• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "ir_reader.h"
25 #include "glsl_parser_extras.h"
26 #include "glsl_types.h"
27 #include "s_expression.h"
28 
29 const static bool debug = false;
30 
31 class ir_reader {
32 public:
33    ir_reader(_mesa_glsl_parse_state *);
34 
35    void read(exec_list *instructions, const char *src, bool scan_for_protos);
36 
37 private:
38    void *mem_ctx;
39    _mesa_glsl_parse_state *state;
40 
41    void ir_read_error(s_expression *, const char *fmt, ...);
42 
43    const glsl_type *read_type(s_expression *);
44 
45    void scan_for_prototypes(exec_list *, s_expression *);
46    ir_function *read_function(s_expression *, bool skip_body);
47    void read_function_sig(ir_function *, s_expression *, bool skip_body);
48 
49    void read_instructions(exec_list *, s_expression *, ir_loop *);
50    ir_instruction *read_instruction(s_expression *, ir_loop *);
51    ir_variable *read_declaration(s_expression *);
52    ir_if *read_if(s_expression *, ir_loop *);
53    ir_loop *read_loop(s_expression *);
54    ir_call *read_call(s_expression *);
55    ir_return *read_return(s_expression *);
56    ir_rvalue *read_rvalue(s_expression *);
57    ir_assignment *read_assignment(s_expression *);
58    ir_expression *read_expression(s_expression *);
59    ir_swizzle *read_swizzle(s_expression *);
60    ir_constant *read_constant(s_expression *);
61    ir_texture *read_texture(s_expression *);
62 
63    ir_dereference *read_dereference(s_expression *);
64    ir_dereference_variable *read_var_ref(s_expression *);
65 };
66 
ir_reader(_mesa_glsl_parse_state * state)67 ir_reader::ir_reader(_mesa_glsl_parse_state *state) : state(state)
68 {
69    this->mem_ctx = state;
70 }
71 
72 void
_mesa_glsl_read_ir(_mesa_glsl_parse_state * state,exec_list * instructions,const char * src,bool scan_for_protos)73 _mesa_glsl_read_ir(_mesa_glsl_parse_state *state, exec_list *instructions,
74 		   const char *src, bool scan_for_protos)
75 {
76    ir_reader r(state);
77    r.read(instructions, src, scan_for_protos);
78 }
79 
80 void
read(exec_list * instructions,const char * src,bool scan_for_protos)81 ir_reader::read(exec_list *instructions, const char *src, bool scan_for_protos)
82 {
83    void *sx_mem_ctx = ralloc_context(NULL);
84    s_expression *expr = s_expression::read_expression(sx_mem_ctx, src);
85    if (expr == NULL) {
86       ir_read_error(NULL, "couldn't parse S-Expression.");
87       return;
88    }
89 
90    if (scan_for_protos) {
91       scan_for_prototypes(instructions, expr);
92       if (state->error)
93 	 return;
94    }
95 
96    read_instructions(instructions, expr, NULL);
97    ralloc_free(sx_mem_ctx);
98 
99    if (debug)
100       validate_ir_tree(instructions);
101 }
102 
103 void
ir_read_error(s_expression * expr,const char * fmt,...)104 ir_reader::ir_read_error(s_expression *expr, const char *fmt, ...)
105 {
106    va_list ap;
107 
108    state->error = true;
109 
110    if (state->current_function != NULL)
111       ralloc_asprintf_append(&state->info_log, "In function %s:\n",
112 			     state->current_function->function_name());
113    ralloc_strcat(&state->info_log, "error: ");
114 
115    va_start(ap, fmt);
116    ralloc_vasprintf_append(&state->info_log, fmt, ap);
117    va_end(ap);
118    ralloc_strcat(&state->info_log, "\n");
119 
120    if (expr != NULL) {
121       ralloc_strcat(&state->info_log, "...in this context:\n   ");
122       expr->print();
123       ralloc_strcat(&state->info_log, "\n\n");
124    }
125 }
126 
127 const glsl_type *
read_type(s_expression * expr)128 ir_reader::read_type(s_expression *expr)
129 {
130    s_expression *s_base_type;
131    s_int *s_size;
132 
133    s_pattern pat[] = { "array", s_base_type, s_size };
134    if (MATCH(expr, pat)) {
135       const glsl_type *base_type = read_type(s_base_type);
136       if (base_type == NULL) {
137 	 ir_read_error(NULL, "when reading base type of array type");
138 	 return NULL;
139       }
140 
141       return glsl_type::get_array_instance(base_type, s_size->value());
142    }
143 
144    s_symbol *type_sym = SX_AS_SYMBOL(expr);
145    if (type_sym == NULL) {
146       ir_read_error(expr, "expected <type>");
147       return NULL;
148    }
149 
150    const glsl_type *type = state->symbols->get_type(type_sym->value());
151    if (type == NULL)
152       ir_read_error(expr, "invalid type: %s", type_sym->value());
153 
154    return type;
155 }
156 
157 
158 void
scan_for_prototypes(exec_list * instructions,s_expression * expr)159 ir_reader::scan_for_prototypes(exec_list *instructions, s_expression *expr)
160 {
161    s_list *list = SX_AS_LIST(expr);
162    if (list == NULL) {
163       ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
164       return;
165    }
166 
167    foreach_iter(exec_list_iterator, it, list->subexpressions) {
168       s_list *sub = SX_AS_LIST(it.get());
169       if (sub == NULL)
170 	 continue; // not a (function ...); ignore it.
