1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "DAGISelMatcher.h"
11 #include "CodeGenDAGPatterns.h"
12 #include "CodeGenRegisters.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringMap.h"
16 #include "llvm/TableGen/Error.h"
17 #include "llvm/TableGen/Record.h"
18 #include <utility>
19 using namespace llvm;
20
21
22 /// getRegisterValueType - Look up and return the ValueType of the specified
23 /// register. If the register is a member of multiple register classes which
24 /// have different associated types, return MVT::Other.
getRegisterValueType(Record * R,const CodeGenTarget & T)25 static MVT::SimpleValueType getRegisterValueType(Record *R,
26 const CodeGenTarget &T) {
27 bool FoundRC = false;
28 MVT::SimpleValueType VT = MVT::Other;
29 const CodeGenRegister *Reg = T.getRegBank().getReg(R);
30 ArrayRef<CodeGenRegisterClass*> RCs = T.getRegBank().getRegClasses();
31
32 for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
33 const CodeGenRegisterClass &RC = *RCs[rc];
34 if (!RC.contains(Reg))
35 continue;
36
37 if (!FoundRC) {
38 FoundRC = true;
39 VT = RC.getValueTypeNum(0);
40 continue;
41 }
42
43 // If this occurs in multiple register classes, they all have to agree.
44 assert(VT == RC.getValueTypeNum(0));
45 }
46 return VT;
47 }
48
49
50 namespace {
51 class MatcherGen {
52 const PatternToMatch &Pattern;
53 const CodeGenDAGPatterns &CGP;
54
55 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
56 /// out with all of the types removed. This allows us to insert type checks
57 /// as we scan the tree.
58 TreePatternNode *PatWithNoTypes;
59
60 /// VariableMap - A map from variable names ('$dst') to the recorded operand
61 /// number that they were captured as. These are biased by 1 to make
62 /// insertion easier.
63 StringMap<unsigned> VariableMap;
64
65 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
66 /// the RecordedNodes array, this keeps track of which slot will be next to
67 /// record into.
68 unsigned NextRecordedOperandNo;
69
70 /// MatchedChainNodes - This maintains the position in the recorded nodes
71 /// array of all of the recorded input nodes that have chains.
72 SmallVector<unsigned, 2> MatchedChainNodes;
73
74 /// MatchedGlueResultNodes - This maintains the position in the recorded
75 /// nodes array of all of the recorded input nodes that have glue results.
76 SmallVector<unsigned, 2> MatchedGlueResultNodes;
77
78 /// MatchedComplexPatterns - This maintains a list of all of the
79 /// ComplexPatterns that we need to check. The patterns are known to have
80 /// names which were recorded. The second element of each pair is the first
81 /// slot number that the OPC_CheckComplexPat opcode drops the matched
82 /// results into.
83 SmallVector<std::pair<const TreePatternNode*,
84 unsigned>, 2> MatchedComplexPatterns;
85
86 /// PhysRegInputs - List list has an entry for each explicitly specified
87 /// physreg input to the pattern. The first elt is the Register node, the
88 /// second is the recorded slot number the input pattern match saved it in.
89 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
90
91 /// Matcher - This is the top level of the generated matcher, the result.
92 Matcher *TheMatcher;
93
94 /// CurPredicate - As we emit matcher nodes, this points to the latest check
95 /// which should have future checks stuck into its Next position.
96 Matcher *CurPredicate;
97 public:
98 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
99
~MatcherGen()100 ~MatcherGen() {
101 delete PatWithNoTypes;
102 }
103
104 bool EmitMatcherCode(unsigned Variant);
105 void EmitResultCode();
106
GetMatcher() const107 Matcher *GetMatcher() const { return TheMatcher; }
108 private:
109 void AddMatcher(Matcher *NewNode);
110 void InferPossibleTypes();
111
112 // Matcher Generation.
113 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
114 void EmitLeafMatchCode(const TreePatternNode *N);
115 void EmitOperatorMatchCode(const TreePatternNode *N,
116 TreePatternNode *NodeNoTypes);
117
118 // Result Code Generation.
getNamedArgumentSlot(StringRef Name)119 unsigned getNamedArgumentSlot(StringRef Name) {
120 unsigned VarMapEntry = VariableMap[Name];
121 assert(VarMapEntry != 0 &&
122 "Variable referenced but not defined and not caught earlier!");
123 return VarMapEntry-1;
124 }
125
126 /// GetInstPatternNode - Get the pattern for an instruction.
