1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop. This pass also implements the following extensions to the basic
13 // algorithm:
14 //
15 // 1. Trivial instructions between the call and return do not prevent the
16 // transformation from taking place, though currently the analysis cannot
17 // support moving any really useful instructions (only dead ones).
18 // 2. This pass transforms functions that are prevented from being tail
19 // recursive by an associative and commutative expression to use an
20 // accumulator variable, thus compiling the typical naive factorial or
21 // 'fib' implementation into efficient code.
22 // 3. TRE is performed if the function returns void, if the return
23 // returns the result returned by the call, or if the function returns a
24 // run-time constant on all exits from the function. It is possible, though
25 // unlikely, that the return returns something else (like constant 0), and
26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
27 // the function return the exact same value.
28 // 4. If it can prove that callees do not access their caller stack frame,
29 // they are marked as eligible for tail call elimination (by the code
30 // generator).
31 //
32 // There are several improvements that could be made:
33 //
34 // 1. If the function has any alloca instructions, these instructions will be
35 // moved out of the entry block of the function, causing them to be
36 // evaluated each time through the tail recursion. Safely keeping allocas
37 // in the entry block requires analysis to proves that the tail-called
38 // function does not read or write the stack object.
39 // 2. Tail recursion is only performed if the call immediately precedes the
40 // return instruction. It's possible that there could be a jump between
41 // the call and the return.
42 // 3. There can be intervening operations between the call and the return that
43 // prevent the TRE from occurring. For example, there could be GEP's and
44 // stores to memory that will not be read or written by the call. This
45 // requires some substantial analysis (such as with DSA) to prove safe to
46 // move ahead of the call, but doing so could allow many more TREs to be
47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 // 4. The algorithm we use to detect if callees access their caller stack
49 // frames is very primitive.
50 //
51 //===----------------------------------------------------------------------===//
52
53 #define DEBUG_TYPE "tailcallelim"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/SmallPtrSet.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/Analysis/CaptureTracking.h"
59 #include "llvm/Analysis/InlineCost.h"
60 #include "llvm/Analysis/InstructionSimplify.h"
61 #include "llvm/Analysis/Loads.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/IntrinsicInst.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/CFG.h"
71 #include "llvm/Support/CallSite.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ValueHandle.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 using namespace llvm;
78
79 STATISTIC(NumEliminated, "Number of tail calls removed");
80 STATISTIC(NumRetDuped, "Number of return duplicated");
81 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
82
83 namespace {
84 struct TailCallElim : public FunctionPass {
85 const TargetTransformInfo *TTI;
86
87 static char ID; // Pass identification, replacement for typeid
TailCallElim__anon513e489c0111::TailCallElim88 TailCallElim() : FunctionPass(ID) {
89 initializeTailCallElimPass(*PassRegistry::getPassRegistry());
90 }
91
92 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
93
94 virtual bool runOnFunction(Function &F);
95
96 private:
97 CallInst *FindTRECandidate(Instruction *I,
98 bool CannotTailCallElimCallsMarkedTail);
99 bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
100 BasicBlock *&OldEntry,
101 bool &TailCallsAreMarkedTail,
102 SmallVectorImpl<PHINode *> &ArgumentPHIs,
103 bool CannotTailCallElimCallsMarkedTail);
104 bool FoldReturnAndProcessPred(BasicBlock *BB,
105 ReturnInst *Ret, BasicBlock *&OldEntry,
106 bool &TailCallsAreMarkedTail,
107 SmallVectorImpl<PHINode *> &ArgumentPHIs,
108 bool CannotTailCallElimCallsMarkedTail);
109 bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
110 bool &TailCallsAreMarkedTail,
111 SmallVectorImpl<PHINode *> &ArgumentPHIs,
112 bool CannotTailCallElimCallsMarkedTail);
113 bool CanMoveAboveCall(Instruction *I, CallInst *CI);
114 Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
115 };
116 }
117
118 char TailCallElim::ID = 0;
119 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
120 "Tail Call Elimination", false, false)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)121 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
122 INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
123 "Tail Call Elimination", false, false)
124
125 // Public interface to the TailCallElimination pass
126 FunctionPass *llvm::createTailCallEliminationPass() {
127 return new TailCallElim();
128 }
129
getAnalysisUsage(AnalysisUsage & AU) const130 void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
131 AU.addRequired<TargetTransformInfo>();
132 }
133
134 /// CanTRE - Scan the specified basic block for alloca instructions.
