• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2006, 2008 Google Inc.
2 // Authors: Chandra Chereddi, Lincoln Smith
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 
16 #include <config.h>
17 #include "blockhash.h"
18 #include <stdint.h>  // uint32_t
19 #include <string.h>  // memcpy, memcmp
20 #include <algorithm>  // std::min
21 #include "compile_assert.h"
22 #include "logging.h"
23 #include "rolling_hash.h"
24 
25 namespace open_vcdiff {
26 
27 typedef unsigned long uword_t;  // a machine word                         NOLINT
28 
BlockHash(const char * source_data,size_t source_size,int starting_offset)29 BlockHash::BlockHash(const char* source_data,
30                      size_t source_size,
31                      int starting_offset)
32     : source_data_(source_data),
33       source_size_(source_size),
34       hash_table_mask_(0),
35       starting_offset_(starting_offset),
36       last_block_added_(-1) {
37 }
38 
~BlockHash()39 BlockHash::~BlockHash() { }
40 
41 // kBlockSize must be at least 2 to be meaningful.  Since it's a compile-time
42 // constant, check its value at compile time rather than wasting CPU cycles
43 // on runtime checks.
44 VCD_COMPILE_ASSERT(BlockHash::kBlockSize >= 2, kBlockSize_must_be_at_least_2);
45 
46 // kBlockSize is required to be a power of 2 because multiplication
47 // (n * kBlockSize), division (n / kBlockSize) and MOD (n % kBlockSize)
48 // are commonly-used operations.  If kBlockSize is a compile-time
49 // constant and a power of 2, the compiler can convert these three operations
50 // into bit-shift (>> or <<) and bitwise-AND (&) operations, which are much
51 // more efficient than executing full integer multiply, divide, or remainder
52 // instructions.
53 VCD_COMPILE_ASSERT((BlockHash::kBlockSize & (BlockHash::kBlockSize - 1)) == 0,
54                    kBlockSize_must_be_a_power_of_2);
55 
Init(bool populate_hash_table)56 bool BlockHash::Init(bool populate_hash_table) {
57   if (!hash_table_.empty() ||
58       !next_block_table_.empty() ||
59       !last_block_table_.empty()) {
60     VCD_DFATAL << "Init() called twice for same BlockHash object" << VCD_ENDL;
61     return false;
62   }
63   const size_t table_size = CalcTableSize(source_size_);
64   if (table_size == 0) {
65     VCD_DFATAL << "Error finding table size for source size " << source_size_
66                << VCD_ENDL;
67     return false;
68   }
69   // Since table_size is a power of 2, (table_size - 1) is a bit mask
70   // containing all the bits below table_size.
71   hash_table_mask_ = static_cast<uint32_t>(table_size - 1);
72   hash_table_.resize(table_size, -1);
73   next_block_table_.resize(GetNumberOfBlocks(), -1);
74   last_block_table_.resize(GetNumberOfBlocks(), -1);
75   if (populate_hash_table) {
76     AddAllBlocks();
77   }
78   return true;
79 }
80 
CreateDictionaryHash(const char * dictionary_data,size_t dictionary_size)81 const BlockHash* BlockHash::CreateDictionaryHash(const char* dictionary_data,
82                                                  size_t dictionary_size) {
83   BlockHash* new_dictionary_hash = new BlockHash(dictionary_data,
84                                                  dictionary_size,
85                                                  0);
86   if (!new_dictionary_hash->Init(/* populate_hash_table = */ true)) {
87     delete new_dictionary_hash;
88     return NULL;
89   } else {
90     return new_dictionary_hash;
91   }
92 }
93 
CreateTargetHash(const char * target_data,size_t target_size,size_t dictionary_size)94 BlockHash* BlockHash::CreateTargetHash(const char* target_data,
95                                        size_t target_size,
96                                        size_t dictionary_size) {
97   BlockHash* new_target_hash = new BlockHash(target_data,
98                                              target_size,
99                                              static_cast<int>(dictionary_size));
100   if (!new_target_hash->Init(/* populate_hash_table = */ false)) {
101     delete new_target_hash;
102     return NULL;
103   } else {
104     return new_target_hash;
105   }
106 }
107 
108 // Returns zero if an error occurs.
CalcTableSize(const size_t dictionary_size)109 size_t BlockHash::CalcTableSize(const size_t dictionary_size) {
110   // Overallocate the hash table by making it the same size (in bytes)
111   // as the source data.  This is a trade-off between space and time:
112   // the empty entries in the hash table will reduce the
113   // probability of a hash collision to (sizeof(int) / kblockSize),
114   // and so save time comparing false matches.
115   const size_t min_size = (dictionary_size / sizeof(int)) + 1;  // NOLINT
116   size_t table_size = 1;
117   // Find the smallest power of 2 that is >= min_size, and assign
118   // that value to table_size.