127 const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
128 const TreePatternNode *N);
129
130 void EmitResultOperand(const TreePatternNode *N,
131 SmallVectorImpl<unsigned> &ResultOps);
132 void EmitResultOfNamedOperand(const TreePatternNode *N,
133 SmallVectorImpl<unsigned> &ResultOps);
134 void EmitResultLeafAsOperand(const TreePatternNode *N,
135 SmallVectorImpl<unsigned> &ResultOps);
136 void EmitResultInstructionAsOperand(const TreePatternNode *N,
137 SmallVectorImpl<unsigned> &ResultOps);
138 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
139 SmallVectorImpl<unsigned> &ResultOps);
140 };
141
142 } // end anon namespace.
143
MatcherGen(const PatternToMatch & pattern,const CodeGenDAGPatterns & cgp)144 MatcherGen::MatcherGen(const PatternToMatch &pattern,
145 const CodeGenDAGPatterns &cgp)
146 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
147 TheMatcher(0), CurPredicate(0) {
148 // We need to produce the matcher tree for the patterns source pattern. To do
149 // this we need to match the structure as well as the types. To do the type
150 // matching, we want to figure out the fewest number of type checks we need to
151 // emit. For example, if there is only one integer type supported by a
152 // target, there should be no type comparisons at all for integer patterns!
153 //
154 // To figure out the fewest number of type checks needed, clone the pattern,
155 // remove the types, then perform type inference on the pattern as a whole.
156 // If there are unresolved types, emit an explicit check for those types,
157 // apply the type to the tree, then rerun type inference. Iterate until all
158 // types are resolved.
159 //
160 PatWithNoTypes = Pattern.getSrcPattern()->clone();
161 PatWithNoTypes->RemoveAllTypes();
162
163 // If there are types that are manifestly known, infer them.
164 InferPossibleTypes();
165 }
166
167 /// InferPossibleTypes - As we emit the pattern, we end up generating type
168 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
169 /// want to propagate implied types as far throughout the tree as possible so
170 /// that we avoid doing redundant type checks. This does the type propagation.
InferPossibleTypes()171 void MatcherGen::InferPossibleTypes() {
172 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
173 // diagnostics, which we know are impossible at this point.
174 TreePattern &TP = *CGP.pf_begin()->second;
175
176 bool MadeChange = true;
177 while (MadeChange)
178 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
179 true/*Ignore reg constraints*/);
180 }
181
182
183 /// AddMatcher - Add a matcher node to the current graph we're building.
AddMatcher(Matcher * NewNode)184 void MatcherGen::AddMatcher(Matcher *NewNode) {
185 if (CurPredicate != 0)
186 CurPredicate->setNext(NewNode);
187 else
188 TheMatcher = NewNode;
189 CurPredicate = NewNode;
190 }
191
192
193 //===----------------------------------------------------------------------===//
194 // Pattern Match Generation
195 //===----------------------------------------------------------------------===//
196
197 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
EmitLeafMatchCode(const TreePatternNode * N)198 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
199 assert(N->isLeaf() && "Not a leaf?");
200
201 // Direct match against an integer constant.
202 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
203 // If this is the root of the dag we're matching, we emit a redundant opcode
204 // check to ensure that this gets folded into the normal top-level
205 // OpcodeSwitch.
206 if (N == Pattern.getSrcPattern()) {
207 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
208 AddMatcher(new CheckOpcodeMatcher(NI));
209 }
210
211 return AddMatcher(new CheckIntegerMatcher(II->getValue()));
212 }
213
214 // An UnsetInit represents a named node without any constraints.
215 if (N->getLeafValue() == UnsetInit::get()) {
216 assert(N->hasName() && "Unnamed ? leaf");
217 return;
218 }
219
220 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
221 if (DI == 0) {
222 errs() << "Unknown leaf kind: " << *N << "\n";
223 abort();
224 }
225
226 Record *LeafRec = DI->getDef();
227
228 // A ValueType leaf node can represent a register when named, or itself when
229 // unnamed.
230 if (LeafRec->isSubClassOf("ValueType")) {
231 // A named ValueType leaf always matches: (add i32:$a, i32:$b).
232 if (N->hasName())
233 return;
234 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
235 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
236 }
237
238 if (// Handle register references. Nothing to do here, they always match.
239 LeafRec->isSubClassOf("RegisterClass") ||
240 LeafRec->isSubClassOf("RegisterOperand") ||
241 LeafRec->isSubClassOf("PointerLikeRegClass") ||
242 LeafRec->isSubClassOf("SubRegIndex") ||
243 // Place holder for SRCVALUE nodes. Nothing to do here.