135 /// If it contains any that are variable-sized or not in the entry block,
136 /// returns false.
CanTRE(AllocaInst * AI)137 static bool CanTRE(AllocaInst *AI) {
138 // Because of PR962, we don't TRE allocas outside the entry block.
139
140 // If this alloca is in the body of the function, or if it is a variable
141 // sized allocation, we cannot tail call eliminate calls marked 'tail'
142 // with this mechanism.
143 BasicBlock *BB = AI->getParent();
144 return BB == &BB->getParent()->getEntryBlock() &&
145 isa<ConstantInt>(AI->getArraySize());
146 }
147
148 namespace {
149 struct AllocaCaptureTracker : public CaptureTracker {
AllocaCaptureTracker__anon513e489c0211::AllocaCaptureTracker150 AllocaCaptureTracker() : Captured(false) {}
151
tooManyUses__anon513e489c0211::AllocaCaptureTracker152 void tooManyUses() LLVM_OVERRIDE { Captured = true; }
153
shouldExplore__anon513e489c0211::AllocaCaptureTracker154 bool shouldExplore(Use *U) LLVM_OVERRIDE {
155 Value *V = U->getUser();
156 if (isa<CallInst>(V) || isa<InvokeInst>(V))
157 UsesAlloca.insert(V);
158 return true;
159 }
160
captured__anon513e489c0211::AllocaCaptureTracker161 bool captured(Use *U) LLVM_OVERRIDE {
162 if (isa<ReturnInst>(U->getUser()))
163 return false;
164 Captured = true;
165 return true;
166 }
167
168 bool Captured;
169 SmallPtrSet<const Value *, 16> UsesAlloca;
170 };
171 } // end anonymous namespace
172
runOnFunction(Function & F)173 bool TailCallElim::runOnFunction(Function &F) {
174 // If this function is a varargs function, we won't be able to PHI the args
175 // right, so don't even try to convert it...
176 if (F.getFunctionType()->isVarArg()) return false;
177
178 TTI = &getAnalysis<TargetTransformInfo>();
179 BasicBlock *OldEntry = 0;
180 bool TailCallsAreMarkedTail = false;
181 SmallVector<PHINode*, 8> ArgumentPHIs;
182 bool MadeChange = false;
183
184 // CanTRETailMarkedCall - If false, we cannot perform TRE on tail calls
185 // marked with the 'tail' attribute, because doing so would cause the stack
186 // size to increase (real TRE would deallocate variable sized allocas, TRE
187 // doesn't).
188 bool CanTRETailMarkedCall = true;
189
190 // Find calls that can be marked tail.
191 AllocaCaptureTracker ACT;
192 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB) {
193 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
194 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
195 CanTRETailMarkedCall &= CanTRE(AI);
196 PointerMayBeCaptured(AI, &ACT);
197 // If any allocas are captured, exit.
198 if (ACT.Captured)
199 return false;
200 }
201 }
202 }
203
204 // Second pass, change any tail recursive calls to loops.
205 //
206 // FIXME: The code generator produces really bad code when an 'escaping
207 // alloca' is changed from being a static alloca to being a dynamic alloca.
208 // Until this is resolved, disable this transformation if that would ever
209 // happen. This bug is PR962.
210 if (ACT.UsesAlloca.empty()) {
211 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
212 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
213 bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
214 ArgumentPHIs, !CanTRETailMarkedCall);
215 if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
216 Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
217 TailCallsAreMarkedTail, ArgumentPHIs,
218 !CanTRETailMarkedCall);
219 MadeChange |= Change;
220 }
221 }
222 }
223
224 // If we eliminated any tail recursions, it's possible that we inserted some
225 // silly PHI nodes which just merge an initial value (the incoming operand)
226 // with themselves. Check to see if we did and clean up our mess if so. This
227 // occurs when a function passes an argument straight through to its tail
228 // call.
229 if (!ArgumentPHIs.empty()) {
230 for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
231 PHINode *PN = ArgumentPHIs[i];
232
233 // If the PHI Node is a dynamic constant, replace it with the value it is.
