for finding the more natural GEPs is to peel off layers of the
1324 /// pointer, walking back through bit casts and GEPs, searching for a base
1325 /// pointer from which we can compute a natural GEP with the desired
1326 /// properties. The algorithm tries to fold as many constant indices into
1327 /// a single GEP as possible, thus making each GEP more independent of the
1328 /// surrounding code.
getAdjustedPtr(IRBuilderTy & IRB,const DataLayout & DL,Value * Ptr,APInt Offset,Type * PointerTy)1329 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL,
1330 Value *Ptr, APInt Offset, Type *PointerTy) {
1331 // Even though we don't look through PHI nodes, we could be called on an
1332 // instruction in an unreachable block, which may be on a cycle.
1333 SmallPtrSet<Value *, 4> Visited;
1334 Visited.insert(Ptr);
1335 SmallVector<Value *, 4> Indices;
1336
1337 // We may end up computing an offset pointer that has the wrong type. If we
1338 // never are able to compute one directly that has the correct type, we'll
1339 // fall back to it, so keep it around here.
1340 Value *OffsetPtr = 0;
1341
1342 // Remember any i8 pointer we come across to re-use if we need to do a raw
1343 // byte offset.
1344 Value *Int8Ptr = 0;
1345 APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1346
1347 Type *TargetTy = PointerTy->getPointerElementType();
1348
1349 do {
1350 // First fold any existing GEPs into the offset.
1351 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1352 APInt GEPOffset(Offset.getBitWidth(), 0);
1353 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1354 break;
1355 Offset += GEPOffset;
1356 Ptr = GEP->getPointerOperand();
1357 if (!Visited.insert(Ptr))
1358 break;
1359 }
1360
1361 // See if we can perform a natural GEP here.
1362 Indices.clear();
1363 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1364 Indices)) {
1365 if (P->getType() == PointerTy) {
1366 // Zap any offset pointer that we ended up computing in previous rounds.
1367 if (OffsetPtr && OffsetPtr->use_empty())
1368 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1369 I->eraseFromParent();
1370 return P;
1371 }
1372 if (!OffsetPtr) {
1373 OffsetPtr = P;
1374 }
1375 }
1376
1377 // Stash this pointer if we've found an i8*.
1378 if (Ptr->getType()->isIntegerTy(8)) {
1379 Int8Ptr = Ptr;
1380 Int8PtrOffset = Offset;
1381 }
1382
1383 // Peel off a layer of the pointer and update the offset appropriately.
1384 if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1385 Ptr = cast<Operator>(Ptr)->getOperand(0);
1386 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1387 if (GA->mayBeOverridden())
1388 break;
1389 Ptr = GA->getAliasee();
1390 } else {
1391 break;
1392 }
1393 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1394 } while (Visited.insert(Ptr));
1395
1396 if (!OffsetPtr) {
1397 if (!Int8Ptr) {
1398 Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
1399 "raw_cast");
1400 Int8PtrOffset = Offset;
1401 }
1402
1403 OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1404 IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1405 "raw_idx");
1406 }
1407 Ptr = OffsetPtr;
1408
1409 // On the off chance we were targeting i8*, guard the bitcast here.
1410 if (Ptr->getType() != PointerTy)
1411 Ptr = IRB.CreateBitCast(Ptr, PointerTy, "cast");
1412
1413 return Ptr;
1414 }
1415
1416 /// \brief Test whether we can convert a value from the old to the new type.
1417 ///
1418 /// This predicate should be used to guard calls to convertValue in order to
1419 /// ensure that we only try to convert viable values. The strategy is that we
1420 /// will peel off single element struct and array wrappings to get to an
1421 /// underlying value, and convert that value.
canConvertValue(const DataLayout & DL,Type * OldTy,Type * NewTy)1422 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1423 if (OldTy == NewTy)
1424 return true;
1425 if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
1426 if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
1427 if (NewITy->getBitWidth() >= OldITy->getBitWidth())
1428 return true;
1429 if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1430 return false;
1431 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1432 return false;
1433
1434 if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1435 if (NewTy->isPointerTy() && OldTy->isPointerTy())
1436 return true;
1437 if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
1438 return true;
1439 return false;
1440 }
1441
1442 return true;
1443 }
1444
1445 /// \brief Generic routine to convert an SSA value to a value of a different
1446 /// type.
1447 ///
1448 /// This will try various different casting techniques, such as bitcasts,
1449 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1450 /// two types for viability with this routine.
convertValue(const DataLayout & DL,IRBuilderTy & IRB,Value * V,Type * Ty)1451 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1452 Type *Ty) {
1453 assert(canConvertValue(DL, V->getType(), Ty) &&
1454 "Value not convertable to type");
1455 if (V->getType() == Ty)
1456 return V;
1457 if (IntegerType *OldITy = dyn_cast<IntegerType>(V->getType()))
1458 if (IntegerType *NewITy = dyn_cast<IntegerType>(Ty))
1459 if (NewITy->getBitWidth() > OldITy->getBitWidth())
1460 return IRB.CreateZExt(V, NewITy);
1461 if (V->getType()->isIntegerTy() && Ty->isPointerTy())
1462 return IRB.CreateIntToPtr(V, Ty);
1463 if (V->getType()->isPointerTy() && Ty->isIntegerTy())
1464 return IRB.CreatePtrToInt(V, Ty);
1465
1466 return IRB.CreateBitCast(V, Ty);
1467 }
1468
1469 /// \brief Test whether the given slice use can be promoted to a vector.
1470 ///
1471 /// This function is called to test each entry in a partioning which is slated
1472 /// for a single slice.
isVectorPromotionViableForSlice(const DataLayout & DL,AllocaSlices & S,uint64_t SliceBeginOffset,uint64_t SliceEndOffset,VectorType * Ty,uint64_t ElementSize,AllocaSlices::const_iterator I)1473 static bool isVectorPromotionViableForSlice(
1474 const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset,
1475 uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize,
1476 AllocaSlices::const_iterator I) {
1477 // First validate the slice offsets.
1478 uint64_t BeginOffset =
1479 std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset;
1480 uint64_t BeginIndex = BeginOffset / ElementSize;
1481 if (BeginIndex * ElementSize != BeginOffset ||
1482 BeginIndex >= Ty->getNumElements())
1483 return false;
1484 uint64_t EndOffset =
1485 std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset;
1486 uint64_t EndIndex = EndOffset / ElementSize;
1487 if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1488 return false;
1489
1490 assert(EndIndex > BeginIndex && "Empty vector!");
1491 uint64_t NumElements = EndIndex - BeginIndex;
1492 Type *SliceTy =
1493 (NumElements == 1) ? Ty->getElementType()
1494 : VectorType::get(Ty->getElementType(), NumElements);
1495
1496 Type *SplitIntTy =
1497 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1498
1499 Use *U = I->getUse();
1500
1501 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1502 if (MI->isVolatile())
1503 return false;
1504 if (!I->isSplittable())
1505 return false; // Skip any unsplittable intrinsics.
1506 } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1507 // Disable vector promotion when there are loads or stores of an FCA.
1508 return false;
1509 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1510 if (LI->isVolatile())
1511 return false;
1512 Type *LTy = LI->getType();
1513 if (SliceBeginOffset > I->beginOffset() ||
1514 SliceEndOffset < I->endOffset()) {
1515 assert(LTy->isIntegerTy());
1516 LTy = SplitIntTy;
1517 }
1518 if (!canConvertValue(DL, SliceTy, LTy))
1519 return false;
1520 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1521 if (SI->isVolatile())
1522 return false;
1523 Type *STy = SI->getValueOperand()->getType();
1524 if (SliceBeginOffset > I->beginOffset() ||
1525 SliceEndOffset < I->endOffset()) {
1526 assert(STy->isIntegerTy());
1527 STy = SplitIntTy;
1528 }
1529 if (!canConvertValue(DL, STy, SliceTy))
1530 return false;
1531 } else {
1532 return false;
1533 }
1534
1535 return true;
1536 }
1537
1538 /// \brief Test whether the given alloca partitioning and range of slices can be
1539 /// promoted to a vector.
1540 ///
1541 /// This is a quick test to check whether we can rewrite a particular alloca
1542 /// partition (and its newly formed alloca) into a vector alloca with only
1543 /// whole-vector loads and stores such that it could be promoted to a vector
1544 /// SSA value. We only can ensure this for a limited set of operations, and we
1545 /// don't want to do the rewrites unless we are confident that the result will
1546 /// be promotable, so we have an early test here.
1547 static bool
isVectorPromotionViable(const DataLayout & DL,Type * AllocaTy,AllocaSlices & S,uint64_t SliceBeginOffset,uint64_t SliceEndOffset,AllocaSlices::const_iterator I,AllocaSlices::const_iterator E,ArrayRef<AllocaSlices::iterator> SplitUses)1548 isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S,
1549 uint64_t SliceBeginOffset, uint64_t SliceEndOffset,
1550 AllocaSlices::const_iterator I,
1551 AllocaSlices::const_iterator E,
1552 ArrayRef<AllocaSlices::iterator> SplitUses) {
1553 VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
1554 if (!Ty)
1555 return false;
1556
1557 uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType());
1558
1559 // While the definition of LLVM vectors is bitpacked, we don't support sizes
1560 // that aren't byte sized.
1561 if (ElementSize % 8)
1562 return false;
1563 assert((DL.getTypeSizeInBits(Ty) % 8) == 0 &&
1564 "vector size not a multiple of element size?");
1565 ElementSize /= 8;
1566
1567 for (; I != E; ++I)
1568 if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
1569 SliceEndOffset, Ty, ElementSize, I))
1570 return false;
1571
1572 for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
1573 SUE = SplitUses.end();
1574 SUI != SUE; ++SUI)
1575 if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
1576 SliceEndOffset, Ty, ElementSize, *SUI))
1577 return false;
1578
1579 return true;
1580 }
1581
1582 /// \brief Test whether a slice of an alloca is valid for integer widening.
1583 ///
1584 /// This implements the necessary checking for the \c isIntegerWideningViable
1585 /// test below on a single slice of the alloca.
isIntegerWideningViableForSlice(const DataLayout & DL,Type * AllocaTy,uint64_t AllocBeginOffset,uint64_t Size,AllocaSlices & S,AllocaSlices::const_iterator I,bool & WholeAllocaOp)1586 static bool isIntegerWideningViableForSlice(const DataLayout &DL,
1587 Type *AllocaTy,
1588 uint64_t AllocBeginOffset,
1589 uint64_t Size, AllocaSlices &S,
1590 AllocaSlices::const_iterator I,
1591 bool &WholeAllocaOp) {
1592 uint64_t RelBegin = I->beginOffset() - AllocBeginOffset;
1593 uint64_t RelEnd = I->endOffset() - AllocBeginOffset;
1594
1595 // We can't reasonably handle cases where the load or store extends past
1596 // the end of the aloca's type and into its padding.
