• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1; RUN: llc -mtriple=i686-linux -pre-RA-sched=source < %s | FileCheck %s
2
3declare void @error(i32 %i, i32 %a, i32 %b)
4
5define i32 @test_ifchains(i32 %i, i32* %a, i32 %b) {
6; Test a chain of ifs, where the block guarded by the if is error handling code
7; that is not expected to run.
8; CHECK-LABEL: test_ifchains:
9; CHECK: %entry
10; CHECK-NOT: .align
11; CHECK: %else1
12; CHECK-NOT: .align
13; CHECK: %else2
14; CHECK-NOT: .align
15; CHECK: %else3
16; CHECK-NOT: .align
17; CHECK: %else4
18; CHECK-NOT: .align
19; CHECK: %exit
20; CHECK: %then1
21; CHECK: %then2
22; CHECK: %then3
23; CHECK: %then4
24; CHECK: %then5
25
26entry:
27  %gep1 = getelementptr i32* %a, i32 1
28  %val1 = load i32* %gep1
29  %cond1 = icmp ugt i32 %val1, 1
30  br i1 %cond1, label %then1, label %else1, !prof !0
31
32then1:
33  call void @error(i32 %i, i32 1, i32 %b)
34  br label %else1
35
36else1:
37  %gep2 = getelementptr i32* %a, i32 2
38  %val2 = load i32* %gep2
39  %cond2 = icmp ugt i32 %val2, 2
40  br i1 %cond2, label %then2, label %else2, !prof !0
41
42then2:
43  call void @error(i32 %i, i32 1, i32 %b)
44  br label %else2
45
46else2:
47  %gep3 = getelementptr i32* %a, i32 3
48  %val3 = load i32* %gep3
49  %cond3 = icmp ugt i32 %val3, 3
50  br i1 %cond3, label %then3, label %else3, !prof !0
51
52then3:
53  call void @error(i32 %i, i32 1, i32 %b)
54  br label %else3
55
56else3:
57  %gep4 = getelementptr i32* %a, i32 4
58  %val4 = load i32* %gep4
59  %cond4 = icmp ugt i32 %val4, 4
60  br i1 %cond4, label %then4, label %else4, !prof !0
61
62then4:
63  call void @error(i32 %i, i32 1, i32 %b)
64  br label %else4
65
66else4:
67  %gep5 = getelementptr i32* %a, i32 3
68  %val5 = load i32* %gep5
69  %cond5 = icmp ugt i32 %val5, 3
70  br i1 %cond5, label %then5, label %exit, !prof !0
71
72then5:
73  call void @error(i32 %i, i32 1, i32 %b)
74  br label %exit
75
76exit:
77  ret i32 %b
78}
79
80define i32 @test_loop_cold_blocks(i32 %i, i32* %a) {
81; Check that we sink cold loop blocks after the hot loop body.
82; CHECK-LABEL: test_loop_cold_blocks:
83; CHECK: %entry
84; CHECK-NOT: .align
85; CHECK: %unlikely1
86; CHECK-NOT: .align
87; CHECK: %unlikely2
88; CHECK: .align
89; CHECK: %body1
90; CHECK: %body2
91; CHECK: %body3
92; CHECK: %exit
93
94entry:
95  br label %body1
96
97body1:
98  %iv = phi i32 [ 0, %entry ], [ %next, %body3 ]
99  %base = phi i32 [ 0, %entry ], [ %sum, %body3 ]
100  %unlikelycond1 = icmp slt i32 %base, 42
101  br i1 %unlikelycond1, label %unlikely1, label %body2, !prof !0
102
103unlikely1:
104  call void @error(i32 %i, i32 1, i32 %base)
105  br label %body2
106
107body2:
108  %unlikelycond2 = icmp sgt i32 %base, 21
109  br i1 %unlikelycond2, label %unlikely2, label %body3, !prof !0
110
111unlikely2:
112  call void @error(i32 %i, i32 2, i32 %base)
113  br label %body3
114
115body3:
116  %arrayidx = getelementptr inbounds i32* %a, i32 %iv
117  %0 = load i32* %arrayidx
118  %sum = add nsw i32 %0, %base
119  %next = add i32 %iv, 1
120  %exitcond = icmp eq i32 %next, %i
121  br i1 %exitcond, label %exit, label %body1
122
123exit:
124  ret i32 %sum
125}
126
127!0 = metadata !{metadata !"branch_weights", i32 4, i32 64}
128
129define i32 @test_loop_early_exits(i32 %i, i32* %a) {
130; Check that we sink early exit blocks out of loop bodies.