234 if (Value *PNV = SimplifyInstruction(PN)) {
235 PN->replaceAllUsesWith(PNV);
236 PN->eraseFromParent();
237 }
238 }
239 }
240
241 // At this point, we know that the function does not have any captured
242 // allocas. If additionally the function does not call setjmp, mark all calls
243 // in the function that do not access stack memory with the tail keyword. This
244 // implies ensuring that there does not exist any path from a call that takes
245 // in an alloca but does not capture it and the call which we wish to mark
246 // with "tail".
247 if (!F.callsFunctionThatReturnsTwice()) {
248 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
249 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
250 if (CallInst *CI = dyn_cast<CallInst>(I)) {
251 if (!ACT.UsesAlloca.count(CI)) {
252 CI->setTailCall();
253 MadeChange = true;
254 }
255 }
256 }
257 }
258 }
259
260 return MadeChange;
261 }
262
263
264 /// CanMoveAboveCall - Return true if it is safe to move the specified
265 /// instruction from after the call to before the call, assuming that all
266 /// instructions between the call and this instruction are movable.
267 ///
CanMoveAboveCall(Instruction * I,CallInst * CI)268 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
269 // FIXME: We can move load/store/call/free instructions above the call if the
270 // call does not mod/ref the memory location being processed.
271 if (I->mayHaveSideEffects()) // This also handles volatile loads.
272 return false;
273
274 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
275 // Loads may always be moved above calls without side effects.
276 if (CI->mayHaveSideEffects()) {
277 // Non-volatile loads may be moved above a call with side effects if it
278 // does not write to memory and the load provably won't trap.
279 // FIXME: Writes to memory only matter if they may alias the pointer
280 // being loaded from.
281 if (CI->mayWriteToMemory() ||
282 !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
283 L->getAlignment()))
284 return false;
285 }
286 }
287
288 // Otherwise, if this is a side-effect free instruction, check to make sure
289 // that it does not use the return value of the call. If it doesn't use the
290 // return value of the call, it must only use things that are defined before
291 // the call, or movable instructions between the call and the instruction
292 // itself.
293 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
294 if (I->getOperand(i) == CI)
295 return false;
296 return true;
297 }
298
299 // isDynamicConstant - Return true if the specified value is the same when the
300 // return would exit as it was when the initial iteration of the recursive
301 // function was executed.
302 //
303 // We currently handle static constants and arguments that are not modified as
304 // part of the recursion.
305 //
isDynamicConstant(Value * V,CallInst * CI,ReturnInst * RI)306 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
307 if (isa<Constant>(V)) return true; // Static constants are always dyn consts
308
309 // Check to see if this is an immutable argument, if so, the value
310 // will be available to initialize the accumulator.
311 if (Argument *Arg = dyn_cast<Argument>(V)) {
312 // Figure out which argument number this is...
313 unsigned ArgNo = 0;
314 Function *F = CI->getParent()->getParent();
315 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
316 ++ArgNo;
317
318 // If we are passing this argument into call as the corresponding
319 // argument operand, then the argument is dynamically constant.
320 // Otherwise, we cannot transform this function safely.
321 if (CI->getArgOperand(ArgNo) == Arg)
322 return true;
323 }
324
325 // Switch cases are always constant integers. If the value is being switched
326 // on and the return is only reachable from one of its cases, it's
327 // effectively constant.
328 if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
329 if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
330 if (SI->getCondition() == V)
331 return SI->getDefaultDest() != RI->getParent();
332
333 // Not a constant or immutable argument, we can't safely transform.
334 return false;
335 }
336
337 // getCommonReturnValue - Check to see if the function containing the specified
338 // tail call consistently returns the same runtime-constant value at all exit
339 // points except for IgnoreRI. If so, return the returned value.
340 //
getCommonReturnValue(ReturnInst * IgnoreRI,CallInst * CI)341 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
342 Function *F = CI->getParent()->getParent();
343 Value *ReturnedValue = 0;
344
345 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
346 ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
347 if (RI == 0 || RI == IgnoreRI) continue;
348
349 // We can only perform this transformation if the value returned is
350 // evaluatable at the start of the initial invocation of the function,
351 // instead of at the end of the evaluation.
352 //
353 Value *RetOp = RI->getOperand(0);
354 if (!isDynamicConstant(RetOp, CI, RI))
355 return 0;
356
357 if (ReturnedValue && RetOp != ReturnedValue)
358 return 0; // Cannot transform if differing values are returned.