244 LeafRec->getName() == "srcvalue")
245 return;
246
247 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
248 // record the register
249 if (LeafRec->isSubClassOf("Register")) {
250 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
251 NextRecordedOperandNo));
252 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
253 return;
254 }
255
256 if (LeafRec->isSubClassOf("CondCode"))
257 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
258
259 if (LeafRec->isSubClassOf("ComplexPattern")) {
260 // We can't model ComplexPattern uses that don't have their name taken yet.
261 // The OPC_CheckComplexPattern operation implicitly records the results.
262 if (N->getName().empty()) {
263 errs() << "We expect complex pattern uses to have names: " << *N << "\n";
264 exit(1);
265 }
266
267 // Remember this ComplexPattern so that we can emit it after all the other
268 // structural matches are done.
269 MatchedComplexPatterns.push_back(std::make_pair(N, 0));
270 return;
271 }
272
273 errs() << "Unknown leaf kind: " << *N << "\n";
274 abort();
275 }
276
EmitOperatorMatchCode(const TreePatternNode * N,TreePatternNode * NodeNoTypes)277 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
278 TreePatternNode *NodeNoTypes) {
279 assert(!N->isLeaf() && "Not an operator?");
280 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
281
282 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
283 // a constant without a predicate fn that has more that one bit set, handle
284 // this as a special case. This is usually for targets that have special
285 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
286 // handling stuff). Using these instructions is often far more efficient
287 // than materializing the constant. Unfortunately, both the instcombiner
288 // and the dag combiner can often infer that bits are dead, and thus drop
289 // them from the mask in the dag. For example, it might turn 'AND X, 255'
290 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
291 // to handle this.
292 if ((N->getOperator()->getName() == "and" ||
293 N->getOperator()->getName() == "or") &&
294 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
295 N->getPredicateFns().empty()) {
296 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
297 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
298 // If this is at the root of the pattern, we emit a redundant
299 // CheckOpcode so that the following checks get factored properly under
300 // a single opcode check.
301 if (N == Pattern.getSrcPattern())
302 AddMatcher(new CheckOpcodeMatcher(CInfo));
303
304 // Emit the CheckAndImm/CheckOrImm node.
305 if (N->getOperator()->getName() == "and")
306 AddMatcher(new CheckAndImmMatcher(II->getValue()));
307 else
308 AddMatcher(new CheckOrImmMatcher(II->getValue()));
309
310 // Match the LHS of the AND as appropriate.
311 AddMatcher(new MoveChildMatcher(0));
312 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
313 AddMatcher(new MoveParentMatcher());
314 return;
315 }
316 }
317 }
318
319 // Check that the current opcode lines up.
320 AddMatcher(new CheckOpcodeMatcher(CInfo));
321
322 // If this node has memory references (i.e. is a load or store), tell the
323 // interpreter to capture them in the memref array.
324 if (N->NodeHasProperty(SDNPMemOperand, CGP))
325 AddMatcher(new RecordMemRefMatcher());
326
327 // If this node has a chain, then the chain is operand #0 is the SDNode, and
328 // the child numbers of the node are all offset by one.
329 unsigned OpNo = 0;
330 if (N->NodeHasProperty(SDNPHasChain, CGP)) {
331 // Record the node and remember it in our chained nodes list.
332 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
333 "' chained node",
334 NextRecordedOperandNo));
335 // Remember all of the input chains our pattern will match.
336 MatchedChainNodes.push_back(NextRecordedOperandNo++);
337
338 // Don't look at the input chain when matching the tree pattern to the
339 // SDNode.
340 OpNo = 1;
341
342 // If this node is not the root and the subtree underneath it produces a
343 // chain, then the result of matching the node is also produce a chain.
344 // Beyond that, this means that we're also folding (at least) the root node
345 // into the node that produce the chain (for example, matching
346 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
347 // problematic, if the 'reg' node also uses the load (say, its chain).
348 // Graphically:
349 //
350 // [LD]
351 // ^ ^
352 // | \ DAG's like cheese.
353 // / |
354 // / [YY]
355 // | ^
356 // [XX]--/
357 //
358 // It would be invalid to fold XX and LD. In this case, folding the two
359 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
360 // To prevent this, we emit a dynamic check for legality before allowing
361 // this to be folded.