131; CHECK-LABEL: test_loop_early_exits:
132; CHECK: %entry
133; CHECK: %body1
134; CHECK: %body2
135; CHECK: %body3
136; CHECK: %body4
137; CHECK: %exit
138; CHECK: %bail1
139; CHECK: %bail2
140; CHECK: %bail3
141
142entry:
143  br label %body1
144
145body1:
146  %iv = phi i32 [ 0, %entry ], [ %next, %body4 ]
147  %base = phi i32 [ 0, %entry ], [ %sum, %body4 ]
148  %bailcond1 = icmp eq i32 %base, 42
149  br i1 %bailcond1, label %bail1, label %body2
150
151bail1:
152  ret i32 -1
153
154body2:
155  %bailcond2 = icmp eq i32 %base, 43
156  br i1 %bailcond2, label %bail2, label %body3
157
158bail2:
159  ret i32 -2
160
161body3:
162  %bailcond3 = icmp eq i32 %base, 44
163  br i1 %bailcond3, label %bail3, label %body4
164
165bail3:
166  ret i32 -3
167
168body4:
169  %arrayidx = getelementptr inbounds i32* %a, i32 %iv
170  %0 = load i32* %arrayidx
171  %sum = add nsw i32 %0, %base
172  %next = add i32 %iv, 1
173  %exitcond = icmp eq i32 %next, %i
174  br i1 %exitcond, label %exit, label %body1
175
176exit:
177  ret i32 %sum
178}
179
180define i32 @test_loop_rotate(i32 %i, i32* %a) {
181; Check that we rotate conditional exits from the loop to the bottom of the
182; loop, eliminating unconditional branches to the top.
183; CHECK-LABEL: test_loop_rotate:
184; CHECK: %entry
185; CHECK: %body1
186; CHECK: %body0
187; CHECK: %exit
188
189entry:
190  br label %body0
191
192body0:
193  %iv = phi i32 [ 0, %entry ], [ %next, %body1 ]
194  %base = phi i32 [ 0, %entry ], [ %sum, %body1 ]
195  %next = add i32 %iv, 1
196  %exitcond = icmp eq i32 %next, %i
197  br i1 %exitcond, label %exit, label %body1
198
199body1:
200  %arrayidx = getelementptr inbounds i32* %a, i32 %iv
201  %0 = load i32* %arrayidx
202  %sum = add nsw i32 %0, %base
203  %bailcond1 = icmp eq i32 %sum, 42
204  br label %body0
205
206exit:
207  ret i32 %base
208}
209
210define i32 @test_no_loop_rotate(i32 %i, i32* %a) {
211; Check that we don't try to rotate a loop which is already laid out with
212; fallthrough opportunities into the top and out of the bottom.
213; CHECK-LABEL: test_no_loop_rotate:
214; CHECK: %entry
215; CHECK: %body0
216; CHECK: %body1
217; CHECK: %exit
218
219entry:
220  br label %body0
221
222body0:
223  %iv = phi i32 [ 0, %entry ], [ %next, %body1 ]
224  %base = phi i32 [ 0, %entry ], [ %sum, %body1 ]
225  %arrayidx = getelementptr inbounds i32* %a, i32 %iv
226  %0 = load i32* %arrayidx
227  %sum = add nsw i32 %0, %base
228  %bailcond1 = icmp eq i32 %sum, 42
229  br i1 %bailcond1, label %exit, label %body1
230
231body1:
232  %next = add i32 %iv, 1
233  %exitcond = icmp eq i32 %next, %i
234  br i1 %exitcond, label %exit, label %body0
235
236exit:
237  ret i32 %base
238}
239
240define void @test_loop_rotate_reversed_blocks() {
241; This test case (greatly reduced from an Olden bencmark) ensures that the loop
242; rotate implementation doesn't assume that loops are laid out in a particular
243; order. The first loop will get split into two basic blocks, with the loop
244; header coming after the loop latch.
245;
246; CHECK: test_loop_rotate_reversed_blocks
247; CHECK: %entry
248; Look for a jump into the middle of the loop, and no branches mid-way.
249; CHECK: jmp
250; CHECK: %loop1
251; CHECK-NOT: j{{\w*}} .LBB{{.*}}
252; CHECK: %loop1
253; CHECK: je
254
255entry:
256  %cond1 = load volatile i1* undef
257  br i1 %cond1, label %loop2.preheader, label %loop1
258
259loop1:
260  call i32 @f()
261  %cond2 = load volatile i1* undef
262  br i1 %cond2, label %loop2.preheader, label %loop1
263
264loop2.preheader:
265  call i32 @f()
266  %cond3 = load volatile i1* undef
267  br i1 %cond3, label %exit, label %loop2
268
269loop2:
270  call i32 @f()
271  %cond4 = load volatile i1* undef
272  br i1 %cond4, label %exit, label %loop2
273
274exit:
275  ret void
276}
277
278define i32 @test_loop_align(i32 %i, i32* %a) {
279; Check that we provide basic loop body alignment with the block placement
280; pass.
281; CHECK-LABEL: test_loop_align:
282; CHECK: %entry
283; CHECK: .align [[ALIGN:[0-9]+]],
284; CHECK-NEXT: %body
285; CHECK: %exit
286
287entry:
288  br label %body
289
290body:
291  %iv = phi i32 [ 0, %entry ], [ %next, %body ]
292  %base = phi i32 [ 0, %entry ], [ %sum, %body ]
293  %arrayidx = getelementptr inbounds i32* %a, i32 %iv
294  %0 = load i32* %arrayidx
295  %sum = add nsw i32 %0, %base
296  %next = add i32 %iv, 1
297  %exitcond = icmp eq i32 %next, %i
298  br i1 %exitcond, label %exit, label %body
299
300exit:
301  ret i32 %sum
302}
303
304define i32 @test_nested_loop_align(i32 %i, i32* %a, i32* %b) {
305; Check that we provide nested loop body alignment.