171 
172       s_symbol *tag = SX_AS_SYMBOL(sub->subexpressions.get_head());
173       if (tag == NULL || strcmp(tag->value(), "function") != 0)
174 	 continue; // not a (function ...); ignore it.
175 
176       ir_function *f = read_function(sub, true);
177       if (f == NULL)
178 	 return;
179       instructions->push_tail(f);
180    }
181 }
182 
183 ir_function *
read_function(s_expression * expr,bool skip_body)184 ir_reader::read_function(s_expression *expr, bool skip_body)
185 {
186    bool added = false;
187    s_symbol *name;
188 
189    s_pattern pat[] = { "function", name };
190    if (!PARTIAL_MATCH(expr, pat)) {
191       ir_read_error(expr, "Expected (function <name> (signature ...) ...)");
192       return NULL;
193    }
194 
195    ir_function *f = state->symbols->get_function(name->value());
196    if (f == NULL) {
197       f = new(mem_ctx) ir_function(name->value());
198       added = state->symbols->add_function(f);
199       assert(added);
200    }
201 
202    exec_list_iterator it = ((s_list *) expr)->subexpressions.iterator();
203    it.next(); // skip "function" tag
204    it.next(); // skip function name
205    for (/* nothing */; it.has_next(); it.next()) {
206       s_expression *s_sig = (s_expression *) it.get();
207       read_function_sig(f, s_sig, skip_body);
208    }
209    return added ? f : NULL;
210 }
211 
212 void
read_function_sig(ir_function * f,s_expression * expr,bool skip_body)213 ir_reader::read_function_sig(ir_function *f, s_expression *expr, bool skip_body)
214 {
215    s_expression *type_expr;
216    s_list *paramlist;
217    s_list *body_list;
218 
219    s_pattern pat[] = { "signature", type_expr, paramlist, body_list };
220    if (!MATCH(expr, pat)) {
221       ir_read_error(expr, "Expected (signature <type> (parameters ...) "
222 			  "(<instruction> ...))");
223       return;
224    }
225 
226    const glsl_type *return_type = read_type(type_expr);
227    if (return_type == NULL)
228       return;
229 
230    s_symbol *paramtag = SX_AS_SYMBOL(paramlist->subexpressions.get_head());
231    if (paramtag == NULL || strcmp(paramtag->value(), "parameters") != 0) {
232       ir_read_error(paramlist, "Expected (parameters ...)");
233       return;
234    }
235 
236    // Read the parameters list into a temporary place.
237    exec_list hir_parameters;
238    state->symbols->push_scope();
239 
240    exec_list_iterator it = paramlist->subexpressions.iterator();
241    for (it.next() /* skip "parameters" */; it.has_next(); it.next()) {
242       ir_variable *var = read_declaration((s_expression *) it.get());
243       if (var == NULL)
244 	 return;
245 
246       hir_parameters.push_tail(var);
247    }
248 
249    ir_function_signature *sig = f->exact_matching_signature(&hir_parameters);
250    if (sig == NULL && skip_body) {
251       /* If scanning for prototypes, generate a new signature. */
252       sig = new(mem_ctx) ir_function_signature(return_type);
253       sig->is_builtin = true;
254       f->add_signature(sig);
255    } else if (sig != NULL) {
256       const char *badvar = sig->qualifiers_match(&hir_parameters);
257       if (badvar != NULL) {
258 	 ir_read_error(expr, "function `%s' parameter `%s' qualifiers "
259 		       "don't match prototype", f->name, badvar);
260 	 return;
261       }
262 
263       if (sig->return_type != return_type) {
264 	 ir_read_error(expr, "function `%s' return type doesn't "
265 		       "match prototype", f->name);
266 	 return;
267       }
268    } else {
269       /* No prototype for this body exists - skip it. */
270       state->symbols->pop_scope();
271       return;
272    }
273    assert(sig != NULL);
274 
275    sig->replace_parameters(&hir_parameters);
276 
277    if (!skip_body && !body_list->subexpressions.is_empty()) {
278       if (sig->is_defined) {
279 	 ir_read_error(expr, "function %s redefined", f->name);
280 	 return;
281       }
282       state->current_function = sig;
283       read_instructions(&sig->body, body_list, NULL);
284       state->current_function = NULL;
285       sig->is_defined = true;
286    }
287 
288    state->symbols->pop_scope();
289 }
290 
291 void
read_instructions(exec_list * instructions,s_expression * expr,ir_loop * loop_ctx)292 ir_reader::read_instructions(exec_list *instructions, s_expression *expr,
293 			     ir_loop *loop_ctx)
294 {
295    // Read in a list of instructions
296    s_list *list = SX_AS_LIST(expr);
297    if (list == NULL) {
298       ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
299       return;
300    }
301 
302    foreach_iter(exec_list_iterator, it, list->subexpressions) {
303       s_expression *sub = (s_expression*) it.get();
304       ir_instruction *ir = read_instruction(sub, loop_ctx);
305       if (ir != NULL) {
306 	 /* Global variable declarations should be moved to the top, before
307 	  * any functions that might use them.  Functions are added to the
308 	  * instruction stream when scanning for prototypes, so without this
309 	  * hack, they always appear before variable declarations.