359 ReturnedValue = RetOp;
360 }
361 return ReturnedValue;
362 }
363
364 /// CanTransformAccumulatorRecursion - If the specified instruction can be
365 /// transformed using accumulator recursion elimination, return the constant
366 /// which is the start of the accumulator value. Otherwise return null.
367 ///
CanTransformAccumulatorRecursion(Instruction * I,CallInst * CI)368 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
369 CallInst *CI) {
370 if (!I->isAssociative() || !I->isCommutative()) return 0;
371 assert(I->getNumOperands() == 2 &&
372 "Associative/commutative operations should have 2 args!");
373
374 // Exactly one operand should be the result of the call instruction.
375 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
376 (I->getOperand(0) != CI && I->getOperand(1) != CI))
377 return 0;
378
379 // The only user of this instruction we allow is a single return instruction.
380 if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
381 return 0;
382
383 // Ok, now we have to check all of the other return instructions in this
384 // function. If they return non-constants or differing values, then we cannot
385 // transform the function safely.
386 return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
387 }
388
FirstNonDbg(BasicBlock::iterator I)389 static Instruction *FirstNonDbg(BasicBlock::iterator I) {
390 while (isa<DbgInfoIntrinsic>(I))
391 ++I;
392 return &*I;
393 }
394
395 CallInst*
FindTRECandidate(Instruction * TI,bool CannotTailCallElimCallsMarkedTail)396 TailCallElim::FindTRECandidate(Instruction *TI,
397 bool CannotTailCallElimCallsMarkedTail) {
398 BasicBlock *BB = TI->getParent();
399 Function *F = BB->getParent();
400
401 if (&BB->front() == TI) // Make sure there is something before the terminator.
402 return 0;
403
404 // Scan backwards from the return, checking to see if there is a tail call in
405 // this block. If so, set CI to it.
406 CallInst *CI = 0;
407 BasicBlock::iterator BBI = TI;
408 while (true) {
409 CI = dyn_cast<CallInst>(BBI);
410 if (CI && CI->getCalledFunction() == F)
411 break;
412
413 if (BBI == BB->begin())
414 return 0; // Didn't find a potential tail call.
415 --BBI;
416 }
417
418 // If this call is marked as a tail call, and if there are dynamic allocas in
419 // the function, we cannot perform this optimization.
420 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
421 return 0;
422
423 // As a special case, detect code like this:
424 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
425 // and disable this xform in this case, because the code generator will
426 // lower the call to fabs into inline code.
427 if (BB == &F->getEntryBlock() &&
428 FirstNonDbg(BB->front()) == CI &&
429 FirstNonDbg(llvm::next(BB->begin())) == TI &&
430 CI->getCalledFunction() &&
431 !TTI->isLoweredToCall(CI->getCalledFunction())) {
432 // A single-block function with just a call and a return. Check that
433 // the arguments match.
434 CallSite::arg_iterator I = CallSite(CI).arg_begin(),
435 E = CallSite(CI).arg_end();
436 Function::arg_iterator FI = F->arg_begin(),
437 FE = F->arg_end();
438 for (; I != E && FI != FE; ++I, ++FI)
439 if (*I != &*FI) break;
440 if (I == E && FI == FE)
441 return 0;
442 }
443
444 return CI;
445 }
446
EliminateRecursiveTailCall(CallInst * CI,ReturnInst * Ret,BasicBlock * & OldEntry,bool & TailCallsAreMarkedTail,SmallVectorImpl<PHINode * > & ArgumentPHIs,bool CannotTailCallElimCallsMarkedTail)447 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
448 BasicBlock *&OldEntry,
449 bool &TailCallsAreMarkedTail,
450 SmallVectorImpl<PHINode *> &ArgumentPHIs,
451 bool CannotTailCallElimCallsMarkedTail) {
452 // If we are introducing accumulator recursion to eliminate operations after
453 // the call instruction that are both associative and commutative, the initial
454 // value for the accumulator is placed in this variable. If this value is set
455 // then we actually perform accumulator recursion elimination instead of
456 // simple tail recursion elimination. If the operation is an LLVM instruction
457 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then
458 // we are handling the case when the return instruction returns a constant C
459 // which is different to the constant returned by other return instructions
460 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a
461 // special case of accumulator recursion, the operation being "return C".