306; CHECK-LABEL: test_nested_loop_align:
307; CHECK: %entry
308; CHECK: .align [[ALIGN]],
309; CHECK-NEXT: %loop.body.1
310; CHECK: .align [[ALIGN]],
311; CHECK-NEXT: %inner.loop.body
312; CHECK-NOT: .align
313; CHECK: %exit
314
315entry:
316  br label %loop.body.1
317
318loop.body.1:
319  %iv = phi i32 [ 0, %entry ], [ %next, %loop.body.2 ]
320  %arrayidx = getelementptr inbounds i32* %a, i32 %iv
321  %bidx = load i32* %arrayidx
322  br label %inner.loop.body
323
324inner.loop.body:
325  %inner.iv = phi i32 [ 0, %loop.body.1 ], [ %inner.next, %inner.loop.body ]
326  %base = phi i32 [ 0, %loop.body.1 ], [ %sum, %inner.loop.body ]
327  %scaled_idx = mul i32 %bidx, %iv
328  %inner.arrayidx = getelementptr inbounds i32* %b, i32 %scaled_idx
329  %0 = load i32* %inner.arrayidx
330  %sum = add nsw i32 %0, %base
331  %inner.next = add i32 %iv, 1
332  %inner.exitcond = icmp eq i32 %inner.next, %i
333  br i1 %inner.exitcond, label %loop.body.2, label %inner.loop.body
334
335loop.body.2:
336  %next = add i32 %iv, 1
337  %exitcond = icmp eq i32 %next, %i
338  br i1 %exitcond, label %exit, label %loop.body.1
339
340exit:
341  ret i32 %sum
342}
343
344define void @unnatural_cfg1() {
345; Test that we can handle a loop with an inner unnatural loop at the end of
346; a function. This is a gross CFG reduced out of the single source GCC.
347; CHECK: unnatural_cfg1
348; CHECK: %entry
349; CHECK: %loop.body1
350; CHECK: %loop.body2
351; CHECK: %loop.body3
352
353entry:
354  br label %loop.header
355
356loop.header:
357  br label %loop.body1
358
359loop.body1:
360  br i1 undef, label %loop.body3, label %loop.body2
361
362loop.body2:
363  %ptr = load i32** undef, align 4
364  br label %loop.body3
365
366loop.body3:
367  %myptr = phi i32* [ %ptr2, %loop.body5 ], [ %ptr, %loop.body2 ], [ undef, %loop.body1 ]
368  %bcmyptr = bitcast i32* %myptr to i32*
369  %val = load i32* %bcmyptr, align 4
370  %comp = icmp eq i32 %val, 48
371  br i1 %comp, label %loop.body4, label %loop.body5
372
373loop.body4:
374  br i1 undef, label %loop.header, label %loop.body5
375
376loop.body5:
377  %ptr2 = load i32** undef, align 4
378  br label %loop.body3
379}
380
381define void @unnatural_cfg2() {
382; Test that we can handle a loop with a nested natural loop *and* an unnatural
383; loop. This was reduced from a crash on block placement when run over
384; single-source GCC.
385; CHECK: unnatural_cfg2
386; CHECK: %entry
387; CHECK: %loop.body1
388; CHECK: %loop.body2
389; CHECK: %loop.body3
390; CHECK: %loop.inner1.begin
391; The end block is folded with %loop.body3...
392; CHECK-NOT: %loop.inner1.end
393; CHECK: %loop.body4
394; CHECK: %loop.inner2.begin
395; The loop.inner2.end block is folded
396; CHECK: %loop.header
397; CHECK: %bail
398
399entry:
400  br label %loop.header
401
402loop.header:
403  %comp0 = icmp eq i32* undef, null
404  br i1 %comp0, label %bail, label %loop.body1
405
406loop.body1:
407  %val0 = load i32** undef, align 4
408  br i1 undef, label %loop.body2, label %loop.inner1.begin
409
410loop.body2:
411  br i1 undef, label %loop.body4, label %loop.body3
412
413loop.body3:
414  %ptr1 = getelementptr inbounds i32* %val0, i32 0
415  %castptr1 = bitcast i32* %ptr1 to i32**
416  %val1 = load i32** %castptr1, align 4
417  br label %loop.inner1.begin
418
419loop.inner1.begin:
420  %valphi = phi i32* [ %val2, %loop.inner1.end ], [ %val1, %loop.body3 ], [ %val0, %loop.body1 ]
421  %castval = bitcast i32* %valphi to i32*
422  %comp1 = icmp eq i32 undef, 48
423  br i1 %comp1, label %loop.inner1.end, label %loop.body4
424
425loop.inner1.end:
426  %ptr2 = getelementptr inbounds i32* %valphi, i32 0
427  %castptr2 = bitcast i32* %ptr2 to i32**
428  %val2 = load i32** %castptr2, align 4
429  br label %loop.inner1.begin
430
431loop.body4.dead:
432  br label %loop.body4
433
434loop.body4:
435  %comp2 = icmp ult i32 undef, 3
436  br i1 %comp2, label %loop.inner2.begin, label %loop.end
437
438loop.inner2.begin:
439  br i1 false, label %loop.end, label %loop.inner2.end
440
441loop.inner2.end:
442  %comp3 = icmp eq i32 undef, 1769472
443  br i1 %comp3, label %loop.end, label %loop.inner2.begin
444
445loop.end:
446  br label %loop.header
447
448bail:
449  unreachable
450}
451
452define i32 @problematic_switch() {
453; This function's CFG caused overlow in the machine branch probability
454; calculation, triggering asserts. Make sure we don't crash on it.