310 	  */
311 	 if (state->current_function == NULL && ir->as_variable() != NULL)
312 	    instructions->push_head(ir);
313 	 else
314 	    instructions->push_tail(ir);
315       }
316    }
317 }
318 
319 
320 ir_instruction *
read_instruction(s_expression * expr,ir_loop * loop_ctx)321 ir_reader::read_instruction(s_expression *expr, ir_loop *loop_ctx)
322 {
323    s_symbol *symbol = SX_AS_SYMBOL(expr);
324    if (symbol != NULL) {
325       if (strcmp(symbol->value(), "break") == 0 && loop_ctx != NULL)
326 	 return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
327       if (strcmp(symbol->value(), "continue") == 0 && loop_ctx != NULL)
328 	 return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_continue);
329    }
330 
331    s_list *list = SX_AS_LIST(expr);
332    if (list == NULL || list->subexpressions.is_empty()) {
333       ir_read_error(expr, "Invalid instruction.\n");
334       return NULL;
335    }
336 
337    s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
338    if (tag == NULL) {
339       ir_read_error(expr, "expected instruction tag");
340       return NULL;
341    }
342 
343    ir_instruction *inst = NULL;
344    if (strcmp(tag->value(), "declare") == 0) {
345       inst = read_declaration(list);
346    } else if (strcmp(tag->value(), "assign") == 0) {
347       inst = read_assignment(list);
348    } else if (strcmp(tag->value(), "if") == 0) {
349       inst = read_if(list, loop_ctx);
350    } else if (strcmp(tag->value(), "loop") == 0) {
351       inst = read_loop(list);
352    } else if (strcmp(tag->value(), "call") == 0) {
353       inst = read_call(list);
354    } else if (strcmp(tag->value(), "return") == 0) {
355       inst = read_return(list);
356    } else if (strcmp(tag->value(), "function") == 0) {
357       inst = read_function(list, false);
358    } else {
359       inst = read_rvalue(list);
360       if (inst == NULL)
361 	 ir_read_error(NULL, "when reading instruction");
362    }
363    return inst;
364 }
365 
366 ir_variable *
read_declaration(s_expression * expr)367 ir_reader::read_declaration(s_expression *expr)
368 {
369    s_list *s_quals;
370    s_expression *s_type;
371    s_symbol *s_name;
372 
373    s_pattern pat[] = { "declare", s_quals, s_type, s_name };
374    if (!MATCH(expr, pat)) {
375       ir_read_error(expr, "expected (declare (<qualifiers>) <type> <name>)");
376       return NULL;
377    }
378 
379    const glsl_type *type = read_type(s_type);
380    if (type == NULL)
381       return NULL;
382 
383    ir_variable *var = new(mem_ctx) ir_variable(type, s_name->value(),
384 					       ir_var_auto);
385 
386    foreach_iter(exec_list_iterator, it, s_quals->subexpressions) {
387       s_symbol *qualifier = SX_AS_SYMBOL(it.get());
388       if (qualifier == NULL) {
389 	 ir_read_error(expr, "qualifier list must contain only symbols");
390 	 return NULL;
391       }
392 
393       // FINISHME: Check for duplicate/conflicting qualifiers.