362 //
363 const TreePatternNode *Root = Pattern.getSrcPattern();
364 if (N != Root) { // Not the root of the pattern.
365 // If there is a node between the root and this node, then we definitely
366 // need to emit the check.
367 bool NeedCheck = !Root->hasChild(N);
368
369 // If it *is* an immediate child of the root, we can still need a check if
370 // the root SDNode has multiple inputs. For us, this means that it is an
371 // intrinsic, has multiple operands, or has other inputs like chain or
372 // glue).
373 if (!NeedCheck) {
374 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
375 NeedCheck =
376 Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
377 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
378 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
379 PInfo.getNumOperands() > 1 ||
380 PInfo.hasProperty(SDNPHasChain) ||
381 PInfo.hasProperty(SDNPInGlue) ||
382 PInfo.hasProperty(SDNPOptInGlue);
383 }
384
385 if (NeedCheck)
386 AddMatcher(new CheckFoldableChainNodeMatcher());
387 }
388 }
389
390 // If this node has an output glue and isn't the root, remember it.
391 if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
392 N != Pattern.getSrcPattern()) {
393 // TODO: This redundantly records nodes with both glues and chains.
394
395 // Record the node and remember it in our chained nodes list.
396 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
397 "' glue output node",
398 NextRecordedOperandNo));
399 // Remember all of the nodes with output glue our pattern will match.
400 MatchedGlueResultNodes.push_back(NextRecordedOperandNo++);
401 }
402
403 // If this node is known to have an input glue or if it *might* have an input
404 // glue, capture it as the glue input of the pattern.
405 if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
406 N->NodeHasProperty(SDNPInGlue, CGP))
407 AddMatcher(new CaptureGlueInputMatcher());
408
409 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
410 // Get the code suitable for matching this child. Move to the child, check
411 // it then move back to the parent.
412 AddMatcher(new MoveChildMatcher(OpNo));
413 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
414 AddMatcher(new MoveParentMatcher());
415 }
416 }
417
418
EmitMatchCode(const TreePatternNode * N,TreePatternNode * NodeNoTypes)419 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
420 TreePatternNode *NodeNoTypes) {
421 // If N and NodeNoTypes don't agree on a type, then this is a case where we
422 // need to do a type check. Emit the check, apply the tyep to NodeNoTypes and
423 // reinfer any correlated types.
424 SmallVector<unsigned, 2> ResultsToTypeCheck;
425
426 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
427 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
428 NodeNoTypes->setType(i, N->getExtType(i));
429 InferPossibleTypes();
430 ResultsToTypeCheck.push_back(i);
431 }
432
433 // If this node has a name associated with it, capture it in VariableMap. If
434 // we already saw this in the pattern, emit code to verify dagness.
435 if (!N->getName().empty()) {
436 unsigned &VarMapEntry = VariableMap[N->getName()];
437 if (VarMapEntry == 0) {
438 // If it is a named node, we must emit a 'Record' opcode.
439 AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo));
440 VarMapEntry = ++NextRecordedOperandNo;
441 } else {
442 // If we get here, this is a second reference to a specific name. Since
443 // we already have checked that the first reference is valid, we don't
444 // have to recursively match it, just check that it's the same as the
445 // previously named thing.
446 AddMatcher(new CheckSameMatcher(VarMapEntry-1));
447 return;
448 }
449 }
450
451 if (N->isLeaf())
452 EmitLeafMatchCode(N);
453 else
454 EmitOperatorMatchCode(N, NodeNoTypes);
455
456 // If there are node predicates for this node, generate their checks.
457 for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
458 AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
459
460 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
461 AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
462 ResultsToTypeCheck[i]));
463 }
464
465 /// EmitMatcherCode - Generate the code that matches the predicate of this
466 /// pattern for the specified Variant. If the variant is invalid this returns
467 /// true and does not generate code, if it is valid, it returns false.
EmitMatcherCode(unsigned Variant)468 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
469 // If the root of the pattern is a ComplexPattern and if it is specified to
470 // match some number of root opcodes, these are considered to be our variants.
471 // Depending on which variant we're generating code for, emit the root opcode
472 // check.
473 if (const ComplexPattern *CP =
474 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
475 const std::vector<Record*> &OpNodes = CP->getRootNodes();
476 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
477 if (Variant >= OpNodes.size()) return true;
478
479 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
480 } else {
481 if (Variant != 0) return true;
482 }
483
484 // Emit the matcher for the pattern structure and types.
485 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
486
487 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
488 // feature is around, do the check).