455; CHECK: problematic_switch
456
457entry:
458  switch i32 undef, label %exit [
459    i32 879, label %bogus
460    i32 877, label %step
461    i32 876, label %step
462    i32 875, label %step
463    i32 874, label %step
464    i32 873, label %step
465    i32 872, label %step
466    i32 868, label %step
467    i32 867, label %step
468    i32 866, label %step
469    i32 861, label %step
470    i32 860, label %step
471    i32 856, label %step
472    i32 855, label %step
473    i32 854, label %step
474    i32 831, label %step
475    i32 830, label %step
476    i32 829, label %step
477    i32 828, label %step
478    i32 815, label %step
479    i32 814, label %step
480    i32 811, label %step
481    i32 806, label %step
482    i32 805, label %step
483    i32 804, label %step
484    i32 803, label %step
485    i32 802, label %step
486    i32 801, label %step
487    i32 800, label %step
488    i32 799, label %step
489    i32 798, label %step
490    i32 797, label %step
491    i32 796, label %step
492    i32 795, label %step
493  ]
494bogus:
495  unreachable
496step:
497  br label %exit
498exit:
499  %merge = phi i32 [ 3, %step ], [ 6, %entry ]
500  ret i32 %merge
501}
502
503define void @fpcmp_unanalyzable_branch(i1 %cond) {
504; This function's CFG contains an unanalyzable branch that is likely to be
505; split due to having a different high-probability predecessor.
506; CHECK: fpcmp_unanalyzable_branch
507; CHECK: %entry
508; CHECK: %exit
509; CHECK-NOT: %if.then
510; CHECK-NOT: %if.end
511; CHECK-NOT: jne
512; CHECK-NOT: jnp
513; CHECK: jne
514; CHECK-NEXT: jnp
515; CHECK-NEXT: %if.then
516
517entry:
518; Note that this branch must be strongly biased toward
519; 'entry.if.then_crit_edge' to ensure that we would try to form a chain for
520; 'entry' -> 'entry.if.then_crit_edge' -> 'if.then'. It is the last edge in that
521; chain which would violate the unanalyzable branch in 'exit', but we won't even
522; try this trick unless 'if.then' is believed to almost always be reached from
523; 'entry.if.then_crit_edge'.
524  br i1 %cond, label %entry.if.then_crit_edge, label %lor.lhs.false, !prof !1
525
526entry.if.then_crit_edge:
527  %.pre14 = load i8* undef, align 1
528  br label %if.then
529
530lor.lhs.false:
531  br i1 undef, label %if.end, label %exit
532
533exit:
534  %cmp.i = fcmp une double 0.000000e+00, undef
535  br i1 %cmp.i, label %if.then, label %if.end
536
537if.then:
538  %0 = phi i8 [ %.pre14, %entry.if.then_crit_edge ], [ undef, %exit ]
539  %1 = and i8 %0, 1
540  store i8 %1, i8* undef, align 4
541  br label %if.end
542
543if.end:
544  ret void
545}
546
547!1 = metadata !{metadata !"branch_weights", i32 1000, i32 1}
548
549declare i32 @f()
550declare i32 @g()
551declare i32 @h(i32 %x)
552
553define i32 @test_global_cfg_break_profitability() {
554; Check that our metrics for the profitability of a CFG break are global rather
555; than local. A successor may be very hot, but if the current block isn't, it
556; doesn't matter. Within this test the 'then' block is slightly warmer than the
557; 'else' block, but not nearly enough to merit merging it with the exit block
558; even though the probability of 'then' branching to the 'exit' block is very
559; high.
560; CHECK: test_global_cfg_break_profitability
561; CHECK: calll {{_?}}f
562; CHECK: calll {{_?}}g
563; CHECK: calll {{_?}}h
564; CHECK: ret
565
566entry:
567  br i1 undef, label %then, label %else, !prof !2
568
569then:
570  %then.result = call i32 @f()
571  br label %exit
572
573else:
574  %else.result = call i32 @g()
575  br label %exit
576
577exit:
578  %result = phi i32 [ %then.result, %then ], [ %else.result, %else ]
579  %result2 = call i32 @h(i32 %result)
580  ret i32 %result
581}
582
583!2 = metadata !{metadata !"branch_weights", i32 3, i32 1}
584
585declare i32 @__gxx_personality_v0(...)
586
587define void @test_eh_lpad_successor() {
588; Some times the landing pad ends up as the first successor of an invoke block.
589; When this happens, a strange result used to fall out of updateTerminators: we
590; didn't correctly locate the fallthrough successor, assuming blindly that the
591; first one was the fallthrough successor. As a result, we would add an
592; erroneous jump to the landing pad thinking *that* was the default successor.
593; CHECK: test_eh_lpad_successor
594; CHECK: %entry
595; CHECK-NOT: jmp
596; CHECK: %loop
597
598entry:
599  invoke i32 @f() to label %preheader unwind label %lpad
600
601preheader:
602  br label %loop
603
604lpad:
605  %lpad.val = landingpad { i8*, i32 } personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*)
606          cleanup
607  resume { i8*, i32 } %lpad.val
608
609loop:
610  br label %loop
611}
612
613declare void @fake_throw() noreturn
614
615define void @test_eh_throw() {
616; For blocks containing a 'throw' (or similar functionality), we have
617; a no-return invoke. In this case, only EH successors will exist, and
618; fallthrough simply won't occur. Make sure we don't crash trying to update
619; terminators for such constructs.