394       if (strcmp(qualifier->value(), "centroid") == 0) {
395 	 var->centroid = 1;
396       } else if (strcmp(qualifier->value(), "invariant") == 0) {
397 	 var->invariant = 1;
398       } else if (strcmp(qualifier->value(), "uniform") == 0) {
399 	 var->mode = ir_var_uniform;
400       } else if (strcmp(qualifier->value(), "auto") == 0) {
401 	 var->mode = ir_var_auto;
402       } else if (strcmp(qualifier->value(), "in") == 0) {
403 	 var->mode = ir_var_in;
404       } else if (strcmp(qualifier->value(), "const_in") == 0) {
405 	 var->mode = ir_var_const_in;
406       } else if (strcmp(qualifier->value(), "out") == 0) {
407 	 var->mode = ir_var_out;
408       } else if (strcmp(qualifier->value(), "inout") == 0) {
409 	 var->mode = ir_var_inout;
410       } else if (strcmp(qualifier->value(), "temporary") == 0) {
411 	 var->mode = ir_var_temporary;
412       } else if (strcmp(qualifier->value(), "smooth") == 0) {
413 	 var->interpolation = INTERP_QUALIFIER_SMOOTH;
414       } else if (strcmp(qualifier->value(), "flat") == 0) {
415 	 var->interpolation = INTERP_QUALIFIER_FLAT;
416       } else if (strcmp(qualifier->value(), "noperspective") == 0) {
417 	 var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
418       } else {
419 	 ir_read_error(expr, "unknown qualifier: %s", qualifier->value());
420 	 return NULL;
421       }
422    }
423 
424    // Add the variable to the symbol table
425    state->symbols->add_variable(var);
426 
427    return var;
428 }
429 
430 
431 ir_if *
read_if(s_expression * expr,ir_loop * loop_ctx)432 ir_reader::read_if(s_expression *expr, ir_loop *loop_ctx)
433 {
434    s_expression *s_cond;
435    s_expression *s_then;
436    s_expression *s_else;
437 
438    s_pattern pat[] = { "if", s_cond, s_then, s_else };
439    if (!MATCH(expr, pat)) {
440       ir_read_error(expr, "expected (if <condition> (<then>...) (<else>...))");
441       return NULL;
442    }
443 
444    ir_rvalue *condition = read_rvalue(s_cond);
445    if (condition == NULL) {
446       ir_read_error(NULL, "when reading condition of (if ...)");
447       return NULL;
448    }
449 
450    ir_if *iff = new(mem_ctx) ir_if(condition);
451 
452    read_instructions(&iff->then_instructions, s_then, loop_ctx);
453    read_instructions(&iff->else_instructions, s_else, loop_ctx);
454    if (state->error) {
455       delete iff;
456       iff = NULL;
457    }
458    return iff;
459 }
460 
461 
462 ir_loop *
read_loop(s_expression * expr)463 ir_reader::read_loop(s_expression *expr)
464 {
465    s_expression *s_counter, *s_from, *s_to, *s_inc, *s_body;
466 
467    s_pattern pat[] = { "loop", s_counter, s_from, s_to, s_inc, s_body };
468    if (!MATCH(expr, pat)) {
469       ir_read_error(expr, "expected (loop <counter> <from> <to> "
470 			  "<increment> <body>)");
471       return NULL;
472    }
473 
474    // FINISHME: actually read the count/from/to fields.
475 
476    ir_loop *loop = new(mem_ctx) ir_loop;
477    read_instructions(&loop->body_instructions, s_body, loop);
478    if (state->error) {
479       delete loop;
480       loop = NULL;
481    }
482    return loop;
483 }
484 
485 
486 ir_return *
read_return(s_expression * expr)487 ir_reader::read_return(s_expression *expr)
488 {
489    s_expression *s_retval;
490 
491    s_pattern return_value_pat[] = { "return", s_retval};
492    s_pattern return_void_pat[] = { "return" };
493    if (MATCH(expr, return_value_pat)) {
494       ir_rvalue *retval = read_rvalue(s_retval);
495       if (retval == NULL) {
496          ir_read_error(NULL, "when reading return value");
497          return NULL;
498       }
499       return new(mem_ctx) ir_return(retval);
500    } else if (MATCH(expr, return_void_pat)) {
501       return new(mem_ctx) ir_return;
502    } else {
503       ir_read_error(expr, "expected (return <rvalue>) or (return)");
504       return NULL;
505    }
506 }
507 
508 
509 ir_rvalue *
read_rvalue(s_expression * expr)510 ir_reader::read_rvalue(s_expression *expr)
511 {
512    s_list *list = SX_AS_LIST(expr);
513    if (list == NULL || list->subexpressions.is_empty())
514       return NULL;
515 
516    s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
517    if (tag == NULL) {
518       ir_read_error(expr, "expected rvalue tag");
519       return NULL;
520    }
521 
522    ir_rvalue *rvalue = read_dereference(list);
523    if (rvalue != NULL || state->error)
524       return rvalue;
525    else if (strcmp(tag->value(), "swiz") == 0) {
526       rvalue = read_swizzle(list);