1597 if (RelEnd > Size)
1598 return false;
1599
1600 Use *U = I->getUse();
1601
1602 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1603 if (LI->isVolatile())
1604 return false;
1605 if (RelBegin == 0 && RelEnd == Size)
1606 WholeAllocaOp = true;
1607 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
1608 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1609 return false;
1610 } else if (RelBegin != 0 || RelEnd != Size ||
1611 !canConvertValue(DL, AllocaTy, LI->getType())) {
1612 // Non-integer loads need to be convertible from the alloca type so that
1613 // they are promotable.
1614 return false;
1615 }
1616 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1617 Type *ValueTy = SI->getValueOperand()->getType();
1618 if (SI->isVolatile())
1619 return false;
1620 if (RelBegin == 0 && RelEnd == Size)
1621 WholeAllocaOp = true;
1622 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
1623 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1624 return false;
1625 } else if (RelBegin != 0 || RelEnd != Size ||
1626 !canConvertValue(DL, ValueTy, AllocaTy)) {
1627 // Non-integer stores need to be convertible to the alloca type so that
1628 // they are promotable.
1629 return false;
1630 }
1631 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1632 if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
1633 return false;
1634 if (!I->isSplittable())
1635 return false; // Skip any unsplittable intrinsics.
1636 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1637 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1638 II->getIntrinsicID() != Intrinsic::lifetime_end)
1639 return false;
1640 } else {
1641 return false;
1642 }
1643
1644 return true;
1645 }
1646
1647 /// \brief Test whether the given alloca partition's integer operations can be
1648 /// widened to promotable ones.
1649 ///
1650 /// This is a quick test to check whether we can rewrite the integer loads and
1651 /// stores to a particular alloca into wider loads and stores and be able to
1652 /// promote the resulting alloca.
1653 static bool
isIntegerWideningViable(const DataLayout & DL,Type * AllocaTy,uint64_t AllocBeginOffset,AllocaSlices & S,AllocaSlices::const_iterator I,AllocaSlices::const_iterator E,ArrayRef<AllocaSlices::iterator> SplitUses)1654 isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy,
1655 uint64_t AllocBeginOffset, AllocaSlices &S,
1656 AllocaSlices::const_iterator I,
1657 AllocaSlices::const_iterator E,
1658 ArrayRef<AllocaSlices::iterator> SplitUses) {
1659 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
1660 // Don't create integer types larger than the maximum bitwidth.
1661 if (SizeInBits > IntegerType::MAX_INT_BITS)
1662 return false;
1663
1664 // Don't try to handle allocas with bit-padding.
1665 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
1666 return false;
1667
1668 // We need to ensure that an integer type with the appropriate bitwidth can
1669 // be converted to the alloca type, whatever that is. We don't want to force
1670 // the alloca itself to have an integer type if there is a more suitable one.
1671 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
1672 if (!canConvertValue(DL, AllocaTy, IntTy) ||
1673 !canConvertValue(DL, IntTy, AllocaTy))
1674 return false;
1675
1676 uint64_t Size = DL.getTypeStoreSize(AllocaTy);
1677
1678 // While examining uses, we ensure that the alloca has a covering load or
1679 // store. We don't want to widen the integer operations only to fail to
1680 // promote due to some other unsplittable entry (which we may make splittable
1681 // later). However, if there are only splittable uses, go ahead and assume
1682 // that we cover the alloca.
1683 bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits);
1684
1685 for (; I != E; ++I)
1686 if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
1687 S, I, WholeAllocaOp))
1688 return false;
1689
1690 for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
1691 SUE = SplitUses.end();
1692 SUI != SUE; ++SUI)
1693 if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
1694 S, *SUI, WholeAllocaOp))
1695 return false;
1696
1697 return WholeAllocaOp;
1698 }
1699
extractInteger(const DataLayout & DL,IRBuilderTy & IRB,Value * V,IntegerType * Ty,uint64_t Offset,const Twine & Name)1700 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1701 IntegerType *Ty, uint64_t Offset,
1702 const Twine &Name) {
1703 DEBUG(dbgs() << " start: " << *V << "\n");
1704 IntegerType *IntTy = cast<IntegerType>(V->getType());
1705 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
1706 "Element extends past full value");
1707 uint64_t ShAmt = 8*Offset;
1708 if (DL.isBigEndian())
1709 ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
1710 if (ShAmt) {
1711 V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
1712 DEBUG(dbgs() << " shifted: " << *V << "\n");
1713 }
1714 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
1715 "Cannot extract to a larger integer!");
1716 if (Ty != IntTy) {
1717 V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
1718 DEBUG(dbgs() << " trunced: " << *V << "\n");
1719 }
1720 return V;
1721 }
1722
insertInteger(const DataLayout & DL,IRBuilderTy & IRB,Value * Old,Value * V,uint64_t Offset,const Twine & Name)1723 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
1724 Value *V, uint64_t Offset, const Twine &Name) {
1725 IntegerType *IntTy = cast<IntegerType>(Old->getType());
1726 IntegerType *Ty = cast<IntegerType>(V->getType());
1727 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
1728 "Cannot insert a larger integer!");
1729 DEBUG(dbgs() << " start: " << *V << "\n");
1730 if (Ty != IntTy) {
1731 V = IRB.CreateZExt(V, IntTy, Name + ".ext");
1732 DEBUG(dbgs() << " extended: " << *V << "\n");
1733 }
1734 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
1735 "Element store outside of alloca store");
1736 uint64_t ShAmt = 8*Offset;
1737 if (DL.isBigEndian())
1738 ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
1739 if (ShAmt) {
1740 V = IRB.CreateShl(V, ShAmt, Name + ".shift");
1741 DEBUG(dbgs() << " shifted: " << *V << "\n");
1742 }
1743
1744 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
1745 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
1746 Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
1747 DEBUG(dbgs() << " masked: " << *Old << "\n");
1748 V = IRB.CreateOr(Old, V, Name + ".insert");
1749 DEBUG(dbgs() << " inserted: " << *V << "\n");
1750 }
1751 return V;
1752 }
1753
extractVector(IRBuilderTy & IRB,Value * V,unsigned BeginIndex,unsigned EndIndex,const Twine & Name)1754 static Value *extractVector(IRBuilderTy &IRB, Value *V,
1755 unsigned BeginIndex, unsigned EndIndex,
1756 const Twine &Name) {
1757 VectorType *VecTy = cast<VectorType>(V->getType());
1758 unsigned NumElements = EndIndex - BeginIndex;
1759 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
1760
1761 if (NumElements == VecTy->getNumElements())
1762 return V;
1763
1764 if (NumElements == 1) {
1765 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
1766 Name + ".extract");
1767 DEBUG(dbgs() << " extract: " << *V << "\n");
1768 return V;
1769 }
1770
1771 SmallVector<Constant*, 8> Mask;
1772 Mask.reserve(NumElements);
1773 for (unsigned i = BeginIndex; i != EndIndex; ++i)
1774 Mask.push_back(IRB.getInt32(i));
1775 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
1776 ConstantVector::get(Mask),
1777 Name + ".extract");
1778 DEBUG(dbgs() << " shuffle: " << *V << "\n");
1779 return V;
1780 }
1781
insertVector(IRBuilderTy & IRB,Value * Old,Value * V,unsigned BeginIndex,const Twine & Name)1782 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
1783 unsigned BeginIndex, const Twine &Name) {
1784 VectorType *VecTy = cast<VectorType>(Old->getType());
1785 assert(VecTy && "Can only insert a vector into a vector");
1786
1787 VectorType *Ty = dyn_cast<VectorType>(V->getType());
1788 if (!Ty) {
1789 // Single element to insert.
1790 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
1791 Name + ".insert");
1792 DEBUG(dbgs() << " insert: " << *V << "\n");
1793 return V;
1794 }
1795
1796 assert(Ty->getNumElements() <= VecTy->getNumElements() &&
1797 "Too many elements!");
1798 if (Ty->getNumElements() == VecTy->getNumElements()) {
1799 assert(V->getType() == VecTy && "Vector type mismatch");
1800 return V;
1801 }
1802 unsigned EndIndex = BeginIndex + Ty->getNumElements();
1803
1804 // When inserting a smaller vector into the larger to store, we first
1805 // use a shuffle vector to widen it with undef elements, and then
1806 // a second shuffle vector to select between the loaded vector and the
1807 // incoming vector.
1808 SmallVector<Constant*, 8> Mask;
1809 Mask.reserve(VecTy->getNumElements());
1810 for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
1811 if (i >= BeginIndex && i < EndIndex)
1812 Mask.push_back(IRB.getInt32(i - BeginIndex));
1813 else
1814 Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
1815 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
1816 ConstantVector::get(Mask),
1817 Name + ".expand");
1818 DEBUG(dbgs() << " shuffle: " << *V << "\n");
1819
1820 Mask.clear();
1821 for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
1822 Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
1823
1824 V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
1825
1826 DEBUG(dbgs() << " blend: " << *V << "\n");
1827 return V;
1828 }
1829
1830 namespace {
1831 /// \brief Visitor to rewrite instructions using p particular slice of an alloca
1832 /// to use a new alloca.
1833 ///
1834 /// Also implements the rewriting to vector-based accesses when the partition
1835 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
1836 /// lives here.
1837 class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
1838 // Befriend the base class so it can delegate to private visit methods.
1839 friend class llvm::InstVisitor<AllocaSliceRewriter, bool>;
1840 typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
1841
1842 const DataLayout &DL;
1843 AllocaSlices &S;
1844 SROA &Pass;
1845 AllocaInst &OldAI, &NewAI;
1846 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
1847 Type *NewAllocaTy;
1848
1849 // If we are rewriting an alloca partition which can be written as pure
1850 // vector operations, we stash extra information here. When VecTy is
1851 // non-null, we have some strict guarantees about the rewritten alloca:
1852 // - The new alloca is exactly the size of the vector type here.
1853 // - The accesses all either map to the entire vector or to a single
1854 // element.
1855 // - The set of accessing instructions is only one of those handled above
1856 // in isVectorPromotionViable. Generally these are the same access kinds
1857 // which are promotable via mem2reg.
1858 VectorType *VecTy;
1859 Type *ElementTy;
1860 uint64_t ElementSize;
1861
1862 // This is a convenience and flag variable that will be null unless the new
1863 // alloca's integer operations should be widened to this integer type due to
1864 // passing isIntegerWideningViable above. If it is non-null, the desired
1865 // integer type will be stored here for easy access during rewriting.
1866 IntegerType *IntTy;
1867
1868 // The offset of the slice currently being rewritten.
1869 uint64_t BeginOffset, EndOffset;
1870 bool IsSplittable;
1871 bool IsSplit;
1872 Use *OldUse;
1873 Instruction *OldPtr;
1874
1875 // Output members carrying state about the result of visiting and rewriting
1876 // the slice of the alloca.
1877 bool IsUsedByRewrittenSpeculatableInstructions;
1878
1879 // Utility IR builder, whose name prefix is setup for each visited use, and
1880 // the insertion point is set to point to the user.