462 Value *AccumulatorRecursionEliminationInitVal = 0;
463 Instruction *AccumulatorRecursionInstr = 0;
464
465 // Ok, we found a potential tail call. We can currently only transform the
466 // tail call if all of the instructions between the call and the return are
467 // movable to above the call itself, leaving the call next to the return.
468 // Check that this is the case now.
469 BasicBlock::iterator BBI = CI;
470 for (++BBI; &*BBI != Ret; ++BBI) {
471 if (CanMoveAboveCall(BBI, CI)) continue;
472
473 // If we can't move the instruction above the call, it might be because it
474 // is an associative and commutative operation that could be transformed
475 // using accumulator recursion elimination. Check to see if this is the
476 // case, and if so, remember the initial accumulator value for later.
477 if ((AccumulatorRecursionEliminationInitVal =
478 CanTransformAccumulatorRecursion(BBI, CI))) {
479 // Yes, this is accumulator recursion. Remember which instruction
480 // accumulates.
481 AccumulatorRecursionInstr = BBI;
482 } else {
483 return false; // Otherwise, we cannot eliminate the tail recursion!
484 }
485 }
486
487 // We can only transform call/return pairs that either ignore the return value
488 // of the call and return void, ignore the value of the call and return a
489 // constant, return the value returned by the tail call, or that are being
490 // accumulator recursion variable eliminated.
491 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
492 !isa<UndefValue>(Ret->getReturnValue()) &&
493 AccumulatorRecursionEliminationInitVal == 0 &&
494 !getCommonReturnValue(0, CI)) {
495 // One case remains that we are able to handle: the current return
496 // instruction returns a constant, and all other return instructions
497 // return a different constant.
498 if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
499 return false; // Current return instruction does not return a constant.
500 // Check that all other return instructions return a common constant. If
501 // so, record it in AccumulatorRecursionEliminationInitVal.
502 AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
503 if (!AccumulatorRecursionEliminationInitVal)
504 return false;
505 }
506
507 BasicBlock *BB = Ret->getParent();
508 Function *F = BB->getParent();
509
510 // OK! We can transform this tail call. If this is the first one found,
511 // create the new entry block, allowing us to branch back to the old entry.
512 if (OldEntry == 0) {
513 OldEntry = &F->getEntryBlock();
514 BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
515 NewEntry->takeName(OldEntry);
516 OldEntry->setName("tailrecurse");
517 BranchInst::Create(OldEntry, NewEntry);
518
519 // If this tail call is marked 'tail' and if there are any allocas in the
520 // entry block, move them up to the new entry block.
521 TailCallsAreMarkedTail = CI->isTailCall();
522 if (TailCallsAreMarkedTail)
523 // Move all fixed sized allocas from OldEntry to NewEntry.
524 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
525 NEBI = NewEntry->begin(); OEBI != E; )
526 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
527 if (isa<ConstantInt>(AI->getArraySize()))
528 AI->moveBefore(NEBI);
529
530 // Now that we have created a new block, which jumps to the entry
531 // block, insert a PHI node for each argument of the function.
532 // For now, we initialize each PHI to only have the real arguments
533 // which are passed in.
534 Instruction *InsertPos = OldEntry->begin();
535 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
536 I != E; ++I) {
537 PHINode *PN = PHINode::Create(I->getType(), 2,
538 I->getName() + ".tr", InsertPos);
539 I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
540 PN->addIncoming(I, NewEntry);
541 ArgumentPHIs.push_back(PN);
542 }
543 }
544
545 // If this function has self recursive calls in the tail position where some
546 // are marked tail and some are not, only transform one flavor or another. We
547 // have to choose whether we move allocas in the entry block to the new entry
548 // block or not, so we can't make a good choice for both. NOTE: We could do
549 // slightly better here in the case that the function has no entry block
550 // allocas.
551 if (TailCallsAreMarkedTail && !CI->isTailCall())
552 return false;
553
554 // Ok, now that we know we have a pseudo-entry block WITH all of the
555 // required PHI nodes, add entries into the PHI node for the actual
556 // parameters passed into the tail-recursive call.
557 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
558 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
559
560 // If we are introducing an accumulator variable to eliminate the recursion,
561 // do so now. Note that we _know_ that no subsequent tail recursion
562 // eliminations will happen on this function because of the way the
563 // accumulator recursion predicate is set up.
564 //
565 if (AccumulatorRecursionEliminationInitVal) {
566 Instruction *AccRecInstr = AccumulatorRecursionInstr;
567 // Start by inserting a new PHI node for the accumulator.
