1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block. This pass may be "required" by passes that
12 // cannot deal with critical edges. For this usage, the structure type is
13 // forward declared. This pass obviously invalidates the CFG, but can update
14 // dominator trees.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "break-crit-edges"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/Dominators.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/ProfileInfo.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/CFG.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 using namespace llvm;
33
34 STATISTIC(NumBroken, "Number of blocks inserted");
35
36 namespace {
37 struct BreakCriticalEdges : public FunctionPass {
38 static char ID; // Pass identification, replacement for typeid
BreakCriticalEdges__anonddd3b1120111::BreakCriticalEdges39 BreakCriticalEdges() : FunctionPass(ID) {
40 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
41 }
42
43 virtual bool runOnFunction(Function &F);
44
getAnalysisUsage__anonddd3b1120111::BreakCriticalEdges45 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
46 AU.addPreserved<DominatorTree>();
47 AU.addPreserved<LoopInfo>();
48 AU.addPreserved<ProfileInfo>();
49
50 // No loop canonicalization guarantees are broken by this pass.
51 AU.addPreservedID(LoopSimplifyID);
52 }
53 };
54 }
55
56 char BreakCriticalEdges::ID = 0;
57 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
58 "Break critical edges in CFG", false, false)
59
60 // Publicly exposed interface to pass...
61 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
createBreakCriticalEdgesPass()62 FunctionPass *llvm::createBreakCriticalEdgesPass() {
63 return new BreakCriticalEdges();
64 }
65
66 // runOnFunction - Loop over all of the edges in the CFG, breaking critical
67 // edges as they are found.
68 //
runOnFunction(Function & F)69 bool BreakCriticalEdges::runOnFunction(Function &F) {
70 bool Changed = false;
71 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
72 TerminatorInst *TI = I->getTerminator();
73 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
74 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
75 if (SplitCriticalEdge(TI, i, this)) {
76 ++NumBroken;
77 Changed = true;
78 }
79 }
80
81 return Changed;
82 }
83
84 //===----------------------------------------------------------------------===//
85 // Implementation of the external critical edge manipulation functions
86 //===----------------------------------------------------------------------===//
87
88 /// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
89 /// may require new PHIs in the new exit block. This function inserts the
90 /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
91 /// is the new loop exit block, and DestBB is the old loop exit, now the
92 /// successor of SplitBB.
createPHIsForSplitLoopExit(ArrayRef<BasicBlock * > Preds,BasicBlock * SplitBB,BasicBlock * DestBB)93 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
94 BasicBlock *SplitBB,
95 BasicBlock *DestBB) {
96 // SplitBB shouldn't have anything non-trivial in it yet.
97 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
98 SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
99
100 // For each PHI in the destination block.
101 for (BasicBlock::iterator I = DestBB->begin();
102 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
103 unsigned Idx = PN->getBasicBlockIndex(SplitBB);
104 Value *V = PN->getIncomingValue(Idx);
105
106 // If the input is a PHI which already satisfies LCSSA, don't create
107 // a new one.
108 if (const PHINode *VP = dyn_cast<PHINode>(V))
109 if (VP->getParent() == SplitBB)
110 continue;
111
112 // Otherwise a new PHI is needed. Create one and populate it.
113 PHINode *NewPN =
114 PHINode::Create(PN->getType(), Preds.size(), "split",
115 SplitBB->isLandingPad() ?
116 SplitBB->begin() : SplitBB->getTerminator());
117 for (unsigned i = 0, e = Preds.size(); i != e; ++i)
118 NewPN->addIncoming(V, Preds[i]);
119
120 // Update the original PHI.
121 PN->setIncomingValue(Idx, NewPN);
122 }
123 }
124
125 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
126 /// split the critical edge. This will update DominatorTree information if it
127 /// is available, thus calling this pass will not invalidate either of them.
128 /// This returns the new block if the edge was split, null otherwise.
129 ///
130 /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
131 /// specified successor will be merged into the same critical edge block.
132 /// This is most commonly interesting with switch instructions, which may
133 /// have many edges to any one destination. This ensures that all edges to that
134 /// dest go to one block instead of each going to a different block, but isn't
135 /// the standard definition of a "critical edge".
136 ///
137 /// It is invalid to call this function on a critical edge that starts at an
138 /// IndirectBrInst. Splitting these edges will almost always create an invalid
139 /// program because the address of the new block won't be the one that is jumped
140 /// to.