489 if (!Pattern.getPredicateCheck().empty())
490 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
491
492 // Now that we've completed the structural type match, emit any ComplexPattern
493 // checks (e.g. addrmode matches). We emit this after the structural match
494 // because they are generally more expensive to evaluate and more difficult to
495 // factor.
496 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
497 const TreePatternNode *N = MatchedComplexPatterns[i].first;
498
499 // Remember where the results of this match get stuck.
500 MatchedComplexPatterns[i].second = NextRecordedOperandNo;
501
502 // Get the slot we recorded the value in from the name on the node.
503 unsigned RecNodeEntry = VariableMap[N->getName()];
504 assert(!N->getName().empty() && RecNodeEntry &&
505 "Complex pattern should have a name and slot");
506 --RecNodeEntry; // Entries in VariableMap are biased.
507
508 const ComplexPattern &CP =
509 CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef());
510
511 // Emit a CheckComplexPat operation, which does the match (aborting if it
512 // fails) and pushes the matched operands onto the recorded nodes list.
513 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
514 N->getName(), NextRecordedOperandNo));
515
516 // Record the right number of operands.
517 NextRecordedOperandNo += CP.getNumOperands();
518 if (CP.hasProperty(SDNPHasChain)) {
519 // If the complex pattern has a chain, then we need to keep track of the
520 // fact that we just recorded a chain input. The chain input will be
521 // matched as the last operand of the predicate if it was successful.
522 ++NextRecordedOperandNo; // Chained node operand.
523
524 // It is the last operand recorded.
525 assert(NextRecordedOperandNo > 1 &&
526 "Should have recorded input/result chains at least!");
527 MatchedChainNodes.push_back(NextRecordedOperandNo-1);
528 }
529
530 // TODO: Complex patterns can't have output glues, if they did, we'd want
531 // to record them.
532 }
533
534 return false;
535 }
536
537
538 //===----------------------------------------------------------------------===//
539 // Node Result Generation
540 //===----------------------------------------------------------------------===//
541
EmitResultOfNamedOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)542 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
543 SmallVectorImpl<unsigned> &ResultOps){
544 assert(!N->getName().empty() && "Operand not named!");
545
546 // A reference to a complex pattern gets all of the results of the complex
547 // pattern's match.
548 if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) {
549 unsigned SlotNo = 0;
550 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i)
551 if (MatchedComplexPatterns[i].first->getName() == N->getName()) {
552 SlotNo = MatchedComplexPatterns[i].second;
553 break;
554 }
555 assert(SlotNo != 0 && "Didn't get a slot number assigned?");
556
557 // The first slot entry is the node itself, the subsequent entries are the
558 // matched values.
559 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
560 ResultOps.push_back(SlotNo+i);
561 return;
562 }
563
564 unsigned SlotNo = getNamedArgumentSlot(N->getName());
565
566 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
567 // version of the immediate so that it doesn't get selected due to some other
568 // node use.
569 if (!N->isLeaf()) {
570 StringRef OperatorName = N->getOperator()->getName();
571 if (OperatorName == "imm" || OperatorName == "fpimm") {
572 AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
573 ResultOps.push_back(NextRecordedOperandNo++);
574 return;
575 }
576 }
577
578 ResultOps.push_back(SlotNo);
579 }
580
EmitResultLeafAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)581 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
582 SmallVectorImpl<unsigned> &ResultOps) {
583 assert(N->isLeaf() && "Must be a leaf");
584
585 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
586 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
587 ResultOps.push_back(NextRecordedOperandNo++);
588 return;
589 }
590
591 // If this is an explicit register reference, handle it.
592 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
593 Record *Def = DI->getDef();
594 if (Def->isSubClassOf("Register")) {
595 const CodeGenRegister *Reg =
596 CGP.getTargetInfo().getRegBank().getReg(Def);
597 AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0)));
598 ResultOps.push_back(NextRecordedOperandNo++);
599 return;
600 }
601
602 if (Def->getName() == "zero_reg") {
603 AddMatcher(new EmitRegisterMatcher(0, N->getType(0)));
604 ResultOps.push_back(NextRecordedOperandNo++);
605 return;
606 }
607
608 // Handle a reference to a register class. This is used
609 // in COPY_TO_SUBREG instructions.