527    } else if (strcmp(tag->value(), "expression") == 0) {
528       rvalue = read_expression(list);
529    } else if (strcmp(tag->value(), "constant") == 0) {
530       rvalue = read_constant(list);
531    } else {
532       rvalue = read_texture(list);
533       if (rvalue == NULL && !state->error)
534 	 ir_read_error(expr, "unrecognized rvalue tag: %s", tag->value());
535    }
536 
537    return rvalue;
538 }
539 
540 ir_assignment *
read_assignment(s_expression * expr)541 ir_reader::read_assignment(s_expression *expr)
542 {
543    s_expression *cond_expr = NULL;
544    s_expression *lhs_expr, *rhs_expr;
545    s_list       *mask_list;
546 
547    s_pattern pat4[] = { "assign",            mask_list, lhs_expr, rhs_expr };
548    s_pattern pat5[] = { "assign", cond_expr, mask_list, lhs_expr, rhs_expr };
549    if (!MATCH(expr, pat4) && !MATCH(expr, pat5)) {
550       ir_read_error(expr, "expected (assign [<condition>] (<write mask>) "
551 			  "<lhs> <rhs>)");
552       return NULL;
553    }
554 
555    ir_rvalue *condition = NULL;
556    if (cond_expr != NULL) {
557       condition = read_rvalue(cond_expr);
558       if (condition == NULL) {
559 	 ir_read_error(NULL, "when reading condition of assignment");
560 	 return NULL;
561       }
562    }
563 
564    unsigned mask = 0;
565 
566    s_symbol *mask_symbol;
567    s_pattern mask_pat[] = { mask_symbol };
568    if (MATCH(mask_list, mask_pat)) {
569       const char *mask_str = mask_symbol->value();
570       unsigned mask_length = strlen(mask_str);
571       if (mask_length > 4) {
572 	 ir_read_error(expr, "invalid write mask: %s", mask_str);
573 	 return NULL;
574       }
575 
576       const unsigned idx_map[] = { 3, 0, 1, 2 }; /* w=bit 3, x=0, y=1, z=2 */
577 
578       for (unsigned i = 0; i < mask_length; i++) {
579 	 if (mask_str[i] < 'w' || mask_str[i] > 'z') {
580 	    ir_read_error(expr, "write mask contains invalid character: %c",
581 			  mask_str[i]);
582 	    return NULL;
583 	 }
584 	 mask |= 1 << idx_map[mask_str[i] - 'w'];
585       }
586    } else if (!mask_list->subexpressions.is_empty()) {
587       ir_read_error(mask_list, "expected () or (<write mask>)");
588       return NULL;
589    }
590 
591    ir_dereference *lhs = read_dereference(lhs_expr);
592    if (lhs == NULL) {
593       ir_read_error(NULL, "when reading left-hand side of assignment");
594       return NULL;
595    }
596 
597    ir_rvalue *rhs = read_rvalue(rhs_expr);
598    if (rhs == NULL) {
599       ir_read_error(NULL, "when reading right-hand side of assignment");
600       return NULL;
601    }
602 
603    if (mask == 0 && (lhs->type->is_vector() || lhs->type->is_scalar())) {
604       ir_read_error(expr, "non-zero write mask required.");
605       return NULL;
606    }
607 
608    return new(mem_ctx) ir_assignment(lhs, rhs, condition, mask);
609 }
610 
611 ir_call *
read_call(s_expression * expr)612 ir_reader::read_call(s_expression *expr)
613 {
614    s_symbol *name;
615    s_list *params;
616    s_list *s_return = NULL;
617 
618    ir_dereference_variable *return_deref = NULL;
619 
620    s_pattern void_pat[] = { "call", name, params };
621    s_pattern non_void_pat[] = { "call", name, s_return, params };
622    if (MATCH(expr, non_void_pat)) {
623       return_deref = read_var_ref(s_return);
624       if (return_deref == NULL) {
625 	 ir_read_error(s_return, "when reading a call's return storage");
626 	 return NULL;
627       }
628    } else if (!MATCH(expr, void_pat)) {
629       ir_read_error(expr, "expected (call <name> [<deref>] (<param> ...))");
630       return NULL;
631    }
632 
633    exec_list parameters;
634 
635    foreach_iter(exec_list_iterator, it, params->subexpressions) {
636       s_expression *expr = (s_expression*) it.get();
637       ir_rvalue *param = read_rvalue(expr);
638       if (param == NULL) {
639 	 ir_read_error(expr, "when reading parameter to function call");
640 	 return NULL;
641       }
642       parameters.push_tail(param);
643    }
644 
645    ir_function *f = state->symbols->get_function(name->value());
646    if (f == NULL) {
647       ir_read_error(expr, "found call to undefined function %s",
648 		    name->value());
649       return NULL;
650    }
651 
652    ir_function_signature *callee = f->matching_signature(&parameters);
653    if (callee == NULL) {
654       ir_read_error(expr, "couldn't find matching signature for function "
655                     "%s", name->value());
656       return NULL;
657    }
658 
659    if (callee->return_type == glsl_type::void_type && return_deref) {