141 ///
SplitCriticalEdge(TerminatorInst * TI,unsigned SuccNum,Pass * P,bool MergeIdenticalEdges,bool DontDeleteUselessPhis,bool SplitLandingPads)142 BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
143 Pass *P, bool MergeIdenticalEdges,
144 bool DontDeleteUselessPhis,
145 bool SplitLandingPads) {
146 if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
147
148 assert(!isa<IndirectBrInst>(TI) &&
149 "Cannot split critical edge from IndirectBrInst");
150
151 BasicBlock *TIBB = TI->getParent();
152 BasicBlock *DestBB = TI->getSuccessor(SuccNum);
153
154 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
155 // it in this generic function.
156 if (DestBB->isLandingPad()) return 0;
157
158 // Create a new basic block, linking it into the CFG.
159 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
160 TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
161 // Create our unconditional branch.
162 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
163 NewBI->setDebugLoc(TI->getDebugLoc());
164
165 // Branch to the new block, breaking the edge.
166 TI->setSuccessor(SuccNum, NewBB);
167
168 // Insert the block into the function... right after the block TI lives in.
169 Function &F = *TIBB->getParent();
170 Function::iterator FBBI = TIBB;
171 F.getBasicBlockList().insert(++FBBI, NewBB);
172
173 // If there are any PHI nodes in DestBB, we need to update them so that they
174 // merge incoming values from NewBB instead of from TIBB.
175 {
176 unsigned BBIdx = 0;
177 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
178 // We no longer enter through TIBB, now we come in through NewBB.
179 // Revector exactly one entry in the PHI node that used to come from
180 // TIBB to come from NewBB.
181 PHINode *PN = cast<PHINode>(I);
182
183 // Reuse the previous value of BBIdx if it lines up. In cases where we
184 // have multiple phi nodes with *lots* of predecessors, this is a speed
185 // win because we don't have to scan the PHI looking for TIBB. This
186 // happens because the BB list of PHI nodes are usually in the same
187 // order.
188 if (PN->getIncomingBlock(BBIdx) != TIBB)
189 BBIdx = PN->getBasicBlockIndex(TIBB);
190 PN->setIncomingBlock(BBIdx, NewBB);
191 }
192 }
193
194 // If there are any other edges from TIBB to DestBB, update those to go
195 // through the split block, making those edges non-critical as well (and
196 // reducing the number of phi entries in the DestBB if relevant).
197 if (MergeIdenticalEdges) {
198 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
199 if (TI->getSuccessor(i) != DestBB) continue;
200
201 // Remove an entry for TIBB from DestBB phi nodes.
202 DestBB->removePredecessor(TIBB, DontDeleteUselessPhis);
203
204 // We found another edge to DestBB, go to NewBB instead.
205 TI->setSuccessor(i, NewBB);
206 }
207 }
208
209
210
211 // If we don't have a pass object, we can't update anything...
212 if (P == 0) return NewBB;
213
214 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
215 LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
216 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
217
218 // If we have nothing to update, just return.
219 if (DT == 0 && LI == 0 && PI == 0)
220 return NewBB;
221
222 // Now update analysis information. Since the only predecessor of NewBB is
223 // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
224 // anything, as there are other successors of DestBB. However, if all other
225 // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
226 // loop header) then NewBB dominates DestBB.
227 SmallVector<BasicBlock*, 8> OtherPreds;
228
229 // If there is a PHI in the block, loop over predecessors with it, which is
230 // faster than iterating pred_begin/end.
231 if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
232 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
233 if (PN->getIncomingBlock(i) != NewBB)
234 OtherPreds.push_back(PN->getIncomingBlock(i));
235 } else {
236 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
237 I != E; ++I) {
238 BasicBlock *P = *I;
239 if (P != NewBB)
240 OtherPreds.push_back(P);
241 }
242 }
243
244 bool NewBBDominatesDestBB = true;
245
246 // Should we update DominatorTree information?
247 if (DT) {
248 DomTreeNode *TINode = DT->getNode(TIBB);
249
250 // The new block is not the immediate dominator for any other nodes, but
251 // TINode is the immediate dominator for the new node.
252 //
253 if (TINode) { // Don't break unreachable code!
254 DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
255 DomTreeNode *DestBBNode = 0;
256
257 // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
258 if (!OtherPreds.empty()) {
259 DestBBNode = DT->getNode(DestBB);
260 while (!OtherPreds.empty() && NewBBDominatesDestBB) {
261 if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
262 NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
263 OtherPreds.pop_back();
264 }
265 OtherPreds.clear();
266 }
267
268 // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
269 // doesn't dominate anything.