620;
621; CHECK: test_eh_throw
622; CHECK: %entry
623; CHECK: %cleanup
624
625entry:
626  invoke void @fake_throw() to label %continue unwind label %cleanup
627
628continue:
629  unreachable
630
631cleanup:
632  %0 = landingpad { i8*, i32 } personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*)
633          cleanup
634  unreachable
635}
636
637define void @test_unnatural_cfg_backwards_inner_loop() {
638; Test that when we encounter an unnatural CFG structure after having formed
639; a chain for an inner loop which happened to be laid out backwards we don't
640; attempt to merge onto the wrong end of the inner loop just because we find it
641; first. This was reduced from a crasher in GCC's single source.
642;
643; CHECK: test_unnatural_cfg_backwards_inner_loop
644; CHECK: %entry
645; CHECK: [[BODY:# BB#[0-9]+]]:
646; CHECK: %loop2b
647; CHECK: %loop1
648; CHECK: %loop2a
649
650entry:
651  br i1 undef, label %loop2a, label %body
652
653body:
654  br label %loop2a
655
656loop1:
657  %next.load = load i32** undef
658  br i1 %comp.a, label %loop2a, label %loop2b
659
660loop2a:
661  %var = phi i32* [ null, %entry ], [ null, %body ], [ %next.phi, %loop1 ]
662  %next.var = phi i32* [ null, %entry ], [ undef, %body ], [ %next.load, %loop1 ]
663  %comp.a = icmp eq i32* %var, null
664  br label %loop3
665
666loop2b:
667  %gep = getelementptr inbounds i32* %var.phi, i32 0
668  %next.ptr = bitcast i32* %gep to i32**
669  store i32* %next.phi, i32** %next.ptr
670  br label %loop3
671
672loop3:
673  %var.phi = phi i32* [ %next.phi, %loop2b ], [ %var, %loop2a ]
674  %next.phi = phi i32* [ %next.load, %loop2b ], [ %next.var, %loop2a ]
675  br label %loop1
676}
677
678define void @unanalyzable_branch_to_loop_header() {
679; Ensure that we can handle unanalyzable branches into loop headers. We
680; pre-form chains for unanalyzable branches, and will find the tail end of that
681; at the start of the loop. This function uses floating point comparison
682; fallthrough because that happens to always produce unanalyzable branches on
683; x86.
684;
685; CHECK: unanalyzable_branch_to_loop_header
686; CHECK: %entry
687; CHECK: %loop
688; CHECK: %exit
689
690entry:
691  %cmp = fcmp une double 0.000000e+00, undef
692  br i1 %cmp, label %loop, label %exit
693
694loop:
695  %cond = icmp eq i8 undef, 42
696  br i1 %cond, label %exit, label %loop
697
698exit:
699  ret void
700}
701
702define void @unanalyzable_branch_to_best_succ(i1 %cond) {
703; Ensure that we can handle unanalyzable branches where the destination block
704; gets selected as the optimal sucessor to merge.
705;
706; CHECK: unanalyzable_branch_to_best_succ
707; CHECK: %entry
708; CHECK: %foo
709; CHECK: %bar
710; CHECK: %exit
711
712entry:
713  ; Bias this branch toward bar to ensure we form that chain.
714  br i1 %cond, label %bar, label %foo, !prof !1
715
716foo:
717  %cmp = fcmp une double 0.000000e+00, undef
718  br i1 %cmp, label %bar, label %exit
719
720bar:
721  call i32 @f()
722  br label %exit
723
724exit:
725  ret void
726}
727
728define void @unanalyzable_branch_to_free_block(float %x) {
729; Ensure that we can handle unanalyzable branches where the destination block
730; gets selected as the best free block in the CFG.
731;
732; CHECK: unanalyzable_branch_to_free_block
733; CHECK: %entry
734; CHECK: %a
735; CHECK: %b
736; CHECK: %c
737; CHECK: %exit
738
739entry:
740  br i1 undef, label %a, label %b
741
742a:
743  call i32 @f()
744  br label %c
745
746b:
747  %cmp = fcmp une float %x, undef
748  br i1 %cmp, label %c, label %exit
749
750c:
751  call i32 @g()
752  br label %exit
753
754exit:
755  ret void
756}
757
758define void @many_unanalyzable_branches() {
759; Ensure that we don't crash as we're building up many unanalyzable branches,
760; blocks, and loops.