660       ir_read_error(expr, "call has return value storage but void type");
661       return NULL;
662    } else if (callee->return_type != glsl_type::void_type && !return_deref) {
663       ir_read_error(expr, "call has non-void type but no return value storage");
664       return NULL;
665    }
666 
667    return new(mem_ctx) ir_call(callee, return_deref, &parameters);
668 }
669 
670 ir_expression *
read_expression(s_expression * expr)671 ir_reader::read_expression(s_expression *expr)
672 {
673    s_expression *s_type;
674    s_symbol *s_op;
675    s_expression *s_arg1;
676 
677    s_pattern pat[] = { "expression", s_type, s_op, s_arg1 };
678    if (!PARTIAL_MATCH(expr, pat)) {
679       ir_read_error(expr, "expected (expression <type> <operator> "
680 			  "<operand> [<operand>])");
681       return NULL;
682    }
683    s_expression *s_arg2 = (s_expression *) s_arg1->next; // may be tail sentinel
684 
685    const glsl_type *type = read_type(s_type);
686    if (type == NULL)
687       return NULL;
688 
689    /* Read the operator */
690    ir_expression_operation op = ir_expression::get_operator(s_op->value());
691    if (op == (ir_expression_operation) -1) {
692       ir_read_error(expr, "invalid operator: %s", s_op->value());
693       return NULL;
694    }
695 
696    unsigned num_operands = ir_expression::get_num_operands(op);
697    if (num_operands == 1 && !s_arg1->next->is_tail_sentinel()) {
698       ir_read_error(expr, "expected (expression <type> %s <operand>)",
699 		    s_op->value());
700       return NULL;
701    }
702 
703    ir_rvalue *arg1 = read_rvalue(s_arg1);
704    ir_rvalue *arg2 = NULL;
705    if (arg1 == NULL) {
706       ir_read_error(NULL, "when reading first operand of %s", s_op->value());
707       return NULL;
708    }
709 
710    if (num_operands == 2) {
711       if (s_arg2->is_tail_sentinel() || !s_arg2->next->is_tail_sentinel()) {
712 	 ir_read_error(expr, "expected (expression <type> %s <operand> "
713 			     "<operand>)", s_op->value());
714 	 return NULL;
715       }
716       arg2 = read_rvalue(s_arg2);
717       if (arg2 == NULL) {
718 	 ir_read_error(NULL, "when reading second operand of %s",
719 		       s_op->value());
720 	 return NULL;
721       }
722    }
723 
724    return new(mem_ctx) ir_expression(op, type, arg1, arg2);
725 }
726 
727 ir_swizzle *
read_swizzle(s_expression * expr)728 ir_reader::read_swizzle(s_expression *expr)
729 {
730    s_symbol *swiz;
731    s_expression *sub;
732 
733    s_pattern pat[] = { "swiz", swiz, sub };
734    if (!MATCH(expr, pat)) {
735       ir_read_error(expr, "expected (swiz <swizzle> <rvalue>)");
736       return NULL;
737    }
738 
739    if (strlen(swiz->value()) > 4) {
740       ir_read_error(expr, "expected a valid swizzle; found %s", swiz->value());
741       return NULL;
742    }
743 
744    ir_rvalue *rvalue = read_rvalue(sub);
745    if (rvalue == NULL)
746       return NULL;
747 
748    ir_swizzle *ir = ir_swizzle::create(rvalue, swiz->value(),
749 				       rvalue->type->vector_elements);
750    if (ir == NULL)
751       ir_read_error(expr, "invalid swizzle");
752 
753    return ir;
754 }
755 
756 ir_constant *
read_constant(s_expression * expr)757 ir_reader::read_constant(s_expression *expr)
758 {
759    s_expression *type_expr;
760    s_list *values;
761 
762    s_pattern pat[] = { "constant", type_expr, values };
763    if (!MATCH(expr, pat)) {
764       ir_read_error(expr, "expected (constant <type> (...))");
765       return NULL;
766    }
767 
768    const glsl_type *type = read_type(type_expr);
769    if (type == NULL)
770       return NULL;
771 
772    if (values == NULL) {
773       ir_read_error(expr, "expected (constant <type> (...))");
774       return NULL;
775    }
776 
777    if (type->is_array()) {
778       unsigned elements_supplied = 0;
779       exec_list elements;
780       foreach_iter(exec_list_iterator, it, values->subexpressions) {
781 	 s_expression *elt = (s_expression *) it.get();
782 	 ir_constant *ir_elt = read_constant(elt);
783 	 if (ir_elt == NULL)
784 	    return NULL;
785 	 elements.push_tail(ir_elt);
786 	 elements_supplied++;
787       }
788 
789       if (elements_supplied != type->length) {
790 	 ir_read_error(values, "expected exactly %u array elements, "
791 		       "given %u", type->length, elements_supplied);
792 	 return NULL;
793       }
794       return new(mem_ctx) ir_constant(type, &elements);
795    }
796 
797    ir_constant_data data = { { 0 } };
798 
799    // Read in list of values (at most 16).