270 if (NewBBDominatesDestBB) {
271 if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
272 DT->changeImmediateDominator(DestBBNode, NewBBNode);
273 }
274 }
275 }
276
277 // Update LoopInfo if it is around.
278 if (LI) {
279 if (Loop *TIL = LI->getLoopFor(TIBB)) {
280 // If one or the other blocks were not in a loop, the new block is not
281 // either, and thus LI doesn't need to be updated.
282 if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
283 if (TIL == DestLoop) {
284 // Both in the same loop, the NewBB joins loop.
285 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
286 } else if (TIL->contains(DestLoop)) {
287 // Edge from an outer loop to an inner loop. Add to the outer loop.
288 TIL->addBasicBlockToLoop(NewBB, LI->getBase());
289 } else if (DestLoop->contains(TIL)) {
290 // Edge from an inner loop to an outer loop. Add to the outer loop.
291 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
292 } else {
293 // Edge from two loops with no containment relation. Because these
294 // are natural loops, we know that the destination block must be the
295 // header of its loop (adding a branch into a loop elsewhere would
296 // create an irreducible loop).
297 assert(DestLoop->getHeader() == DestBB &&
298 "Should not create irreducible loops!");
299 if (Loop *P = DestLoop->getParentLoop())
300 P->addBasicBlockToLoop(NewBB, LI->getBase());
301 }
302 }
303 // If TIBB is in a loop and DestBB is outside of that loop, split the
304 // other exit blocks of the loop that also have predecessors outside
305 // the loop, to maintain a LoopSimplify guarantee.
306 if (!TIL->contains(DestBB) &&
307 P->mustPreserveAnalysisID(LoopSimplifyID)) {
308 assert(!TIL->contains(NewBB) &&
309 "Split point for loop exit is contained in loop!");
310
311 // Update LCSSA form in the newly created exit block.
312 if (P->mustPreserveAnalysisID(LCSSAID))
313 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
314
315 // For each unique exit block...
316 // FIXME: This code is functionally equivalent to the corresponding
317 // loop in LoopSimplify.
318 SmallVector<BasicBlock *, 4> ExitBlocks;
319 TIL->getExitBlocks(ExitBlocks);
320 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
321 // Collect all the preds that are inside the loop, and note
322 // whether there are any preds outside the loop.
323 SmallVector<BasicBlock *, 4> Preds;
324 bool HasPredOutsideOfLoop = false;
325 BasicBlock *Exit = ExitBlocks[i];
326 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
327 I != E; ++I) {
328 BasicBlock *P = *I;
329 if (TIL->contains(P)) {
330 if (isa<IndirectBrInst>(P->getTerminator())) {
331 Preds.clear();
332 break;
333 }
334 Preds.push_back(P);
335 } else {
336 HasPredOutsideOfLoop = true;
337 }
338 }
339 // If there are any preds not in the loop, we'll need to split
340 // the edges. The Preds.empty() check is needed because a block
341 // may appear multiple times in the list. We can't use
342 // getUniqueExitBlocks above because that depends on LoopSimplify
343 // form, which we're in the process of restoring!
344 if (!Preds.empty() && HasPredOutsideOfLoop) {
345 if (!Exit->isLandingPad()) {
346 BasicBlock *NewExitBB =
347 SplitBlockPredecessors(Exit, Preds, "split", P);
348 if (P->mustPreserveAnalysisID(LCSSAID))
349 createPHIsForSplitLoopExit(Preds, NewExitBB, Exit);
350 } else if (SplitLandingPads) {
351 SmallVector<BasicBlock*, 8> NewBBs;
352 SplitLandingPadPredecessors(Exit, Preds,
353 ".split1", ".split2",
354 P, NewBBs);
355 if (P->mustPreserveAnalysisID(LCSSAID))
356 createPHIsForSplitLoopExit(Preds, NewBBs[0], Exit);
357 }
358 }
359 }
360 }
361 // LCSSA form was updated above for the case where LoopSimplify is
362 // available, which means that all predecessors of loop exit blocks
363 // are within the loop. Without LoopSimplify form, it would be
364 // necessary to insert a new phi.
365 assert((!P->mustPreserveAnalysisID(LCSSAID) ||
366 P->mustPreserveAnalysisID(LoopSimplifyID)) &&
367 "SplitCriticalEdge doesn't know how to update LCCSA form "
368 "without LoopSimplify!");
369 }
370 }
371
372 // Update ProfileInfo if it is around.
373 if (PI)
374 PI->splitEdge(TIBB, DestBB, NewBB, MergeIdenticalEdges);
375
376 return NewBB;
377 }
378