761;
762; CHECK: many_unanalyzable_branches
763; CHECK: %entry
764; CHECK: %exit
765
766entry:
767  br label %0
768
769  %val0 = load volatile float* undef
770  %cmp0 = fcmp une float %val0, undef
771  br i1 %cmp0, label %1, label %0
772  %val1 = load volatile float* undef
773  %cmp1 = fcmp une float %val1, undef
774  br i1 %cmp1, label %2, label %1
775  %val2 = load volatile float* undef
776  %cmp2 = fcmp une float %val2, undef
777  br i1 %cmp2, label %3, label %2
778  %val3 = load volatile float* undef
779  %cmp3 = fcmp une float %val3, undef
780  br i1 %cmp3, label %4, label %3
781  %val4 = load volatile float* undef
782  %cmp4 = fcmp une float %val4, undef
783  br i1 %cmp4, label %5, label %4
784  %val5 = load volatile float* undef
785  %cmp5 = fcmp une float %val5, undef
786  br i1 %cmp5, label %6, label %5
787  %val6 = load volatile float* undef
788  %cmp6 = fcmp une float %val6, undef
789  br i1 %cmp6, label %7, label %6
790  %val7 = load volatile float* undef
791  %cmp7 = fcmp une float %val7, undef
792  br i1 %cmp7, label %8, label %7
793  %val8 = load volatile float* undef
794  %cmp8 = fcmp une float %val8, undef
795  br i1 %cmp8, label %9, label %8
796  %val9 = load volatile float* undef
797  %cmp9 = fcmp une float %val9, undef
798  br i1 %cmp9, label %10, label %9
799  %val10 = load volatile float* undef
800  %cmp10 = fcmp une float %val10, undef
801  br i1 %cmp10, label %11, label %10
802  %val11 = load volatile float* undef
803  %cmp11 = fcmp une float %val11, undef
804  br i1 %cmp11, label %12, label %11
805  %val12 = load volatile float* undef
806  %cmp12 = fcmp une float %val12, undef
807  br i1 %cmp12, label %13, label %12
808  %val13 = load volatile float* undef
809  %cmp13 = fcmp une float %val13, undef
810  br i1 %cmp13, label %14, label %13
811  %val14 = load volatile float* undef
812  %cmp14 = fcmp une float %val14, undef
813  br i1 %cmp14, label %15, label %14
814  %val15 = load volatile float* undef
815  %cmp15 = fcmp une float %val15, undef
816  br i1 %cmp15, label %16, label %15
817  %val16 = load volatile float* undef
818  %cmp16 = fcmp une float %val16, undef
819  br i1 %cmp16, label %17, label %16
820  %val17 = load volatile float* undef
821  %cmp17 = fcmp une float %val17, undef
822  br i1 %cmp17, label %18, label %17
823  %val18 = load volatile float* undef
824  %cmp18 = fcmp une float %val18, undef
825  br i1 %cmp18, label %19, label %18
826  %val19 = load volatile float* undef
827  %cmp19 = fcmp une float %val19, undef
828  br i1 %cmp19, label %20, label %19
829  %val20 = load volatile float* undef
830  %cmp20 = fcmp une float %val20, undef
831  br i1 %cmp20, label %21, label %20
832  %val21 = load volatile float* undef
833  %cmp21 = fcmp une float %val21, undef
834  br i1 %cmp21, label %22, label %21
835  %val22 = load volatile float* undef
836  %cmp22 = fcmp une float %val22, undef
837  br i1 %cmp22, label %23, label %22
838  %val23 = load volatile float* undef
839  %cmp23 = fcmp une float %val23, undef
840  br i1 %cmp23, label %24, label %23
841  %val24 = load volatile float* undef
842  %cmp24 = fcmp une float %val24, undef
843  br i1 %cmp24, label %25, label %24
844  %val25 = load volatile float* undef
845  %cmp25 = fcmp une float %val25, undef
846  br i1 %cmp25, label %26, label %25
847  %val26 = load volatile float* undef
848  %cmp26 = fcmp une float %val26, undef
849  br i1 %cmp26, label %27, label %26
850  %val27 = load volatile float* undef
851  %cmp27 = fcmp une float %val27, undef
852  br i1 %cmp27, label %28, label %27
853  %val28 = load volatile float* undef
854  %cmp28 = fcmp une float %val28, undef
855  br i1 %cmp28, label %29, label %28
856  %val29 = load volatile float* undef
857  %cmp29 = fcmp une float %val29, undef
858  br i1 %cmp29, label %30, label %29
859  %val30 = load volatile float* undef
860  %cmp30 = fcmp une float %val30, undef
861  br i1 %cmp30, label %31, label %30
862  %val31 = load volatile float* undef
863  %cmp31 = fcmp une float %val31, undef
864  br i1 %cmp31, label %32, label %31
865  %val32 = load volatile float* undef
866  %cmp32 = fcmp une float %val32, undef
867  br i1 %cmp32, label %33, label %32
868  %val33 = load volatile float* undef
869  %cmp33 = fcmp une float %val33, undef
870  br i1 %cmp33, label %34, label %33
871  %val34 = load volatile float* undef
872  %cmp34 = fcmp une float %val34, undef
873  br i1 %cmp34, label %35, label %34
874  %val35 = load volatile float* undef
875  %cmp35 = fcmp une float %val35, undef