800    unsigned k = 0;
801    foreach_iter(exec_list_iterator, it, values->subexpressions) {
802       if (k >= 16) {
803 	 ir_read_error(values, "expected at most 16 numbers");
804 	 return NULL;
805       }
806 
807       s_expression *expr = (s_expression*) it.get();
808 
809       if (type->base_type == GLSL_TYPE_FLOAT) {
810 	 s_number *value = SX_AS_NUMBER(expr);
811 	 if (value == NULL) {
812 	    ir_read_error(values, "expected numbers");
813 	    return NULL;
814 	 }
815 	 data.f[k] = value->fvalue();
816       } else {
817 	 s_int *value = SX_AS_INT(expr);
818 	 if (value == NULL) {
819 	    ir_read_error(values, "expected integers");
820 	    return NULL;
821 	 }
822 
823 	 switch (type->base_type) {
824 	 case GLSL_TYPE_UINT: {
825 	    data.u[k] = value->value();
826 	    break;
827 	 }
828 	 case GLSL_TYPE_INT: {
829 	    data.i[k] = value->value();
830 	    break;
831 	 }
832 	 case GLSL_TYPE_BOOL: {
833 	    data.b[k] = value->value();
834 	    break;
835 	 }
836 	 default:
837 	    ir_read_error(values, "unsupported constant type");
838 	    return NULL;
839 	 }
840       }
841       ++k;
842    }
843    if (k != type->components()) {
844       ir_read_error(values, "expected %u constant values, found %u",
845 		    type->components(), k);
846       return NULL;
847    }
848 
849    return new(mem_ctx) ir_constant(type, &data);
850 }
851 
852 ir_dereference_variable *
read_var_ref(s_expression * expr)853 ir_reader::read_var_ref(s_expression *expr)
854 {
855    s_symbol *s_var;
856    s_pattern var_pat[] = { "var_ref", s_var };
857 
858    if (MATCH(expr, var_pat)) {
859       ir_variable *var = state->symbols->get_variable(s_var->value());
860       if (var == NULL) {
861 	 ir_read_error(expr, "undeclared variable: %s", s_var->value());
862 	 return NULL;
863       }
864       return new(mem_ctx) ir_dereference_variable(var);
865    }
866    return NULL;
867 }
868 
869 ir_dereference *
read_dereference(s_expression * expr)870 ir_reader::read_dereference(s_expression *expr)
871 {
872    s_expression *s_subject;
873    s_expression *s_index;
874    s_symbol *s_field;
875 
876    s_pattern array_pat[] = { "array_ref", s_subject, s_index };
877    s_pattern record_pat[] = { "record_ref", s_subject, s_field };
878 
879    ir_dereference_variable *var_ref = read_var_ref(expr);
880    if (var_ref != NULL) {
881       return var_ref;
882    } else if (MATCH(expr, array_pat)) {
883       ir_rvalue *subject = read_rvalue(s_subject);
884       if (subject == NULL) {
885 	 ir_read_error(NULL, "when reading the subject of an array_ref");
886 	 return NULL;
887       }
888 
889       ir_rvalue *idx = read_rvalue(s_index);
890       if (subject == NULL) {
891 	 ir_read_error(NULL, "when reading the index of an array_ref");
892 	 return NULL;
893       }
894       return new(mem_ctx) ir_dereference_array(subject, idx);
895    } else if (MATCH(expr, record_pat)) {
896       ir_rvalue *subject = read_rvalue(s_subject);
897       if (subject == NULL) {
898 	 ir_read_error(NULL, "when reading the subject of a record_ref");
899 	 return NULL;
900       }
901       return new(mem_ctx) ir_dereference_record(subject, s_field->value());
902    }
903    return NULL;
904 }
905 
906 ir_texture *
read_texture(s_expression * expr)907 ir_reader::read_texture(s_expression *expr)
908 {
909    s_symbol *tag = NULL;
910    s_expression *s_type = NULL;
911    s_expression *s_sampler = NULL;
912    s_expression *s_coord = NULL;
913    s_expression *s_offset = NULL;
914    s_expression *s_proj = NULL;
915    s_list *s_shadow = NULL;
916    s_expression *s_lod = NULL;
917 
918    ir_texture_opcode op = ir_tex; /* silence warning */
919 
920    s_pattern tex_pattern[] =
921       { "tex", s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow };
922    s_pattern txf_pattern[] =
923       { "txf", s_type, s_sampler, s_coord, s_offset, s_lod };
924    s_pattern txs_pattern[] =
925       { "txs", s_type, s_sampler, s_lod };
926    s_pattern other_pattern[] =