1881 IRBuilderTy IRB;
1882
1883 public:
AllocaSliceRewriter(const DataLayout & DL,AllocaSlices & S,SROA & Pass,AllocaInst & OldAI,AllocaInst & NewAI,uint64_t NewBeginOffset,uint64_t NewEndOffset,bool IsVectorPromotable=false,bool IsIntegerPromotable=false)1884 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass,
1885 AllocaInst &OldAI, AllocaInst &NewAI,
1886 uint64_t NewBeginOffset, uint64_t NewEndOffset,
1887 bool IsVectorPromotable = false,
1888 bool IsIntegerPromotable = false)
1889 : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
1890 NewAllocaBeginOffset(NewBeginOffset), NewAllocaEndOffset(NewEndOffset),
1891 NewAllocaTy(NewAI.getAllocatedType()),
1892 VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : 0),
1893 ElementTy(VecTy ? VecTy->getElementType() : 0),
1894 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
1895 IntTy(IsIntegerPromotable
1896 ? Type::getIntNTy(
1897 NewAI.getContext(),
1898 DL.getTypeSizeInBits(NewAI.getAllocatedType()))
1899 : 0),
1900 BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
1901 OldPtr(), IsUsedByRewrittenSpeculatableInstructions(false),
1902 IRB(NewAI.getContext(), ConstantFolder()) {
1903 if (VecTy) {
1904 assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
1905 "Only multiple-of-8 sized vector elements are viable");
1906 ++NumVectorized;
1907 }
1908 assert((!IsVectorPromotable && !IsIntegerPromotable) ||
1909 IsVectorPromotable != IsIntegerPromotable);
1910 }
1911
visit(AllocaSlices::const_iterator I)1912 bool visit(AllocaSlices::const_iterator I) {
1913 bool CanSROA = true;
1914 BeginOffset = I->beginOffset();
1915 EndOffset = I->endOffset();
1916 IsSplittable = I->isSplittable();
1917 IsSplit =
1918 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
1919
1920 OldUse = I->getUse();
1921 OldPtr = cast<Instruction>(OldUse->get());
1922
1923 Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
1924 IRB.SetInsertPoint(OldUserI);
1925 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
1926 IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
1927
1928 CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
1929 if (VecTy || IntTy)
1930 assert(CanSROA);
1931 return CanSROA;
1932 }
1933
1934 /// \brief Query whether this slice is used by speculatable instructions after
1935 /// rewriting.
1936 ///
1937 /// These instructions (PHIs and Selects currently) require the alloca slice
1938 /// to run back through the rewriter. Thus, they are promotable, but not on
1939 /// this iteration. This is distinct from a slice which is unpromotable for
1940 /// some other reason, in which case we don't even want to perform the
1941 /// speculation. This can be querried at any time and reflects whether (at
1942 /// that point) a visit call has rewritten a speculatable instruction on the
1943 /// current slice.
isUsedByRewrittenSpeculatableInstructions() const1944 bool isUsedByRewrittenSpeculatableInstructions() const {
1945 return IsUsedByRewrittenSpeculatableInstructions;
1946 }
1947
1948 private:
1949 // Make sure the other visit overloads are visible.
1950 using Base::visit;
1951
1952 // Every instruction which can end up as a user must have a rewrite rule.
visitInstruction(Instruction & I)1953 bool visitInstruction(Instruction &I) {
1954 DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
1955 llvm_unreachable("No rewrite rule for this instruction!");
1956 }
1957
getAdjustedAllocaPtr(IRBuilderTy & IRB,uint64_t Offset,Type * PointerTy)1958 Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, uint64_t Offset,
1959 Type *PointerTy) {
1960 assert(Offset >= NewAllocaBeginOffset);
1961 return getAdjustedPtr(IRB, DL, &NewAI, APInt(DL.getPointerSizeInBits(),
1962 Offset - NewAllocaBeginOffset),
1963 PointerTy);
1964 }
1965
1966 /// \brief Compute suitable alignment to access an offset into the new alloca.
getOffsetAlign(uint64_t Offset)1967 unsigned getOffsetAlign(uint64_t Offset) {
1968 unsigned NewAIAlign = NewAI.getAlignment();
1969 if (!NewAIAlign)
1970 NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
1971 return MinAlign(NewAIAlign, Offset);
1972 }
1973
1974 /// \brief Compute suitable alignment to access a type at an offset of the
1975 /// new alloca.
1976 ///
1977 /// \returns zero if the type's ABI alignment is a suitable alignment,
1978 /// otherwise returns the maximal suitable alignment.
getOffsetTypeAlign(Type * Ty,uint64_t Offset)1979 unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
1980 unsigned Align = getOffsetAlign(Offset);
1981 return Align == DL.getABITypeAlignment(Ty) ? 0 : Align;
1982 }
1983
getIndex(uint64_t Offset)1984 unsigned getIndex(uint64_t Offset) {
1985 assert(VecTy && "Can only call getIndex when rewriting a vector");
1986 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
1987 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
1988 uint32_t Index = RelOffset / ElementSize;
1989 assert(Index * ElementSize == RelOffset);
1990 return Index;
1991 }
1992
deleteIfTriviallyDead(Value * V)1993 void deleteIfTriviallyDead(Value *V) {
1994 Instruction *I = cast<Instruction>(V);
1995 if (isInstructionTriviallyDead(I))
1996 Pass.DeadInsts.insert(I);
1997 }
1998
rewriteVectorizedLoadInst(uint64_t NewBeginOffset,uint64_t NewEndOffset)1999 Value *rewriteVectorizedLoadInst(uint64_t NewBeginOffset,
2000 uint64_t NewEndOffset) {
2001 unsigned BeginIndex = getIndex(NewBeginOffset);
2002 unsigned EndIndex = getIndex(NewEndOffset);
2003 assert(EndIndex > BeginIndex && "Empty vector!");
2004
2005 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2006 "load");
2007 return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2008 }
2009
rewriteIntegerLoad(LoadInst & LI,uint64_t NewBeginOffset,uint64_t NewEndOffset)2010 Value *rewriteIntegerLoad(LoadInst &LI, uint64_t NewBeginOffset,
2011 uint64_t NewEndOffset) {
2012 assert(IntTy && "We cannot insert an integer to the alloca");
2013 assert(!LI.isVolatile());
2014 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2015 "load");
2016 V = convertValue(DL, IRB, V, IntTy);
2017 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2018 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2019 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset)
2020 V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset,
2021 "extract");
2022 return V;
2023 }
2024
visitLoadInst(LoadInst & LI)2025 bool visitLoadInst(LoadInst &LI) {
2026 DEBUG(dbgs() << " original: " << LI << "\n");
2027 Value *OldOp = LI.getOperand(0);
2028 assert(OldOp == OldPtr);
2029
2030 // Compute the intersecting offset range.
2031 assert(BeginOffset < NewAllocaEndOffset);
2032 assert(EndOffset > NewAllocaBeginOffset);
2033 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2034 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2035
2036 uint64_t Size = NewEndOffset - NewBeginOffset;
2037
2038 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8)
2039 : LI.getType();
2040 bool IsPtrAdjusted = false;
2041 Value *V;
2042 if (VecTy) {
2043 V = rewriteVectorizedLoadInst(NewBeginOffset, NewEndOffset);
2044 } else if (IntTy && LI.getType()->isIntegerTy()) {
2045 V = rewriteIntegerLoad(LI, NewBeginOffset, NewEndOffset);
2046 } else if (NewBeginOffset == NewAllocaBeginOffset &&
2047 canConvertValue(DL, NewAllocaTy, LI.getType())) {
2048 V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2049 LI.isVolatile(), "load");
2050 } else {
2051 Type *LTy = TargetTy->getPointerTo();
2052 V = IRB.CreateAlignedLoad(
2053 getAdjustedAllocaPtr(IRB, NewBeginOffset, LTy),
2054 getOffsetTypeAlign(TargetTy, NewBeginOffset - NewAllocaBeginOffset),
2055 LI.isVolatile(), "load");
2056 IsPtrAdjusted = true;
2057 }
2058 V = convertValue(DL, IRB, V, TargetTy);
2059
2060 if (IsSplit) {
2061 assert(!LI.isVolatile());
2062 assert(LI.getType()->isIntegerTy() &&
2063 "Only integer type loads and stores are split");
2064 assert(Size < DL.getTypeStoreSize(LI.getType()) &&
2065 "Split load isn't smaller than original load");
2066 assert(LI.getType()->getIntegerBitWidth() ==
2067 DL.getTypeStoreSizeInBits(LI.getType()) &&
2068 "Non-byte-multiple bit width");
2069 // Move the insertion point just past the load so that we can refer to it.
2070 IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
2071 // Create a placeholder value with the same type as LI to use as the
2072 // basis for the new value. This allows us to replace the uses of LI with
2073 // the computed value, and then replace the placeholder with LI, leaving
2074 // LI only used for this computation.
2075 Value *Placeholder
2076 = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
2077 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset,
2078 "insert");
2079 LI.replaceAllUsesWith(V);
2080 Placeholder->replaceAllUsesWith(&LI);
2081 delete Placeholder;
2082 } else {
2083 LI.replaceAllUsesWith(V);
2084 }
2085
2086 Pass.DeadInsts.insert(&LI);
2087 deleteIfTriviallyDead(OldOp);
2088 DEBUG(dbgs() << " to: " << *V << "\n");
2089 return !LI.isVolatile() && !IsPtrAdjusted;
2090 }
2091
rewriteVectorizedStoreInst(Value * V,StoreInst & SI,Value * OldOp,uint64_t NewBeginOffset,uint64_t NewEndOffset)2092 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2093 uint64_t NewBeginOffset,
2094 uint64_t NewEndOffset) {
2095 if (V->getType() != VecTy) {
2096 unsigned BeginIndex = getIndex(NewBeginOffset);
2097 unsigned EndIndex = getIndex(NewEndOffset);
2098 assert(EndIndex > BeginIndex && "Empty vector!");
2099 unsigned NumElements = EndIndex - BeginIndex;
2100 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2101 Type *SliceTy =
2102 (NumElements == 1) ? ElementTy
2103 : VectorType::get(ElementTy, NumElements);
2104 if (V->getType() != SliceTy)
2105 V = convertValue(DL, IRB, V, SliceTy);
2106
2107 // Mix in the existing elements.