876  br i1 %cmp35, label %36, label %35
877  %val36 = load volatile float* undef
878  %cmp36 = fcmp une float %val36, undef
879  br i1 %cmp36, label %37, label %36
880  %val37 = load volatile float* undef
881  %cmp37 = fcmp une float %val37, undef
882  br i1 %cmp37, label %38, label %37
883  %val38 = load volatile float* undef
884  %cmp38 = fcmp une float %val38, undef
885  br i1 %cmp38, label %39, label %38
886  %val39 = load volatile float* undef
887  %cmp39 = fcmp une float %val39, undef
888  br i1 %cmp39, label %40, label %39
889  %val40 = load volatile float* undef
890  %cmp40 = fcmp une float %val40, undef
891  br i1 %cmp40, label %41, label %40
892  %val41 = load volatile float* undef
893  %cmp41 = fcmp une float %val41, undef
894  br i1 %cmp41, label %42, label %41
895  %val42 = load volatile float* undef
896  %cmp42 = fcmp une float %val42, undef
897  br i1 %cmp42, label %43, label %42
898  %val43 = load volatile float* undef
899  %cmp43 = fcmp une float %val43, undef
900  br i1 %cmp43, label %44, label %43
901  %val44 = load volatile float* undef
902  %cmp44 = fcmp une float %val44, undef
903  br i1 %cmp44, label %45, label %44
904  %val45 = load volatile float* undef
905  %cmp45 = fcmp une float %val45, undef
906  br i1 %cmp45, label %46, label %45
907  %val46 = load volatile float* undef
908  %cmp46 = fcmp une float %val46, undef
909  br i1 %cmp46, label %47, label %46
910  %val47 = load volatile float* undef
911  %cmp47 = fcmp une float %val47, undef
912  br i1 %cmp47, label %48, label %47
913  %val48 = load volatile float* undef
914  %cmp48 = fcmp une float %val48, undef
915  br i1 %cmp48, label %49, label %48
916  %val49 = load volatile float* undef
917  %cmp49 = fcmp une float %val49, undef
918  br i1 %cmp49, label %50, label %49
919  %val50 = load volatile float* undef
920  %cmp50 = fcmp une float %val50, undef
921  br i1 %cmp50, label %51, label %50
922  %val51 = load volatile float* undef
923  %cmp51 = fcmp une float %val51, undef
924  br i1 %cmp51, label %52, label %51
925  %val52 = load volatile float* undef
926  %cmp52 = fcmp une float %val52, undef
927  br i1 %cmp52, label %53, label %52
928  %val53 = load volatile float* undef
929  %cmp53 = fcmp une float %val53, undef
930  br i1 %cmp53, label %54, label %53
931  %val54 = load volatile float* undef
932  %cmp54 = fcmp une float %val54, undef
933  br i1 %cmp54, label %55, label %54
934  %val55 = load volatile float* undef
935  %cmp55 = fcmp une float %val55, undef
936  br i1 %cmp55, label %56, label %55
937  %val56 = load volatile float* undef
938  %cmp56 = fcmp une float %val56, undef
939  br i1 %cmp56, label %57, label %56
940  %val57 = load volatile float* undef
941  %cmp57 = fcmp une float %val57, undef
942  br i1 %cmp57, label %58, label %57
943  %val58 = load volatile float* undef
944  %cmp58 = fcmp une float %val58, undef
945  br i1 %cmp58, label %59, label %58
946  %val59 = load volatile float* undef
947  %cmp59 = fcmp une float %val59, undef
948  br i1 %cmp59, label %60, label %59
949  %val60 = load volatile float* undef
950  %cmp60 = fcmp une float %val60, undef
951  br i1 %cmp60, label %61, label %60
952  %val61 = load volatile float* undef
953  %cmp61 = fcmp une float %val61, undef
954  br i1 %cmp61, label %62, label %61
955  %val62 = load volatile float* undef
956  %cmp62 = fcmp une float %val62, undef
957  br i1 %cmp62, label %63, label %62
958  %val63 = load volatile float* undef
959  %cmp63 = fcmp une float %val63, undef
960  br i1 %cmp63, label %64, label %63
961  %val64 = load volatile float* undef
962  %cmp64 = fcmp une float %val64, undef
963  br i1 %cmp64, label %65, label %64
964
965  br label %exit
966exit:
967  ret void
968}
969
970define void @benchmark_heapsort(i32 %n, double* nocapture %ra) {
971; This test case comes from the heapsort benchmark, and exemplifies several
972; important aspects to block placement in the presence of loops:
973; 1) Loop rotation needs to *ensure* that the desired exiting edge can be
974;    a fallthrough.
975; 2) The exiting edge from the loop which is rotated to be laid out at the
976;    bottom of the loop needs to be exiting into the nearest enclosing loop (to
977;    which there is an exit). Otherwise, we force that enclosing loop into
978;    strange layouts that are siginificantly less efficient, often times maing
979;    it discontiguous.
980;
981; CHECK: @benchmark_heapsort
982; CHECK: %entry
983; First rotated loop top.