610 if (Def->isSubClassOf("RegisterOperand"))
611 Def = Def->getValueAsDef("RegClass");
612 if (Def->isSubClassOf("RegisterClass")) {
613 std::string Value = getQualifiedName(Def) + "RegClassID";
614 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
615 ResultOps.push_back(NextRecordedOperandNo++);
616 return;
617 }
618
619 // Handle a subregister index. This is used for INSERT_SUBREG etc.
620 if (Def->isSubClassOf("SubRegIndex")) {
621 std::string Value = getQualifiedName(Def);
622 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
623 ResultOps.push_back(NextRecordedOperandNo++);
624 return;
625 }
626 }
627
628 errs() << "unhandled leaf node: \n";
629 N->dump();
630 }
631
632 /// GetInstPatternNode - Get the pattern for an instruction.
633 ///
634 const TreePatternNode *MatcherGen::
GetInstPatternNode(const DAGInstruction & Inst,const TreePatternNode * N)635 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
636 const TreePattern *InstPat = Inst.getPattern();
637
638 // FIXME2?: Assume actual pattern comes before "implicit".
639 TreePatternNode *InstPatNode;
640 if (InstPat)
641 InstPatNode = InstPat->getTree(0);
642 else if (/*isRoot*/ N == Pattern.getDstPattern())
643 InstPatNode = Pattern.getSrcPattern();
644 else
645 return 0;
646
647 if (InstPatNode && !InstPatNode->isLeaf() &&
648 InstPatNode->getOperator()->getName() == "set")
649 InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
650
651 return InstPatNode;
652 }
653
654 static bool
mayInstNodeLoadOrStore(const TreePatternNode * N,const CodeGenDAGPatterns & CGP)655 mayInstNodeLoadOrStore(const TreePatternNode *N,
656 const CodeGenDAGPatterns &CGP) {
657 Record *Op = N->getOperator();
658 const CodeGenTarget &CGT = CGP.getTargetInfo();
659 CodeGenInstruction &II = CGT.getInstruction(Op);
660 return II.mayLoad || II.mayStore;
661 }
662
663 static unsigned
numNodesThatMayLoadOrStore(const TreePatternNode * N,const CodeGenDAGPatterns & CGP)664 numNodesThatMayLoadOrStore(const TreePatternNode *N,
665 const CodeGenDAGPatterns &CGP) {
666 if (N->isLeaf())
667 return 0;
668
669 Record *OpRec = N->getOperator();
670 if (!OpRec->isSubClassOf("Instruction"))
671 return 0;
672
673 unsigned Count = 0;
674 if (mayInstNodeLoadOrStore(N, CGP))
675 ++Count;
676
677 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
678 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
679
680 return Count;
681 }
682
683 void MatcherGen::
EmitResultInstructionAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & OutputOps)684 EmitResultInstructionAsOperand(const TreePatternNode *N,
685 SmallVectorImpl<unsigned> &OutputOps) {
686 Record *Op = N->getOperator();
687 const CodeGenTarget &CGT = CGP.getTargetInfo();
688 CodeGenInstruction &II = CGT.getInstruction(Op);
689 const DAGInstruction &Inst = CGP.getInstruction(Op);
690
691 // If we can, get the pattern for the instruction we're generating. We derive
692 // a variety of information from this pattern, such as whether it has a chain.
693 //
694 // FIXME2: This is extremely dubious for several reasons, not the least of
695 // which it gives special status to instructions with patterns that Pat<>
696 // nodes can't duplicate.
697 const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
698
699 // NodeHasChain - Whether the instruction node we're creating takes chains.
700 bool NodeHasChain = InstPatNode &&
701 InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
702
703 // Instructions which load and store from memory should have a chain,
704 // regardless of whether they happen to have an internal pattern saying so.
705 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)
706 && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
707 II.hasSideEffects))
708 NodeHasChain = true;
709
710 bool isRoot = N == Pattern.getDstPattern();
711
712 // TreeHasOutGlue - True if this tree has glue.
713 bool TreeHasInGlue = false, TreeHasOutGlue = false;
714 if (isRoot) {
715 const TreePatternNode *SrcPat = Pattern.getSrcPattern();
716 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
717 SrcPat->TreeHasProperty(SDNPInGlue, CGP);
718
719 // FIXME2: this is checking the entire pattern, not just the node in
720 // question, doing this just for the root seems like a total hack.
721 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
722 }
723
724 // NumResults - This is the number of results produced by the instruction in
725 // the "outs" list.