2108 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2109 "load");
2110 V = insertVector(IRB, Old, V, BeginIndex, "vec");
2111 }
2112 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2113 Pass.DeadInsts.insert(&SI);
2114
2115 (void)Store;
2116 DEBUG(dbgs() << " to: " << *Store << "\n");
2117 return true;
2118 }
2119
rewriteIntegerStore(Value * V,StoreInst & SI,uint64_t NewBeginOffset,uint64_t NewEndOffset)2120 bool rewriteIntegerStore(Value *V, StoreInst &SI,
2121 uint64_t NewBeginOffset, uint64_t NewEndOffset) {
2122 assert(IntTy && "We cannot extract an integer from the alloca");
2123 assert(!SI.isVolatile());
2124 if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2125 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2126 "oldload");
2127 Old = convertValue(DL, IRB, Old, IntTy);
2128 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2129 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2130 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset,
2131 "insert");
2132 }
2133 V = convertValue(DL, IRB, V, NewAllocaTy);
2134 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2135 Pass.DeadInsts.insert(&SI);
2136 (void)Store;
2137 DEBUG(dbgs() << " to: " << *Store << "\n");
2138 return true;
2139 }
2140
visitStoreInst(StoreInst & SI)2141 bool visitStoreInst(StoreInst &SI) {
2142 DEBUG(dbgs() << " original: " << SI << "\n");
2143 Value *OldOp = SI.getOperand(1);
2144 assert(OldOp == OldPtr);
2145
2146 Value *V = SI.getValueOperand();
2147
2148 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2149 // alloca that should be re-examined after promoting this alloca.
2150 if (V->getType()->isPointerTy())
2151 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2152 Pass.PostPromotionWorklist.insert(AI);
2153
2154 // Compute the intersecting offset range.
2155 assert(BeginOffset < NewAllocaEndOffset);
2156 assert(EndOffset > NewAllocaBeginOffset);
2157 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2158 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2159
2160 uint64_t Size = NewEndOffset - NewBeginOffset;
2161 if (Size < DL.getTypeStoreSize(V->getType())) {
2162 assert(!SI.isVolatile());
2163 assert(V->getType()->isIntegerTy() &&
2164 "Only integer type loads and stores are split");
2165 assert(V->getType()->getIntegerBitWidth() ==
2166 DL.getTypeStoreSizeInBits(V->getType()) &&
2167 "Non-byte-multiple bit width");
2168 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
2169 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset,
2170 "extract");
2171 }
2172
2173 if (VecTy)
2174 return rewriteVectorizedStoreInst(V, SI, OldOp, NewBeginOffset,
2175 NewEndOffset);
2176 if (IntTy && V->getType()->isIntegerTy())
2177 return rewriteIntegerStore(V, SI, NewBeginOffset, NewEndOffset);
2178
2179 StoreInst *NewSI;
2180 if (NewBeginOffset == NewAllocaBeginOffset &&
2181 NewEndOffset == NewAllocaEndOffset &&
2182 canConvertValue(DL, V->getType(), NewAllocaTy)) {
2183 V = convertValue(DL, IRB, V, NewAllocaTy);
2184 NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2185 SI.isVolatile());
2186 } else {
2187 Value *NewPtr = getAdjustedAllocaPtr(IRB, NewBeginOffset,
2188 V->getType()->getPointerTo());
2189 NewSI = IRB.CreateAlignedStore(
2190 V, NewPtr, getOffsetTypeAlign(
2191 V->getType(), NewBeginOffset - NewAllocaBeginOffset),
2192 SI.isVolatile());
2193 }
2194 (void)NewSI;
2195 Pass.DeadInsts.insert(&SI);
2196 deleteIfTriviallyDead(OldOp);
2197
2198 DEBUG(dbgs() << " to: " << *NewSI << "\n");
2199 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2200 }
2201
2202 /// \brief Compute an integer value from splatting an i8 across the given
2203 /// number of bytes.
2204 ///
2205 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2206 /// call this routine.
2207 /// FIXME: Heed the advice above.
2208 ///
2209 /// \param V The i8 value to splat.
2210 /// \param Size The number of bytes in the output (assuming i8 is one byte)
getIntegerSplat(Value * V,unsigned Size)2211 Value *getIntegerSplat(Value *V, unsigned Size) {
2212 assert(Size > 0 && "Expected a positive number of bytes.");
2213 IntegerType *VTy = cast<IntegerType>(V->getType());
2214 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2215 if (Size == 1)
2216 return V;
2217
2218 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
2219 V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"),
2220 ConstantExpr::getUDiv(
2221 Constant::getAllOnesValue(SplatIntTy),
2222 ConstantExpr::getZExt(
2223 Constant::getAllOnesValue(V->getType()),
2224 SplatIntTy)),
2225 "isplat");
2226 return V;
2227 }
2228
2229 /// \brief Compute a vector splat for a given element value.
getVectorSplat(Value * V,unsigned NumElements)2230 Value *getVectorSplat(Value *V, unsigned NumElements) {
2231 V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2232 DEBUG(dbgs() << " splat: " << *V << "\n");
2233 return V;
2234 }
2235
visitMemSetInst(MemSetInst & II)2236 bool visitMemSetInst(MemSetInst &II) {
2237 DEBUG(dbgs() << " original: " << II << "\n");
2238 assert(II.getRawDest() == OldPtr);
2239
2240 // If the memset has a variable size, it cannot be split, just adjust the
2241 // pointer to the new alloca.
2242 if (!isa<Constant>(II.getLength())) {
2243 assert(!IsSplit);
2244 assert(BeginOffset >= NewAllocaBeginOffset);
2245 II.setDest(
2246 getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
2247 Type *CstTy = II.getAlignmentCst()->getType();
2248 II.setAlignment(ConstantInt::get(CstTy, getOffsetAlign(BeginOffset)));
2249
2250 deleteIfTriviallyDead(OldPtr);
2251 return false;
2252 }
2253
2254 // Record this instruction for deletion.
2255 Pass.DeadInsts.insert(&II);
2256
2257 Type *AllocaTy = NewAI.getAllocatedType();
2258 Type *ScalarTy = AllocaTy->getScalarType();
2259
2260 // Compute the intersecting offset range.
2261 assert(BeginOffset < NewAllocaEndOffset);
2262 assert(EndOffset > NewAllocaBeginOffset);
2263 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2264 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2265 uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset;
2266
2267 // If this doesn't map cleanly onto the alloca type, and that type isn't
2268 // a single value type, just emit a memset.
2269 if (!VecTy && !IntTy &&
2270 (BeginOffset > NewAllocaBeginOffset ||
2271 EndOffset < NewAllocaEndOffset ||
2272 !AllocaTy->isSingleValueType() ||
2273 !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
2274 DL.getTypeSizeInBits(ScalarTy)%8 != 0)) {
2275 Type *SizeTy = II.getLength()->getType();
2276 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2277 CallInst *New = IRB.CreateMemSet(
2278 getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getRawDest()->getType()),
2279 II.getValue(), Size, getOffsetAlign(SliceOffset), II.isVolatile());
2280 (void)New;
2281 DEBUG(dbgs() << " to: " << *New << "\n");
2282 return false;
2283 }
2284
2285 // If we can represent this as a simple value, we have to build the actual
2286 // value to store, which requires expanding the byte present in memset to
2287 // a sensible representation for the alloca type. This is essentially
2288 // splatting the byte to a sufficiently wide integer, splatting it across
2289 // any desired vector width, and bitcasting to the final type.
2290 Value *V;
2291
2292 if (VecTy) {
2293 // If this is a memset of a vectorized alloca, insert it.
2294 assert(ElementTy == ScalarTy);
2295
2296 unsigned BeginIndex = getIndex(NewBeginOffset);
2297 unsigned EndIndex = getIndex(NewEndOffset);
2298 assert(EndIndex > BeginIndex && "Empty vector!");
2299 unsigned NumElements = EndIndex - BeginIndex;
2300 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2301
2302 Value *Splat =
2303 getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2304 Splat = convertValue(DL, IRB, Splat, ElementTy);
2305 if (NumElements > 1)
2306 Splat = getVectorSplat(Splat, NumElements);
2307
2308 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2309 "oldload");
2310 V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2311 } else if (IntTy) {
2312 // If this is a memset on an alloca where we can widen stores, insert the
2313 // set integer.
2314 assert(!II.isVolatile());
2315
2316 uint64_t Size = NewEndOffset - NewBeginOffset;
2317 V = getIntegerSplat(II.getValue(), Size);
2318
2319 if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2320 EndOffset != NewAllocaBeginOffset)) {
2321 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2322 "oldload");
2323 Old = convertValue(DL, IRB, Old, IntTy);
2324 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2325 V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2326 } else {
2327 assert(V->getType() == IntTy &&
2328 "Wrong type for an alloca wide integer!");
2329 }
2330 V = convertValue(DL, IRB, V, AllocaTy);
2331 } else {
2332 // Established these invariants above.
2333 assert(NewBeginOffset == NewAllocaBeginOffset);
2334 assert(NewEndOffset == NewAllocaEndOffset);
2335
2336 V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
2337 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2338 V = getVectorSplat(V, AllocaVecTy->getNumElements());
2339
2340 V = convertValue(DL, IRB, V, AllocaTy);
2341 }
2342
2343 Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2344 II.isVolatile());
2345 (void)New;
2346 DEBUG(dbgs() << " to: " << *New << "\n");
2347 return !II.isVolatile();
2348 }
2349
visitMemTransferInst(MemTransferInst & II)2350 bool visitMemTransferInst(MemTransferInst &II) {
2351 // Rewriting of memory transfer instructions can be a bit tricky. We break
2352 // them into two categories: split intrinsics and unsplit intrinsics.
2353
2354 DEBUG(dbgs() << " original: " << II << "\n");
2355
2356 // Compute the intersecting offset range.
2357 assert(BeginOffset < NewAllocaEndOffset);
2358 assert(EndOffset > NewAllocaBeginOffset);
2359 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2360 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2361
2362 assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2363 bool IsDest = II.getRawDest() == OldPtr;
2364
2365 // Compute the relative offset within the transfer.
2366 unsigned IntPtrWidth = DL.getPointerSizeInBits();
2367 APInt RelOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
2368
2369 unsigned Align = II.getAlignment();
2370 uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset;
2371 if (Align > 1)
2372 Align =
2373 MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
2374 MinAlign(II.getAlignment(), getOffsetAlign(SliceOffset)));
2375
2376 // For unsplit intrinsics, we simply modify the source and destination
2377 // pointers in place. This isn't just an optimization, it is a matter of
2378 // correctness. With unsplit intrinsics we may be dealing with transfers
2379 // within a single alloca before SROA ran, or with transfers that have
2380 // a variable length. We may also be dealing with memmove instead of
2381 // memcpy, and so simply updating the pointers is the necessary for us to
2382 // update both source and dest of a single call.
2383 if (!IsSplittable) {
2384 Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2385 if (IsDest)
2386 II.setDest(
2387 getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
2388 else
2389 II.setSource(getAdjustedAllocaPtr(IRB, BeginOffset,
2390 II.getRawSource()->getType()));
2391
2392 Type *CstTy = II.getAlignmentCst()->getType();
2393 II.setAlignment(ConstantInt::get(CstTy, Align));
2394
2395 DEBUG(dbgs() << " to: " << II << "\n");
2396 deleteIfTriviallyDead(OldOp);
2397 return false;
2398 }
2399 // For split transfer intrinsics we have an incredibly useful assurance:
2400 // the source and destination do not reside within the same alloca, and at
2401 // least one of them does not escape. This means that we can replace
2402 // memmove with memcpy, and we don't need to worry about all manner of
2403 // downsides to splitting and transforming the operations.