984; CHECK: .align
985; CHECK: %while.end
986; CHECK: %for.cond
987; CHECK: %if.then
988; CHECK: %if.else
989; CHECK: %if.end10
990; Second rotated loop top
991; CHECK: .align
992; CHECK: %if.then24
993; CHECK: %while.cond.outer
994; Third rotated loop top
995; CHECK: .align
996; CHECK: %while.cond
997; CHECK: %while.body
998; CHECK: %land.lhs.true
999; CHECK: %if.then19
1000; CHECK: %if.end20
1001; CHECK: %if.then8
1002; CHECK: ret
1003
1004entry:
1005  %shr = ashr i32 %n, 1
1006  %add = add nsw i32 %shr, 1
1007  %arrayidx3 = getelementptr inbounds double* %ra, i64 1
1008  br label %for.cond
1009
1010for.cond:
1011  %ir.0 = phi i32 [ %n, %entry ], [ %ir.1, %while.end ]
1012  %l.0 = phi i32 [ %add, %entry ], [ %l.1, %while.end ]
1013  %cmp = icmp sgt i32 %l.0, 1
1014  br i1 %cmp, label %if.then, label %if.else
1015
1016if.then:
1017  %dec = add nsw i32 %l.0, -1
1018  %idxprom = sext i32 %dec to i64
1019  %arrayidx = getelementptr inbounds double* %ra, i64 %idxprom
1020  %0 = load double* %arrayidx, align 8
1021  br label %if.end10
1022
1023if.else:
1024  %idxprom1 = sext i32 %ir.0 to i64
1025  %arrayidx2 = getelementptr inbounds double* %ra, i64 %idxprom1
1026  %1 = load double* %arrayidx2, align 8
1027  %2 = load double* %arrayidx3, align 8
1028  store double %2, double* %arrayidx2, align 8
1029  %dec6 = add nsw i32 %ir.0, -1
1030  %cmp7 = icmp eq i32 %dec6, 1
1031  br i1 %cmp7, label %if.then8, label %if.end10
1032
1033if.then8:
1034  store double %1, double* %arrayidx3, align 8
1035  ret void
1036
1037if.end10:
1038  %ir.1 = phi i32 [ %ir.0, %if.then ], [ %dec6, %if.else ]
1039  %l.1 = phi i32 [ %dec, %if.then ], [ %l.0, %if.else ]
1040  %rra.0 = phi double [ %0, %if.then ], [ %1, %if.else ]
1041  %add31 = add nsw i32 %ir.1, 1
1042  br label %while.cond.outer
1043
1044while.cond.outer:
1045  %j.0.ph.in = phi i32 [ %l.1, %if.end10 ], [ %j.1, %if.then24 ]
1046  %j.0.ph = shl i32 %j.0.ph.in, 1
1047  br label %while.cond
1048
1049while.cond:
1050  %j.0 = phi i32 [ %add31, %if.end20 ], [ %j.0.ph, %while.cond.outer ]
1051  %cmp11 = icmp sgt i32 %j.0, %ir.1
1052  br i1 %cmp11, label %while.end, label %while.body
1053
1054while.body:
1055  %cmp12 = icmp slt i32 %j.0, %ir.1
1056  br i1 %cmp12, label %land.lhs.true, label %if.end20
1057
1058land.lhs.true:
1059  %idxprom13 = sext i32 %j.0 to i64
1060  %arrayidx14 = getelementptr inbounds double* %ra, i64 %idxprom13
1061  %3 = load double* %arrayidx14, align 8
1062  %add15 = add nsw i32 %j.0, 1
1063  %idxprom16 = sext i32 %add15 to i64
1064  %arrayidx17 = getelementptr inbounds double* %ra, i64 %idxprom16
1065  %4 = load double* %arrayidx17, align 8
1066  %cmp18 = fcmp olt double %3, %4
1067  br i1 %cmp18, label %if.then19, label %if.end20
1068
1069if.then19:
1070  br label %if.end20
1071
1072if.end20:
1073  %j.1 = phi i32 [ %add15, %if.then19 ], [ %j.0, %land.lhs.true ], [ %j.0, %while.body ]
1074  %idxprom21 = sext i32 %j.1 to i64
1075  %arrayidx22 = getelementptr inbounds double* %ra, i64 %idxprom21
1076  %5 = load double* %arrayidx22, align 8
1077  %cmp23 = fcmp olt double %rra.0, %5
1078  br i1 %cmp23, label %if.then24, label %while.cond
1079
1080if.then24:
1081  %idxprom27 = sext i32 %j.0.ph.in to i64
1082  %arrayidx28 = getelementptr inbounds double* %ra, i64 %idxprom27
1083  store double %5, double* %arrayidx28, align 8
1084  br label %while.cond.outer
1085
1086while.end:
1087  %idxprom33 = sext i32 %j.0.ph.in to i64
1088  %arrayidx34 = getelementptr inbounds double* %ra, i64 %idxprom33
1089  store double %rra.0, double* %arrayidx34, align 8
1090  br label %for.cond
1091}
1092
1093declare void @cold_function() cold
1094
1095define i32 @test_cold_calls(i32* %a) {
1096; Test that edges to blocks post-dominated by cold calls are
1097; marked as not expected to be taken.  They should be laid out
1098; at the bottom.
1099; CHECK-LABEL: test_cold_calls:
1100; CHECK: %entry
1101; CHECK: %else
1102; CHECK: %exit
1103; CHECK: %then
1104
1105entry:
1106  %gep1 = getelementptr i32* %a, i32 1
1107  %val1 = load i32* %gep1
1108  %cond1 = icmp ugt i32 %val1, 1
1109  br i1 %cond1, label %then, label %else
1110
1111then:
1112  call void @cold_function()
1113  br label %exit
1114
1115else:
1116  %gep2 = getelementptr i32* %a, i32 2
1117  %val2 = load i32* %gep2
1118  br label %exit
1119
1120exit:
1121  %ret = phi i32 [ %val1, %then ], [ %val2, %else ]
1122  ret i32 %ret
1123}
1124