726 unsigned NumResults = Inst.getNumResults();
727
728 // Loop over all of the operands of the instruction pattern, emitting code
729 // to fill them all in. The node 'N' usually has number children equal to
730 // the number of input operands of the instruction. However, in cases
731 // where there are predicate operands for an instruction, we need to fill
732 // in the 'execute always' values. Match up the node operands to the
733 // instruction operands to do this.
734 SmallVector<unsigned, 8> InstOps;
735 for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.Operands.size();
736 InstOpNo != e; ++InstOpNo) {
737
738 // Determine what to emit for this operand.
739 Record *OperandNode = II.Operands[InstOpNo].Rec;
740 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
741 !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
742 // This is a predicate or optional def operand; emit the
743 // 'default ops' operands.
744 const DAGDefaultOperand &DefaultOp
745 = CGP.getDefaultOperand(OperandNode);
746 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
747 EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
748 continue;
749 }
750
751 // Otherwise this is a normal operand or a predicate operand without
752 // 'execute always'; emit it.
753
754 // For operands with multiple sub-operands we may need to emit
755 // multiple child patterns to cover them all. However, ComplexPattern
756 // children may themselves emit multiple MI operands.
757 unsigned NumSubOps = 1;
758 if (OperandNode->isSubClassOf("Operand")) {
759 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
760 if (unsigned NumArgs = MIOpInfo->getNumArgs())
761 NumSubOps = NumArgs;
762 }
763
764 unsigned FinalNumOps = InstOps.size() + NumSubOps;
765 while (InstOps.size() < FinalNumOps) {
766 const TreePatternNode *Child = N->getChild(ChildNo);
767 unsigned BeforeAddingNumOps = InstOps.size();
768 EmitResultOperand(Child, InstOps);
769 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
770
771 // If the operand is an instruction and it produced multiple results, just
772 // take the first one.
773 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
774 InstOps.resize(BeforeAddingNumOps+1);
775
776 ++ChildNo;
777 }
778 }
779
780 // If this node has input glue or explicitly specified input physregs, we
781 // need to add chained and glued copyfromreg nodes and materialize the glue
782 // input.
783 if (isRoot && !PhysRegInputs.empty()) {
784 // Emit all of the CopyToReg nodes for the input physical registers. These
785 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
786 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
787 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
788 PhysRegInputs[i].first));
789 // Even if the node has no other glue inputs, the resultant node must be
790 // glued to the CopyFromReg nodes we just generated.
791 TreeHasInGlue = true;
792 }
793
794 // Result order: node results, chain, glue
795
796 // Determine the result types.
797 SmallVector<MVT::SimpleValueType, 4> ResultVTs;
798 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
799 ResultVTs.push_back(N->getType(i));
800
801 // If this is the root instruction of a pattern that has physical registers in
802 // its result pattern, add output VTs for them. For example, X86 has:
803 // (set AL, (mul ...))
804 // This also handles implicit results like:
805 // (implicit EFLAGS)
806 if (isRoot && !Pattern.getDstRegs().empty()) {
807 // If the root came from an implicit def in the instruction handling stuff,
808 // don't re-add it.
809 Record *HandledReg = 0;
810 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
811 HandledReg = II.ImplicitDefs[0];
812
813 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
814 Record *Reg = Pattern.getDstRegs()[i];
815 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
816 ResultVTs.push_back(getRegisterValueType(Reg, CGT));
817 }
818 }
819
820 // If this is the root of the pattern and the pattern we're matching includes
821 // a node that is variadic, mark the generated node as variadic so that it
822 // gets the excess operands from the input DAG.
823 int NumFixedArityOperands = -1;
824 if (isRoot &&
825 (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)))
826 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
827
828 // If this is the root node and multiple matched nodes in the input pattern
829 // have MemRefs in them, have the interpreter collect them and plop them onto
830 // this node. If there is just one node with MemRefs, leave them on that node
831 // even if it is not the root.
832 //
833 // FIXME3: This is actively incorrect for result patterns with multiple
834 // memory-referencing instructions.
835 bool PatternHasMemOperands =
836 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
837
838 bool NodeHasMemRefs = false;
839 if (PatternHasMemOperands) {
840 unsigned NumNodesThatLoadOrStore =
841 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
842 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
843 NumNodesThatLoadOrStore == 1;
844 NodeHasMemRefs =
845 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
846 NumNodesThatLoadOrStore != 1));
847 }
848
849 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
850 "Node has no result");
851
852 AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
853 ResultVTs.data(), ResultVTs.size(),
854 InstOps.data(), InstOps.size(),
855 NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
856 NodeHasMemRefs, NumFixedArityOperands,
857 NextRecordedOperandNo));
858
859 // The non-chain and non-glue results of the newly emitted node get recorded.