2404
2405 // If this doesn't map cleanly onto the alloca type, and that type isn't
2406 // a single value type, just emit a memcpy.
2407 bool EmitMemCpy
2408 = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset ||
2409 EndOffset < NewAllocaEndOffset ||
2410 !NewAI.getAllocatedType()->isSingleValueType());
2411
2412 // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2413 // size hasn't been shrunk based on analysis of the viable range, this is
2414 // a no-op.
2415 if (EmitMemCpy && &OldAI == &NewAI) {
2416 // Ensure the start lines up.
2417 assert(NewBeginOffset == BeginOffset);
2418
2419 // Rewrite the size as needed.
2420 if (NewEndOffset != EndOffset)
2421 II.setLength(ConstantInt::get(II.getLength()->getType(),
2422 NewEndOffset - NewBeginOffset));
2423 return false;
2424 }
2425 // Record this instruction for deletion.
2426 Pass.DeadInsts.insert(&II);
2427
2428 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2429 // alloca that should be re-examined after rewriting this instruction.
2430 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2431 if (AllocaInst *AI
2432 = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
2433 Pass.Worklist.insert(AI);
2434
2435 if (EmitMemCpy) {
2436 Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2437 : II.getRawDest()->getType();
2438
2439 // Compute the other pointer, folding as much as possible to produce
2440 // a single, simple GEP in most cases.
2441 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy);
2442
2443 Value *OurPtr = getAdjustedAllocaPtr(
2444 IRB, NewBeginOffset,
2445 IsDest ? II.getRawDest()->getType() : II.getRawSource()->getType());
2446 Type *SizeTy = II.getLength()->getType();
2447 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2448
2449 CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2450 IsDest ? OtherPtr : OurPtr,
2451 Size, Align, II.isVolatile());
2452 (void)New;
2453 DEBUG(dbgs() << " to: " << *New << "\n");
2454 return false;
2455 }
2456
2457 // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
2458 // is equivalent to 1, but that isn't true if we end up rewriting this as
2459 // a load or store.
2460 if (!Align)
2461 Align = 1;
2462
2463 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2464 NewEndOffset == NewAllocaEndOffset;
2465 uint64_t Size = NewEndOffset - NewBeginOffset;
2466 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2467 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
2468 unsigned NumElements = EndIndex - BeginIndex;
2469 IntegerType *SubIntTy
2470 = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
2471
2472 Type *OtherPtrTy = NewAI.getType();
2473 if (VecTy && !IsWholeAlloca) {
2474 if (NumElements == 1)
2475 OtherPtrTy = VecTy->getElementType();
2476 else
2477 OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
2478
2479 OtherPtrTy = OtherPtrTy->getPointerTo();
2480 } else if (IntTy && !IsWholeAlloca) {
2481 OtherPtrTy = SubIntTy->getPointerTo();
2482 }
2483
2484 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy);
2485 Value *DstPtr = &NewAI;
2486 if (!IsDest)
2487 std::swap(SrcPtr, DstPtr);
2488
2489 Value *Src;
2490 if (VecTy && !IsWholeAlloca && !IsDest) {
2491 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2492 "load");
2493 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
2494 } else if (IntTy && !IsWholeAlloca && !IsDest) {
2495 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2496 "load");
2497 Src = convertValue(DL, IRB, Src, IntTy);
2498 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2499 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
2500 } else {
2501 Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
2502 "copyload");
2503 }
2504
2505 if (VecTy && !IsWholeAlloca && IsDest) {
2506 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2507 "oldload");
2508 Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
2509 } else if (IntTy && !IsWholeAlloca && IsDest) {
2510 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2511 "oldload");
2512 Old = convertValue(DL, IRB, Old, IntTy);
2513 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2514 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
2515 Src = convertValue(DL, IRB, Src, NewAllocaTy);
2516 }
2517
2518 StoreInst *Store = cast<StoreInst>(
2519 IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2520 (void)Store;
2521 DEBUG(dbgs() << " to: " << *Store << "\n");
2522 return !II.isVolatile();
2523 }
2524
visitIntrinsicInst(IntrinsicInst & II)2525 bool visitIntrinsicInst(IntrinsicInst &II) {
2526 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2527 II.getIntrinsicID() == Intrinsic::lifetime_end);
2528 DEBUG(dbgs() << " original: " << II << "\n");
2529 assert(II.getArgOperand(1) == OldPtr);
2530
2531 // Compute the intersecting offset range.
2532 assert(BeginOffset < NewAllocaEndOffset);
2533 assert(EndOffset > NewAllocaBeginOffset);
2534 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2535 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2536
2537 // Record this instruction for deletion.
2538 Pass.DeadInsts.insert(&II);
2539
2540 ConstantInt *Size
2541 = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2542 NewEndOffset - NewBeginOffset);
2543 Value *Ptr =
2544 getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getArgOperand(1)->getType());
2545 Value *New;
2546 if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2547 New = IRB.CreateLifetimeStart(Ptr, Size);
2548 else
2549 New = IRB.CreateLifetimeEnd(Ptr, Size);
2550
2551 (void)New;
2552 DEBUG(dbgs() << " to: " << *New << "\n");
2553 return true;
2554 }
2555
visitPHINode(PHINode & PN)2556 bool visitPHINode(PHINode &PN) {
2557 DEBUG(dbgs() << " original: " << PN << "\n");
2558 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
2559 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
2560
2561 // We would like to compute a new pointer in only one place, but have it be
2562 // as local as possible to the PHI. To do that, we re-use the location of
2563 // the old pointer, which necessarily must be in the right position to
2564 // dominate the PHI.
2565 IRBuilderTy PtrBuilder(OldPtr);
2566 PtrBuilder.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) +
2567 ".");
2568
2569 Value *NewPtr =
2570 getAdjustedAllocaPtr(PtrBuilder, BeginOffset, OldPtr->getType());
2571 // Replace the operands which were using the old pointer.
2572 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
2573
2574 DEBUG(dbgs() << " to: " << PN << "\n");
2575 deleteIfTriviallyDead(OldPtr);
2576
2577 // Check whether we can speculate this PHI node, and if so remember that
2578 // fact and queue it up for another iteration after the speculation
2579 // occurs.
2580 if (isSafePHIToSpeculate(PN, &DL)) {
2581 Pass.SpeculatablePHIs.insert(&PN);
2582 IsUsedByRewrittenSpeculatableInstructions = true;
2583 return true;
2584 }
2585
2586 return false; // PHIs can't be promoted on their own.
2587 }
2588
visitSelectInst(SelectInst & SI)2589 bool visitSelectInst(SelectInst &SI) {
2590 DEBUG(dbgs() << " original: " << SI << "\n");
2591 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
2592 "Pointer isn't an operand!");
2593 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
2594 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
2595
2596 Value *NewPtr = getAdjustedAllocaPtr(IRB, BeginOffset, OldPtr->getType());
2597 // Replace the operands which were using the old pointer.
2598 if (SI.getOperand(1) == OldPtr)
2599 SI.setOperand(1, NewPtr);
2600 if (SI.getOperand(2) == OldPtr)
2601 SI.setOperand(2, NewPtr);
2602
2603 DEBUG(dbgs() << " to: " << SI << "\n");
2604 deleteIfTriviallyDead(OldPtr);
2605
2606 // Check whether we can speculate this select instruction, and if so
2607 // remember that fact and queue it up for another iteration after the
2608 // speculation occurs.
2609 if (isSafeSelectToSpeculate(SI, &DL)) {
2610 Pass.SpeculatableSelects.insert(&SI);
2611 IsUsedByRewrittenSpeculatableInstructions = true;
2612 return true;
2613 }
2614
2615 return false; // Selects can't be promoted on their own.
2616 }
2617
2618 };
2619 }
2620
2621 namespace {
2622 /// \brief Visitor to rewrite aggregate loads and stores as scalar.
2623 ///
2624 /// This pass aggressively rewrites all aggregate loads and stores on
2625 /// a particular pointer (or any pointer derived from it which we can identify)
2626 /// with scalar loads and stores.
2627 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2628 // Befriend the base class so it can delegate to private visit methods.
2629 friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2630
2631 const DataLayout &DL;
2632
2633 /// Queue of pointer uses to analyze and potentially rewrite.
2634 SmallVector<Use *, 8> Queue;
2635
2636 /// Set to prevent us from cycling with phi nodes and loops.
2637 SmallPtrSet<User *, 8> Visited;
2638
2639 /// The current pointer use being rewritten. This is used to dig up the used
2640 /// value (as opposed to the user).
2641 Use *U;
2642
2643 public:
AggLoadStoreRewriter(const DataLayout & DL)2644 AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
2645
2646 /// Rewrite loads and stores through a pointer and all pointers derived from
2647 /// it.
rewrite(Instruction & I)2648 bool rewrite(Instruction &I) {
2649 DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
2650 enqueueUsers(I);
2651 bool Changed = false;
2652 while (!Queue.empty()) {
2653 U = Queue.pop_back_val();
2654 Changed |= visit(cast<Instruction>(U->getUser()));
2655 }
2656 return Changed;
2657 }
2658
2659 private:
2660 /// Enqueue all the users of the given instruction for further processing.
2661 /// This uses a set to de-duplicate users.
enqueueUsers(Instruction & I)2662 void enqueueUsers(Instruction &I) {
2663 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
2664 ++UI)
2665 if (Visited.insert(*UI))
2666 Queue.push_back(&UI.getUse());
2667 }
2668
2669 // Conservative default is to not rewrite anything.
visitInstruction(Instruction & I)2670 bool visitInstruction(Instruction &I) { return false; }
2671
2672 /// \brief Generic recursive split emission class.
2673 template <typename Derived>
2674 class OpSplitter {
2675 protected:
2676 /// The builder used to form new instructions.
2677 IRBuilderTy IRB;
2678 /// The indices which to be used with insert- or extractvalue to select the
2679 /// appropriate value within the aggregate.
2680 SmallVector<unsigned, 4> Indices;
2681 /// The indices to a GEP instruction which will move Ptr to the correct slot
2682 /// within the aggregate.
2683 SmallVector<Value *, 4> GEPIndices;
2684 /// The base pointer of the original op, used as a base for GEPing the
2685 /// split operations.
2686 Value *Ptr;
2687
2688 /// Initialize the splitter with an insertion point, Ptr and start with a
2689 /// single zero GEP index.
OpSplitter(Instruction * InsertionPoint,Value * Ptr)2690 OpSplitter(Instruction *InsertionPoint, Value *Ptr)
2691 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
2692
2693 public:
2694 /// \brief Generic recursive split emission routine.
2695 ///
2696 /// This method recursively splits an aggregate op (load or store) into
2697 /// scalar or vector ops. It splits recursively until it hits a single value
2698 /// and emits that single value operation via the template argument.
2699 ///
2700 /// The logic of this routine relies on GEPs and insertvalue and
2701 /// extractvalue all operating with the same fundamental index list, merely
2702 /// formatted differently (GEPs need actual values).