568 pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
569 PHINode *AccPN =
570 PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
571 std::distance(PB, PE) + 1,
572 "accumulator.tr", OldEntry->begin());
573
574 // Loop over all of the predecessors of the tail recursion block. For the
575 // real entry into the function we seed the PHI with the initial value,
576 // computed earlier. For any other existing branches to this block (due to
577 // other tail recursions eliminated) the accumulator is not modified.
578 // Because we haven't added the branch in the current block to OldEntry yet,
579 // it will not show up as a predecessor.
580 for (pred_iterator PI = PB; PI != PE; ++PI) {
581 BasicBlock *P = *PI;
582 if (P == &F->getEntryBlock())
583 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
584 else
585 AccPN->addIncoming(AccPN, P);
586 }
587
588 if (AccRecInstr) {
589 // Add an incoming argument for the current block, which is computed by
590 // our associative and commutative accumulator instruction.
591 AccPN->addIncoming(AccRecInstr, BB);
592
593 // Next, rewrite the accumulator recursion instruction so that it does not
594 // use the result of the call anymore, instead, use the PHI node we just
595 // inserted.
596 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
597 } else {
598 // Add an incoming argument for the current block, which is just the
599 // constant returned by the current return instruction.
600 AccPN->addIncoming(Ret->getReturnValue(), BB);
601 }
602
603 // Finally, rewrite any return instructions in the program to return the PHI
604 // node instead of the "initval" that they do currently. This loop will
605 // actually rewrite the return value we are destroying, but that's ok.
606 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
607 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
608 RI->setOperand(0, AccPN);
609 ++NumAccumAdded;
610 }
611
612 // Now that all of the PHI nodes are in place, remove the call and
613 // ret instructions, replacing them with an unconditional branch.
614 BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
615 NewBI->setDebugLoc(CI->getDebugLoc());
616
617 BB->getInstList().erase(Ret); // Remove return.
618 BB->getInstList().erase(CI); // Remove call.
619 ++NumEliminated;
620 return true;
621 }
622
FoldReturnAndProcessPred(BasicBlock * BB,ReturnInst * Ret,BasicBlock * & OldEntry,bool & TailCallsAreMarkedTail,SmallVectorImpl<PHINode * > & ArgumentPHIs,bool CannotTailCallElimCallsMarkedTail)623 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
624 ReturnInst *Ret, BasicBlock *&OldEntry,
625 bool &TailCallsAreMarkedTail,
626 SmallVectorImpl<PHINode *> &ArgumentPHIs,
627 bool CannotTailCallElimCallsMarkedTail) {
628 bool Change = false;
629
630 // If the return block contains nothing but the return and PHI's,
631 // there might be an opportunity to duplicate the return in its
632 // predecessors and perform TRC there. Look for predecessors that end
633 // in unconditional branch and recursive call(s).
634 SmallVector<BranchInst*, 8> UncondBranchPreds;
635 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
636 BasicBlock *Pred = *PI;
637 TerminatorInst *PTI = Pred->getTerminator();
638 if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
639 if (BI->isUnconditional())
640 UncondBranchPreds.push_back(BI);
641 }
642
643 while (!UncondBranchPreds.empty()) {
644 BranchInst *BI = UncondBranchPreds.pop_back_val();
645 BasicBlock *Pred = BI->getParent();
646 if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
647 DEBUG(dbgs() << "FOLDING: " << *BB
648 << "INTO UNCOND BRANCH PRED: " << *Pred);
649 EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred),
650 OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
651 CannotTailCallElimCallsMarkedTail);
652 ++NumRetDuped;
653 Change = true;
654 }
655 }
656
657 return Change;
658 }
659
660 bool
ProcessReturningBlock(ReturnInst * Ret,BasicBlock * & OldEntry,bool & TailCallsAreMarkedTail,SmallVectorImpl<PHINode * > & ArgumentPHIs,bool CannotTailCallElimCallsMarkedTail)661 TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
662 bool &TailCallsAreMarkedTail,
663 SmallVectorImpl<PHINode *> &ArgumentPHIs,
664 bool CannotTailCallElimCallsMarkedTail) {
665 CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
666 if (!CI)
667 return false;
668
669 return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
670 ArgumentPHIs,
671 CannotTailCallElimCallsMarkedTail);
672 }
673