860 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
861 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
862 OutputOps.push_back(NextRecordedOperandNo++);
863 }
864 }
865
866 void MatcherGen::
EmitResultSDNodeXFormAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)867 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
868 SmallVectorImpl<unsigned> &ResultOps) {
869 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
870
871 // Emit the operand.
872 SmallVector<unsigned, 8> InputOps;
873
874 // FIXME2: Could easily generalize this to support multiple inputs and outputs
875 // to the SDNodeXForm. For now we just support one input and one output like
876 // the old instruction selector.
877 assert(N->getNumChildren() == 1);
878 EmitResultOperand(N->getChild(0), InputOps);
879
880 // The input currently must have produced exactly one result.
881 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
882
883 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
884 ResultOps.push_back(NextRecordedOperandNo++);
885 }
886
EmitResultOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)887 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
888 SmallVectorImpl<unsigned> &ResultOps) {
889 // This is something selected from the pattern we matched.
890 if (!N->getName().empty())
891 return EmitResultOfNamedOperand(N, ResultOps);
892
893 if (N->isLeaf())
894 return EmitResultLeafAsOperand(N, ResultOps);
895
896 Record *OpRec = N->getOperator();
897 if (OpRec->isSubClassOf("Instruction"))
898 return EmitResultInstructionAsOperand(N, ResultOps);
899 if (OpRec->isSubClassOf("SDNodeXForm"))
900 return EmitResultSDNodeXFormAsOperand(N, ResultOps);
901 errs() << "Unknown result node to emit code for: " << *N << '\n';
902 PrintFatalError("Unknown node in result pattern!");
903 }
904
EmitResultCode()905 void MatcherGen::EmitResultCode() {
906 // Patterns that match nodes with (potentially multiple) chain inputs have to
907 // merge them together into a token factor. This informs the generated code
908 // what all the chained nodes are.
909 if (!MatchedChainNodes.empty())
910 AddMatcher(new EmitMergeInputChainsMatcher
911 (MatchedChainNodes.data(), MatchedChainNodes.size()));
912
913 // Codegen the root of the result pattern, capturing the resulting values.
914 SmallVector<unsigned, 8> Ops;
915 EmitResultOperand(Pattern.getDstPattern(), Ops);
916
917 // At this point, we have however many values the result pattern produces.
918 // However, the input pattern might not need all of these. If there are
919 // excess values at the end (such as implicit defs of condition codes etc)
920 // just lop them off. This doesn't need to worry about glue or chains, just
921 // explicit results.
922 //
923 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
924
925 // If the pattern also has (implicit) results, count them as well.
926 if (!Pattern.getDstRegs().empty()) {
927 // If the root came from an implicit def in the instruction handling stuff,
928 // don't re-add it.
929 Record *HandledReg = 0;
930 const TreePatternNode *DstPat = Pattern.getDstPattern();
931 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
932 const CodeGenTarget &CGT = CGP.getTargetInfo();
933 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
934
935 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
936 HandledReg = II.ImplicitDefs[0];
937 }
938
939 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
940 Record *Reg = Pattern.getDstRegs()[i];
941 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
942 ++NumSrcResults;
943 }
944 }
945
946 assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
947 Ops.resize(NumSrcResults);
948
949 // If the matched pattern covers nodes which define a glue result, emit a node
950 // that tells the matcher about them so that it can update their results.
951 if (!MatchedGlueResultNodes.empty())
952 AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes.data(),
953 MatchedGlueResultNodes.size()));
954
955 AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern));
956 }
957
958
959 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
960 /// the specified variant. If the variant number is invalid, this returns null.
ConvertPatternToMatcher(const PatternToMatch & Pattern,unsigned Variant,const CodeGenDAGPatterns & CGP)961 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
962 unsigned Variant,
963 const CodeGenDAGPatterns &CGP) {
964 MatcherGen Gen(Pattern, CGP);
965
966 // Generate the code for the matcher.
967 if (Gen.EmitMatcherCode(Variant))
968 return 0;
969
970 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
971 // FIXME2: Split result code out to another table, and make the matcher end
972 // with an "Emit <index>" command. This allows result generation stuff to be
973 // shared and factored?
974
975 // If the match succeeds, then we generate Pattern.
976 Gen.EmitResultCode();
977
978 // Unconditional match.
979 return Gen.GetMatcher();
980 }
981