2703 ///
2704 /// \param Ty The type being split recursively into smaller ops.
2705 /// \param Agg The aggregate value being built up or stored, depending on
2706 /// whether this is splitting a load or a store respectively.
emitSplitOps(Type * Ty,Value * & Agg,const Twine & Name)2707 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
2708 if (Ty->isSingleValueType())
2709 return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
2710
2711 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2712 unsigned OldSize = Indices.size();
2713 (void)OldSize;
2714 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
2715 ++Idx) {
2716 assert(Indices.size() == OldSize && "Did not return to the old size");
2717 Indices.push_back(Idx);
2718 GEPIndices.push_back(IRB.getInt32(Idx));
2719 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
2720 GEPIndices.pop_back();
2721 Indices.pop_back();
2722 }
2723 return;
2724 }
2725
2726 if (StructType *STy = dyn_cast<StructType>(Ty)) {
2727 unsigned OldSize = Indices.size();
2728 (void)OldSize;
2729 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
2730 ++Idx) {
2731 assert(Indices.size() == OldSize && "Did not return to the old size");
2732 Indices.push_back(Idx);
2733 GEPIndices.push_back(IRB.getInt32(Idx));
2734 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
2735 GEPIndices.pop_back();
2736 Indices.pop_back();
2737 }
2738 return;
2739 }
2740
2741 llvm_unreachable("Only arrays and structs are aggregate loadable types");
2742 }
2743 };
2744
2745 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
LoadOpSplitter__anon46f6f7340711::AggLoadStoreRewriter::LoadOpSplitter2746 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
2747 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
2748
2749 /// Emit a leaf load of a single value. This is called at the leaves of the
2750 /// recursive emission to actually load values.
emitFunc__anon46f6f7340711::AggLoadStoreRewriter::LoadOpSplitter2751 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
2752 assert(Ty->isSingleValueType());
2753 // Load the single value and insert it using the indices.
2754 Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
2755 Value *Load = IRB.CreateLoad(GEP, Name + ".load");
2756 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
2757 DEBUG(dbgs() << " to: " << *Load << "\n");
2758 }
2759 };
2760
visitLoadInst(LoadInst & LI)2761 bool visitLoadInst(LoadInst &LI) {
2762 assert(LI.getPointerOperand() == *U);
2763 if (!LI.isSimple() || LI.getType()->isSingleValueType())
2764 return false;
2765
2766 // We have an aggregate being loaded, split it apart.
2767 DEBUG(dbgs() << " original: " << LI << "\n");
2768 LoadOpSplitter Splitter(&LI, *U);
2769 Value *V = UndefValue::get(LI.getType());
2770 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
2771 LI.replaceAllUsesWith(V);
2772 LI.eraseFromParent();
2773 return true;
2774 }
2775
2776 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
StoreOpSplitter__anon46f6f7340711::AggLoadStoreRewriter::StoreOpSplitter2777 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
2778 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
2779
2780 /// Emit a leaf store of a single value. This is called at the leaves of the
2781 /// recursive emission to actually produce stores.
emitFunc__anon46f6f7340711::AggLoadStoreRewriter::StoreOpSplitter2782 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
2783 assert(Ty->isSingleValueType());
2784 // Extract the single value and store it using the indices.
2785 Value *Store = IRB.CreateStore(
2786 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
2787 IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
2788 (void)Store;
2789 DEBUG(dbgs() << " to: " << *Store << "\n");
2790 }
2791 };
2792
visitStoreInst(StoreInst & SI)2793 bool visitStoreInst(StoreInst &SI) {
2794 if (!SI.isSimple() || SI.getPointerOperand() != *U)
2795 return false;
2796 Value *V = SI.getValueOperand();
2797 if (V->getType()->isSingleValueType())
2798 return false;
2799
2800 // We have an aggregate being stored, split it apart.
2801 DEBUG(dbgs() << " original: " << SI << "\n");
2802 StoreOpSplitter Splitter(&SI, *U);
2803 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
2804 SI.eraseFromParent();
2805 return true;
2806 }
2807
visitBitCastInst(BitCastInst & BC)2808 bool visitBitCastInst(BitCastInst &BC) {
2809 enqueueUsers(BC);
2810 return false;
2811 }
2812
visitGetElementPtrInst(GetElementPtrInst & GEPI)2813 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2814 enqueueUsers(GEPI);
2815 return false;
2816 }
2817
visitPHINode(PHINode & PN)2818 bool visitPHINode(PHINode &PN) {
2819 enqueueUsers(PN);
2820 return false;
2821 }
2822
visitSelectInst(SelectInst & SI)2823 bool visitSelectInst(SelectInst &SI) {
2824 enqueueUsers(SI);
2825 return false;
2826 }
2827 };
2828 }
2829
2830 /// \brief Strip aggregate type wrapping.
2831 ///
2832 /// This removes no-op aggregate types wrapping an underlying type. It will
2833 /// strip as many layers of types as it can without changing either the type
2834 /// size or the allocated size.
stripAggregateTypeWrapping(const DataLayout & DL,Type * Ty)2835 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
2836 if (Ty->isSingleValueType())
2837 return Ty;
2838
2839 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2840 uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
2841
2842 Type *InnerTy;
2843 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
2844 InnerTy = ArrTy->getElementType();
2845 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
2846 const StructLayout *SL = DL.getStructLayout(STy);
2847 unsigned Index = SL->getElementContainingOffset(0);
2848 InnerTy = STy->getElementType(Index);
2849 } else {
2850 return Ty;
2851 }
2852
2853 if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
2854 TypeSize > DL.getTypeSizeInBits(InnerTy))
2855 return Ty;
2856
2857 return stripAggregateTypeWrapping(DL, InnerTy);
2858 }
2859
2860 /// \brief Try to find a partition of the aggregate type passed in for a given
2861 /// offset and size.
2862 ///
2863 /// This recurses through the aggregate type and tries to compute a subtype
2864 /// based on the offset and size. When the offset and size span a sub-section
2865 /// of an array, it will even compute a new array type for that sub-section,
2866 /// and the same for structs.
2867 ///
2868 /// Note that this routine is very strict and tries to find a partition of the
2869 /// type which produces the *exact* right offset and size. It is not forgiving
2870 /// when the size or offset cause either end of type-based partition to be off.
2871 /// Also, this is a best-effort routine. It is reasonable to give up and not
2872 /// return a type if necessary.
getTypePartition(const DataLayout & DL,Type * Ty,uint64_t Offset,uint64_t Size)2873 static Type *getTypePartition(const DataLayout &DL, Type *Ty,
2874 uint64_t Offset, uint64_t Size) {
2875 if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
2876 return stripAggregateTypeWrapping(DL, Ty);
2877 if (Offset > DL.getTypeAllocSize(Ty) ||
2878 (DL.getTypeAllocSize(Ty) - Offset) < Size)
2879 return 0;
2880
2881 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
2882 // We can't partition pointers...
2883 if (SeqTy->isPointerTy())
2884 return 0;
2885
2886 Type *ElementTy = SeqTy->getElementType();
2887 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
2888 uint64_t NumSkippedElements = Offset / ElementSize;
2889 if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
2890 if (NumSkippedElements >= ArrTy->getNumElements())
2891 return 0;
2892 } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
2893 if (NumSkippedElements >= VecTy->getNumElements())
2894 return 0;
2895 }
2896 Offset -= NumSkippedElements * ElementSize;
2897
2898 // First check if we need to recurse.
2899 if (Offset > 0 || Size < ElementSize) {
2900 // Bail if the partition ends in a different array element.
2901 if ((Offset + Size) > ElementSize)
2902 return 0;
2903 // Recurse through the element type trying to peel off offset bytes.
2904 return getTypePartition(DL, ElementTy, Offset, Size);
2905 }
2906 assert(Offset == 0);
2907
2908 if (Size == ElementSize)
2909 return stripAggregateTypeWrapping(DL, ElementTy);
2910 assert(Size > ElementSize);
2911 uint64_t NumElements = Size / ElementSize;
2912 if (NumElements * ElementSize != Size)
2913 return 0;
2914 return ArrayType::get(ElementTy, NumElements);
2915 }
2916
2917 StructType *STy = dyn_cast<StructType>(Ty);
2918 if (!STy)
2919 return 0;
2920
2921 const StructLayout *SL = DL.getStructLayout(STy);
2922 if (Offset >= SL->getSizeInBytes())
2923 return 0;
2924 uint64_t EndOffset = Offset + Size;
2925 if (EndOffset > SL->getSizeInBytes())
2926 return 0;
2927
2928 unsigned Index = SL->getElementContainingOffset(Offset);
2929 Offset -= SL->getElementOffset(Index);
2930
2931 Type *ElementTy = STy->getElementType(Index);
2932 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
2933 if (Offset >= ElementSize)
2934 return 0; // The offset points into alignment padding.
2935
2936 // See if any partition must be contained by the element.
2937 if (Offset > 0 || Size < ElementSize) {
2938 if ((Offset + Size) > ElementSize)
2939 return 0;
2940 return getTypePartition(DL, ElementTy, Offset, Size);
2941 }
2942 assert(Offset == 0);
2943
2944 if (Size == ElementSize)
2945 return stripAggregateTypeWrapping(DL, ElementTy);
2946
2947 StructType::element_iterator EI = STy->element_begin() + Index,
2948 EE = STy->element_end();
2949 if (EndOffset < SL->getSizeInBytes()) {
2950 unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
2951 if (Index == EndIndex)
2952 return 0; // Within a single element and its padding.
2953
2954 // Don't try to form "natural" types if the elements don't line up with the
2955 // expected size.
2956 // FIXME: We could potentially recurse down through the last element in the
2957 // sub-struct to find a natural end point.
2958 if (SL->getElementOffset(EndIndex) != EndOffset)
2959 return 0;
2960
2961 assert(Index < EndIndex);
2962 EE = STy->element_begin() + EndIndex;
2963 }
2964
2965 // Try to build up a sub-structure.
2966 StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
2967 STy->isPacked());
2968 const StructLayout *SubSL = DL.getStructLayout(SubTy);
2969 if (Size != SubSL->getSizeInBytes())
2970 return 0; // The sub-struct doesn't have quite the size needed.
2971
2972 return SubTy;
2973 }
2974
2975 /// \brief Rewrite an alloca partition's users.