927       { tag, s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow, s_lod };
928 
929    if (MATCH(expr, tex_pattern)) {
930       op = ir_tex;
931    } else if (MATCH(expr, txf_pattern)) {
932       op = ir_txf;
933    } else if (MATCH(expr, txs_pattern)) {
934       op = ir_txs;
935    } else if (MATCH(expr, other_pattern)) {
936       op = ir_texture::get_opcode(tag->value());
937       if (op == -1)
938 	 return NULL;
939    } else {
940       ir_read_error(NULL, "unexpected texture pattern");
941       return NULL;
942    }
943 
944    ir_texture *tex = new(mem_ctx) ir_texture(op);
945 
946    // Read return type
947    const glsl_type *type = read_type(s_type);
948    if (type == NULL) {
949       ir_read_error(NULL, "when reading type in (%s ...)",
950 		    tex->opcode_string());
951       return NULL;
952    }
953 
954    // Read sampler (must be a deref)
955    ir_dereference *sampler = read_dereference(s_sampler);
956    if (sampler == NULL) {
957       ir_read_error(NULL, "when reading sampler in (%s ...)",
958 		    tex->opcode_string());
959       return NULL;
960    }
961    tex->set_sampler(sampler, type);
962 
963    if (op != ir_txs) {
964       // Read coordinate (any rvalue)
965       tex->coordinate = read_rvalue(s_coord);
966       if (tex->coordinate == NULL) {
967 	 ir_read_error(NULL, "when reading coordinate in (%s ...)",
968 		       tex->opcode_string());
969 	 return NULL;
970       }
971 
972       // Read texel offset - either 0 or an rvalue.
973       s_int *si_offset = SX_AS_INT(s_offset);
974       if (si_offset == NULL || si_offset->value() != 0) {
975 	 tex->offset = read_rvalue(s_offset);
976 	 if (tex->offset == NULL) {
977 	    ir_read_error(s_offset, "expected 0 or an expression");
978 	    return NULL;
979 	 }
980       }
981    }
982 
983    if (op != ir_txf && op != ir_txs) {
984       s_int *proj_as_int = SX_AS_INT(s_proj);
985       if (proj_as_int && proj_as_int->value() == 1) {
986 	 tex->projector = NULL;
987       } else {
988 	 tex->projector = read_rvalue(s_proj);
989 	 if (tex->projector == NULL) {
990 	    ir_read_error(NULL, "when reading projective divide in (%s ..)",
991 	                  tex->opcode_string());
992 	    return NULL;
993 	 }
994       }
995 
996       if (s_shadow->subexpressions.is_empty()) {
997 	 tex->shadow_comparitor = NULL;
998       } else {
999 	 tex->shadow_comparitor = read_rvalue(s_shadow);
1000 	 if (tex->shadow_comparitor == NULL) {
1001 	    ir_read_error(NULL, "when reading shadow comparitor in (%s ..)",
1002 			  tex->opcode_string());
1003 	    return NULL;
1004 	 }
1005       }
1006    }
1007 
1008    switch (op) {
1009    case ir_txb:
1010       tex->lod_info.bias = read_rvalue(s_lod);
1011       if (tex->lod_info.bias == NULL) {
1012 	 ir_read_error(NULL, "when reading LOD bias in (txb ...)");
1013 	 return NULL;
1014       }
1015       break;
1016    case ir_txl:
1017    case ir_txf:
1018    case ir_txs:
1019       tex->lod_info.lod = read_rvalue(s_lod);
1020       if (tex->lod_info.lod == NULL) {
1021 	 ir_read_error(NULL, "when reading LOD in (%s ...)",
1022 		       tex->opcode_string());
1023 	 return NULL;
1024       }
1025       break;
1026    case ir_txd: {
1027       s_expression *s_dx, *s_dy;
1028       s_pattern dxdy_pat[] = { s_dx, s_dy };
1029       if (!MATCH(s_lod, dxdy_pat)) {
1030 	 ir_read_error(s_lod, "expected (dPdx dPdy) in (txd ...)");
1031 	 return NULL;
1032       }
1033       tex->lod_info.grad.dPdx = read_rvalue(s_dx);
1034       if (tex->lod_info.grad.dPdx == NULL) {
1035 	 ir_read_error(NULL, "when reading dPdx in (txd ...)");
1036 	 return NULL;
1037       }
1038       tex->lod_info.grad.dPdy = read_rvalue(s_dy);
1039       if (tex->lod_info.grad.dPdy == NULL) {
1040 	 ir_read_error(NULL, "when reading dPdy in (txd ...)");
1041 	 return NULL;
1042       }
1043       break;
1044    }
1045    default:
1046       // tex doesn't have any extra parameters.
1047       break;
1048    };
1049    return tex;
1050 }
1051