2976 ///
2977 /// This routine drives both of the rewriting goals of the SROA pass. It tries
2978 /// to rewrite uses of an alloca partition to be conducive for SSA value
2979 /// promotion. If the partition needs a new, more refined alloca, this will
2980 /// build that new alloca, preserving as much type information as possible, and
2981 /// rewrite the uses of the old alloca to point at the new one and have the
2982 /// appropriate new offsets. It also evaluates how successful the rewrite was
2983 /// at enabling promotion and if it was successful queues the alloca to be
2984 /// promoted.
rewritePartition(AllocaInst & AI,AllocaSlices & S,AllocaSlices::iterator B,AllocaSlices::iterator E,int64_t BeginOffset,int64_t EndOffset,ArrayRef<AllocaSlices::iterator> SplitUses)2985 bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
2986 AllocaSlices::iterator B, AllocaSlices::iterator E,
2987 int64_t BeginOffset, int64_t EndOffset,
2988 ArrayRef<AllocaSlices::iterator> SplitUses) {
2989 assert(BeginOffset < EndOffset);
2990 uint64_t SliceSize = EndOffset - BeginOffset;
2991
2992 // Try to compute a friendly type for this partition of the alloca. This
2993 // won't always succeed, in which case we fall back to a legal integer type
2994 // or an i8 array of an appropriate size.
2995 Type *SliceTy = 0;
2996 if (Type *CommonUseTy = findCommonType(B, E, EndOffset))
2997 if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize)
2998 SliceTy = CommonUseTy;
2999 if (!SliceTy)
3000 if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(),
3001 BeginOffset, SliceSize))
3002 SliceTy = TypePartitionTy;
3003 if ((!SliceTy || (SliceTy->isArrayTy() &&
3004 SliceTy->getArrayElementType()->isIntegerTy())) &&
3005 DL->isLegalInteger(SliceSize * 8))
3006 SliceTy = Type::getIntNTy(*C, SliceSize * 8);
3007 if (!SliceTy)
3008 SliceTy = ArrayType::get(Type::getInt8Ty(*C), SliceSize);
3009 assert(DL->getTypeAllocSize(SliceTy) >= SliceSize);
3010
3011 bool IsVectorPromotable = isVectorPromotionViable(
3012 *DL, SliceTy, S, BeginOffset, EndOffset, B, E, SplitUses);
3013
3014 bool IsIntegerPromotable =
3015 !IsVectorPromotable &&
3016 isIntegerWideningViable(*DL, SliceTy, BeginOffset, S, B, E, SplitUses);
3017
3018 // Check for the case where we're going to rewrite to a new alloca of the
3019 // exact same type as the original, and with the same access offsets. In that
3020 // case, re-use the existing alloca, but still run through the rewriter to
3021 // perform phi and select speculation.
3022 AllocaInst *NewAI;
3023 if (SliceTy == AI.getAllocatedType()) {
3024 assert(BeginOffset == 0 &&
3025 "Non-zero begin offset but same alloca type");
3026 NewAI = &AI;
3027 // FIXME: We should be able to bail at this point with "nothing changed".
3028 // FIXME: We might want to defer PHI speculation until after here.
3029 } else {
3030 unsigned Alignment = AI.getAlignment();
3031 if (!Alignment) {
3032 // The minimum alignment which users can rely on when the explicit
3033 // alignment is omitted or zero is that required by the ABI for this
3034 // type.
3035 Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
3036 }
3037 Alignment = MinAlign(Alignment, BeginOffset);
3038 // If we will get at least this much alignment from the type alone, leave
3039 // the alloca's alignment unconstrained.
3040 if (Alignment <= DL->getABITypeAlignment(SliceTy))
3041 Alignment = 0;
3042 NewAI = new AllocaInst(SliceTy, 0, Alignment,
3043 AI.getName() + ".sroa." + Twine(B - S.begin()), &AI);
3044 ++NumNewAllocas;
3045 }
3046
3047 DEBUG(dbgs() << "Rewriting alloca partition "
3048 << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI
3049 << "\n");
3050
3051 // Track the high watermark on several worklists that are only relevant for
3052 // promoted allocas. We will reset it to this point if the alloca is not in
3053 // fact scheduled for promotion.
3054 unsigned PPWOldSize = PostPromotionWorklist.size();
3055 unsigned SPOldSize = SpeculatablePHIs.size();
3056 unsigned SSOldSize = SpeculatableSelects.size();
3057 unsigned NumUses = 0;
3058
3059 AllocaSliceRewriter Rewriter(*DL, S, *this, AI, *NewAI, BeginOffset,
3060 EndOffset, IsVectorPromotable,
3061 IsIntegerPromotable);
3062 bool Promotable = true;
3063 for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
3064 SUE = SplitUses.end();
3065 SUI != SUE; ++SUI) {
3066 DEBUG(dbgs() << " rewriting split ");
3067 DEBUG(S.printSlice(dbgs(), *SUI, ""));
3068 Promotable &= Rewriter.visit(*SUI);
3069 ++NumUses;
3070 }
3071 for (AllocaSlices::iterator I = B; I != E; ++I) {
3072 DEBUG(dbgs() << " rewriting ");
3073 DEBUG(S.printSlice(dbgs(), I, ""));
3074 Promotable &= Rewriter.visit(I);
3075 ++NumUses;
3076 }
3077
3078 NumAllocaPartitionUses += NumUses;
3079 MaxUsesPerAllocaPartition =
3080 std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition);
3081
3082 if (Promotable && !Rewriter.isUsedByRewrittenSpeculatableInstructions()) {
3083 DEBUG(dbgs() << " and queuing for promotion\n");
3084 PromotableAllocas.push_back(NewAI);
3085 } else if (NewAI != &AI ||
3086 (Promotable &&
3087 Rewriter.isUsedByRewrittenSpeculatableInstructions())) {
3088 // If we can't promote the alloca, iterate on it to check for new
3089 // refinements exposed by splitting the current alloca. Don't iterate on an
3090 // alloca which didn't actually change and didn't get promoted.
3091 //
3092 // Alternatively, if we could promote the alloca but have speculatable
3093 // instructions then we will speculate them after finishing our processing
3094 // of the original alloca. Mark the new one for re-visiting in the next
3095 // iteration so the speculated operations can be rewritten.
3096 //
3097 // FIXME: We should actually track whether the rewriter changed anything.
3098 Worklist.insert(NewAI);
3099 }
3100
3101 // Drop any post-promotion work items if promotion didn't happen.
3102 if (!Promotable) {
3103 while (PostPromotionWorklist.size() > PPWOldSize)
3104 PostPromotionWorklist.pop_back();
3105 while (SpeculatablePHIs.size() > SPOldSize)
3106 SpeculatablePHIs.pop_back();
3107 while (SpeculatableSelects.size() > SSOldSize)
3108 SpeculatableSelects.pop_back();
3109 }
3110
3111 return true;
3112 }
3113
3114 namespace {
3115 struct IsSliceEndLessOrEqualTo {
3116 uint64_t UpperBound;
3117
IsSliceEndLessOrEqualTo__anon46f6f7340811::IsSliceEndLessOrEqualTo3118 IsSliceEndLessOrEqualTo(uint64_t UpperBound) : UpperBound(UpperBound) {}
3119
operator ()__anon46f6f7340811::IsSliceEndLessOrEqualTo3120 bool operator()(const AllocaSlices::iterator &I) {
3121 return I->endOffset() <= UpperBound;
3122 }
3123 };
3124 }
3125
3126 static void
removeFinishedSplitUses(SmallVectorImpl<AllocaSlices::iterator> & SplitUses,uint64_t & MaxSplitUseEndOffset,uint64_t Offset)3127 removeFinishedSplitUses(SmallVectorImpl<AllocaSlices::iterator> &SplitUses,
3128 uint64_t &MaxSplitUseEndOffset, uint64_t Offset) {
3129 if (Offset >= MaxSplitUseEndOffset) {
3130 SplitUses.clear();
3131 MaxSplitUseEndOffset = 0;
3132 return;
3133 }
3134
3135 size_t SplitUsesOldSize = SplitUses.size();
3136 SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(),
3137 IsSliceEndLessOrEqualTo(Offset)),
3138 SplitUses.end());
3139 if (SplitUsesOldSize == SplitUses.size())
3140 return;
3141
3142 // Recompute the max. While this is linear, so is remove_if.
3143 MaxSplitUseEndOffset = 0;
3144 for (SmallVectorImpl<AllocaSlices::iterator>::iterator
3145 SUI = SplitUses.begin(),
3146 SUE = SplitUses.end();
3147 SUI != SUE; ++SUI)
3148 MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset);
3149 }
3150
3151 /// \brief Walks the slices of an alloca and form partitions based on them,
3152 /// rewriting each of their uses.
splitAlloca(AllocaInst & AI,AllocaSlices & S)3153 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) {
3154 if (S.begin() == S.end())
3155 return false;
3156
3157 unsigned NumPartitions = 0;
3158 bool Changed = false;
3159 SmallVector<AllocaSlices::iterator, 4> SplitUses;
3160 uint64_t MaxSplitUseEndOffset = 0;
3161
3162 uint64_t BeginOffset = S.begin()->beginOffset();
3163
3164 for (AllocaSlices::iterator SI = S.begin(), SJ = llvm::next(SI), SE = S.end();
3165 SI != SE; SI = SJ) {
3166 uint64_t MaxEndOffset = SI->endOffset();
3167
3168 if (!SI->isSplittable()) {
3169 // When we're forming an unsplittable region, it must always start at the
3170 // first slice and will extend through its end.
3171 assert(BeginOffset == SI->beginOffset());
3172
3173 // Form a partition including all of the overlapping slices with this
3174 // unsplittable slice.
3175 while (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
3176 if (!SJ->isSplittable())
3177 MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
3178 ++SJ;
3179 }
3180 } else {
3181 assert(SI->isSplittable()); // Established above.
3182
3183 // Collect all of the overlapping splittable slices.
3184 while (SJ != SE && SJ->beginOffset() < MaxEndOffset &&
3185 SJ->isSplittable()) {
3186 MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
3187 ++SJ;
3188 }
3189
3190 // Back up MaxEndOffset and SJ if we ended the span early when
3191 // encountering an unsplittable slice.
3192 if (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
3193 assert(!SJ->isSplittable());
3194 MaxEndOffset = SJ->beginOffset();
3195 }
3196 }
3197
3198 // Check if we have managed to move the end offset forward yet. If so,
3199 // we'll have to rewrite uses and erase old split uses.
3200 if (BeginOffset < MaxEndOffset) {
3201 // Rewrite a sequence of overlapping slices.
3202 Changed |=
3203 rewritePartition(AI, S, SI, SJ, BeginOffset, MaxEndOffset, SplitUses);
3204 ++NumPartitions;
3205
3206 removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset);
3207 }
3208
3209 // Accumulate all the splittable slices from the [SI,SJ) region which
3210 // overlap going forward.
3211 for (AllocaSlices::iterator SK = SI; SK != SJ; ++SK)
3212 if (SK->isSplittable() && SK->endOffset() > MaxEndOffset) {
3213 SplitUses.push_back(SK);
3214 MaxSplitUseEndOffset = std::max(SK->endOffset(), MaxSplitUseEndOffset);
3215 }
3216
3217 // If we're already at the end and we have no split uses, we're done.
3218 if (SJ == SE && SplitUses.empty())
3219 break;
3220
3221 // If we have no split uses or no gap in offsets, we're ready to move to
3222 // the next slice.
3223 if (SplitUses.empty() || (SJ != SE && MaxEndOffset == SJ->beginOffset())) {
3224 BeginOffset = SJ->beginOffset();
3225 continue;
3226 }
3227
3228 // Even if we have split slices, if the next slice is splittable and the
3229 // split slices reach it, we can simply set up the beginning offset of the
3230 // next iteration to bridge between them.
3231 if (SJ != SE && SJ->isSplittable() &&
3232 MaxSplitUseEndOffset > SJ->beginOffset()) {
3233 BeginOffset = MaxEndOffset;
3234 continue;
3235 }
3236
3237 // Otherwise, we have a tail of split slices. Rewrite them with an empty
3238 // range of slices.
3239 uint64_t PostSplitEndOffset =
3240 SJ == SE ? MaxSplitUseEndOffset : SJ->beginOffset();
3241
3242 Changed |= rewritePartition(AI, S, SJ, SJ, MaxEndOffset, PostSplitEndOffset,
3243 SplitUses);
3244 ++NumPartitions;
3245
3246 if (SJ == SE)
3247 break; // Skip the rest, we don't need to do any cleanup.
3248
3249 removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset,
3250 PostSplitEndOffset);
3251
3252 // Now just reset the begin offset for the next iteration.
3253 BeginOffset = SJ->beginOffset();
3254 }
3255
3256 NumAllocaPartitions += NumPartitions;
3257 MaxPartitionsPerAlloca =
3258 std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca);
3259
3260 return Changed;
3261 }
3262
3263 /// \brief Analyze an alloca for SROA.
3264 ///
3265 /// This analyzes the alloca to ensure we can reason about it, builds
3266 /// the slices of the alloca, and then hands it off to be split and
3267 /// rewritten as needed.
runOnAlloca(AllocaInst & AI)3268 bool SROA::runOnAlloca(AllocaInst &AI) {
3269 DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3270 ++NumAllocasAnalyzed;
3271
3272 // Special case dead allocas, as they're trivial.
3273 if (AI.use_empty()) {
3274 AI.eraseFromParent();
3275 return true;
3276 }
3277
3278 // Skip alloca forms that this analysis can't handle.
3279 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3280 DL->getTypeAllocSize(AI.getAllocatedType()) == 0)
3281 return false;
3282
3283 bool Changed = false;
3284
3285 // First, split any FCA loads and stores touching this alloca to promote
3286 // better splitting and promotion opportunities.
3287 AggLoadStoreRewriter AggRewriter(*DL);
3288 Changed |= AggRewriter.rewrite(AI);
3289
3290 // Build the slices using a recursive instruction-visiting builder.
3291 AllocaSlices S(*DL, AI);
3292 DEBUG(S.print(dbgs()));
3293 if (S.isEscaped())
3294 return Changed;
3295
3296 // Delete all the dead users of this alloca before splitting and rewriting it.
3297 for (AllocaSlices::dead_user_iterator DI = S.dead_user_begin(),
3298 DE = S.dead_user_end();
3299 DI != DE; ++DI) {
3300 Changed = true;
3301 (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3302 DeadInsts.insert(*DI);
3303 }
3304 for (AllocaSlices::dead_op_iterator DO = S.dead_op_begin(),
3305 DE = S.dead_op_end();
3306 DO != DE; ++DO) {
3307 Value *OldV = **DO;
3308 // Clobber the use with an undef value.
3309 **DO = UndefValue::get(OldV->getType());
3310 if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3311 if (isInstructionTriviallyDead(OldI)) {
3312 Changed = true;
3313 DeadInsts.insert(OldI);
3314 }
3315 }
3316
3317 // No slices to split. Leave the dead alloca for a later pass to clean up.
3318 if (S.begin() == S.end())
3319 return Changed;
3320
3321 Changed |= splitAlloca(AI, S);
3322
3323 DEBUG(dbgs() << " Speculating PHIs\n");
3324 while (!SpeculatablePHIs.empty())
3325 speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
3326
3327 DEBUG(dbgs() << " Speculating Selects\n");
3328 while (!SpeculatableSelects.empty())
3329 speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
3330
3331 return Changed;
3332 }
3333
3334 /// \brief Delete the dead instructions accumulated in this run.
3335 ///
3336 /// Recursively deletes the dead instructions we've accumulated. This is done
3337 /// at the very end to maximize locality of the recursive delete and to
3338 /// minimize the problems of invalidated instruction pointers as such pointers
3339 /// are used heavily in the intermediate stages of the algorithm.
3340 ///
3341 /// We also record the alloca instructions deleted here so that they aren't
3342 /// subsequently handed to mem2reg to promote.
deleteDeadInstructions(SmallPtrSet<AllocaInst *,4> & DeletedAllocas)3343 void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
3344 while (!DeadInsts.empty()) {
3345 Instruction *I = DeadInsts.pop_back_val();
3346 DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3347
3348 I->replaceAllUsesWith(UndefValue::get(I->getType()));
3349
3350 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3351 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3352 // Zero out the operand and see if it becomes trivially dead.
3353 *OI = 0;
3354 if (isInstructionTriviallyDead(U))
3355 DeadInsts.insert(U);
3356 }
3357
3358 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3359 DeletedAllocas.insert(AI);
3360
3361 ++NumDeleted;
3362 I->eraseFromParent();
3363 }
3364 }
3365
enqueueUsersInWorklist(Instruction & I,SmallVectorImpl<Use * > & UseWorklist,SmallPtrSet<Use *,8> & VisitedUses)3366 static void enqueueUsersInWorklist(Instruction &I,
3367 SmallVectorImpl<Use *> &UseWorklist,
3368 SmallPtrSet<Use *, 8> &VisitedUses) {
3369 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
3370 ++UI)
3371 if (VisitedUses.insert(&UI.getUse()))
3372 UseWorklist.push_back(&UI.getUse());
3373 }
3374
3375 /// \brief Promote the allocas, using the best available technique.
3376 ///
3377 /// This attempts to promote whatever allocas have been identified as viable in
3378 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
3379 /// If there is a domtree available, we attempt to promote using the full power
3380 /// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3381 /// based on the SSAUpdater utilities. This function returns whether any
3382 /// promotion occurred.
promoteAllocas(Function & F)3383 bool SROA::promoteAllocas(Function &F) {
3384 if (PromotableAllocas.empty())
3385 return false;
3386
3387 NumPromoted += PromotableAllocas.size();
3388
3389 if (DT && !ForceSSAUpdater) {
3390 DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3391 PromoteMemToReg(PromotableAllocas, *DT, DL);
3392 PromotableAllocas.clear();
3393 return true;
3394 }
3395
3396 DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3397 SSAUpdater SSA;
3398 DIBuilder DIB(*F.getParent());
3399 SmallVector<Instruction*, 64> Insts;
3400
3401 // We need a worklist to walk the uses of each alloca.
3402 SmallVector<Use *, 8> UseWorklist;
3403 SmallPtrSet<Use *, 8> VisitedUses;
3404 SmallVector<Instruction *, 32> DeadInsts;
3405
3406 for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3407 AllocaInst *AI = PromotableAllocas[Idx];
3408 UseWorklist.clear();
3409 VisitedUses.clear();
3410
3411 enqueueUsersInWorklist(*AI, UseWorklist, VisitedUses);
3412
3413 while (!UseWorklist.empty()) {
3414 Use *U = UseWorklist.pop_back_val();
3415 Instruction &I = *cast<Instruction>(U->getUser());
3416
3417 // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3418 // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3419 // leading to them) here. Eventually it should use them to optimize the
3420 // scalar values produced.
3421 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
3422 assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3423 II->getIntrinsicID() == Intrinsic::lifetime_end);
3424 II->eraseFromParent();
3425 continue;
3426 }
3427
3428 // Push the loads and stores we find onto the list. SROA will already
3429 // have validated that all loads and stores are viable candidates for
3430 // promotion.
3431 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3432 assert(LI->getType() == AI->getAllocatedType());
3433 Insts.push_back(LI);
3434 continue;
3435 }
3436 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3437 assert(SI->getValueOperand()->getType() == AI->getAllocatedType());
3438 Insts.push_back(SI);
3439 continue;
3440 }
3441
3442 // For everything else, we know that only no-op bitcasts and GEPs will
3443 // make it this far, just recurse through them and recall them for later
3444 // removal.
3445 DeadInsts.push_back(&I);
3446 enqueueUsersInWorklist(I, UseWorklist, VisitedUses);
3447 }
3448 AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3449 Insts.clear();
3450 while (!DeadInsts.empty())
3451 DeadInsts.pop_back_val()->eraseFromParent();
3452 AI->eraseFromParent();
3453 }
3454
3455 PromotableAllocas.clear();
3456 return true;
3457 }
3458
3459 namespace {
3460 /// \brief A predicate to test whether an alloca belongs to a set.
3461 class IsAllocaInSet {
3462 typedef SmallPtrSet<AllocaInst *, 4> SetType;
3463 const SetType &Set;
3464
3465 public:
3466 typedef AllocaInst *argument_type;
3467
IsAllocaInSet(const SetType & Set)3468 IsAllocaInSet(const SetType &Set) : Set(Set) {}
operator ()(AllocaInst * AI) const3469 bool operator()(AllocaInst *AI) const { return Set.count(AI); }
3470 };
3471 }
3472
runOnFunction(Function & F)3473 bool SROA::runOnFunction(Function &F) {
3474 DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3475 C = &F.getContext();
3476 DL = getAnalysisIfAvailable<DataLayout>();
3477 if (!DL) {
3478 DEBUG(dbgs() << " Skipping SROA -- no target data!\n");
3479 return false;
3480 }
3481 DT = getAnalysisIfAvailable<DominatorTree>();
3482
3483 BasicBlock &EntryBB = F.getEntryBlock();
3484 for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3485 I != E; ++I)
3486 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3487 Worklist.insert(AI);
3488
3489 bool Changed = false;
3490 // A set of deleted alloca instruction pointers which should be removed from
3491 // the list of promotable allocas.
3492 SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3493
3494 do {
3495 while (!Worklist.empty()) {
3496 Changed |= runOnAlloca(*Worklist.pop_back_val());
3497 deleteDeadInstructions(DeletedAllocas);
3498
3499 // Remove the deleted allocas from various lists so that we don't try to
3500 // continue processing them.
3501 if (!DeletedAllocas.empty()) {
3502 Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
3503 PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
3504 PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3505 PromotableAllocas.end(),
3506 IsAllocaInSet(DeletedAllocas)),
3507 PromotableAllocas.end());
3508 DeletedAllocas.clear();
3509 }
3510 }
3511
3512 Changed |= promoteAllocas(F);
3513
3514 Worklist = PostPromotionWorklist;
3515 PostPromotionWorklist.clear();
3516 } while (!Worklist.empty());
3517
3518 return Changed;
3519 }
3520
getAnalysisUsage(AnalysisUsage & AU) const3521 void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
3522 if (RequiresDomTree)
3523 AU.addRequired<DominatorTree>();
3524 AU.setPreservesCFG();
3525 }
3526