119   while (table_size < min_size) {
120     table_size <<= 1;
121     // Guard against an infinite loop
122     if (table_size <= 0) {
123       VCD_DFATAL << "Internal error: CalcTableSize(dictionary_size = "
124                  << dictionary_size
125                  << "): resulting table_size " << table_size
126                  << " is zero or negative" << VCD_ENDL;
127       return 0;
128     }
129   }
130   // Check size sanity
131   if ((table_size & (table_size - 1)) != 0) {
132     VCD_DFATAL << "Internal error: CalcTableSize(dictionary_size = "
133                << dictionary_size
134                << "): resulting table_size " << table_size
135                << " is not a power of 2" << VCD_ENDL;
136     return 0;
137   }
138   // The loop above tries to find the smallest power of 2 that is >= min_size.
139   // That value must lie somewhere between min_size and (min_size * 2),
140   // except for the case (dictionary_size == 0, table_size == 1).
141   if ((dictionary_size > 0) && (table_size > (min_size * 2))) {
142     VCD_DFATAL << "Internal error: CalcTableSize(dictionary_size = "
143                << dictionary_size
144                << "): resulting table_size " << table_size
145                << " is too large" << VCD_ENDL;
146     return 0;
147   }
148   return table_size;
149 }
150 
151 // If the hash value is already available from the rolling hash,
152 // call this function to save time.
AddBlock(uint32_t hash_value)153 void BlockHash::AddBlock(uint32_t hash_value) {
154   if (hash_table_.empty()) {
155     VCD_DFATAL << "BlockHash::AddBlock() called before BlockHash::Init()"
156                << VCD_ENDL;
157     return;
158   }
159   // The initial value of last_block_added_ is -1.
160   int block_number = last_block_added_ + 1;
161   const int total_blocks =
162       static_cast<int>(source_size_ / kBlockSize);  // round down
163   if (block_number >= total_blocks) {
164     VCD_DFATAL << "BlockHash::AddBlock() called"
165                   " with block number " << block_number
166                << " that is past last block " << (total_blocks - 1)
167                << VCD_ENDL;
168     return;
169   }
170   if (next_block_table_[block_number] != -1) {
171     VCD_DFATAL << "Internal error in BlockHash::AddBlock(): "
172                   "block number = " << block_number
173                << ", next block should be -1 but is "
174                << next_block_table_[block_number] << VCD_ENDL;
175     return;
176   }
177   const uint32_t hash_table_index = GetHashTableIndex(hash_value);
178   const int first_matching_block = hash_table_[hash_table_index];
179   if (first_matching_block < 0) {
180     // This is the first entry with this hash value
181     hash_table_[hash_table_index] = block_number;
182     last_block_table_[block_number] = block_number;
183   } else {
184     // Add this entry at the end of the chain of matching blocks
185     const int last_matching_block = last_block_table_[first_matching_block];
186     if (next_block_table_[last_matching_block] != -1) {
187       VCD_DFATAL << "Internal error in BlockHash::AddBlock(): "
188                     "first matching block = " << first_matching_block
189                  << ", last matching block = " << last_matching_block
190                  << ", next block should be -1 but is "
191                  << next_block_table_[last_matching_block] << VCD_ENDL;
192       return;
193     }
194     next_block_table_[last_matching_block] = block_number;
195     last_block_table_[first_matching_block] = block_number;
196   }
197   last_block_added_ = block_number;
198 }
199 
AddAllBlocks()200 void BlockHash::AddAllBlocks() {
201   AddAllBlocksThroughIndex(static_cast<int>(source_size_));
202 }
203 
AddAllBlocksThroughIndex(int end_index)204 void BlockHash::AddAllBlocksThroughIndex(int end_index) {
205   if (end_index > static_cast<int>(source_size_)) {
206     VCD_DFATAL << "BlockHash::AddAllBlocksThroughIndex() called"
207                   " with index " << end_index
208                << " higher than end index  " << source_size_ << VCD_ENDL;
209     return;
210   }
211   const int last_index_added = last_block_added_ * kBlockSize;
212   if (end_index <= last_index_added) {
213     VCD_DFATAL << "BlockHash::AddAllBlocksThroughIndex() called"
214                   " with index " << end_index
215                << " <= last index added ( " << last_index_added
216                << ")" << VCD_ENDL;
217     return;
218   }
219   int end_limit = end_index;
220   // Don't allow reading any indices at or past source_size_.
221   // The Hash function extends (kBlockSize - 1) bytes past the index,
222   // so leave a margin of that size.
223   int last_legal_hash_index = static_cast<int>(source_size() - kBlockSize);
224   if (end_limit > last_legal_hash_index) {
225     end_limit = last_legal_hash_index + 1;
226   }
227   const char* block_ptr = source_data() + NextIndexToAdd();
228   const char* const end_ptr = source_data() + end_limit;
229   while (block_ptr < end_ptr) {
230     AddBlock(RollingHash<kBlockSize>::Hash(block_ptr));
231     block_ptr += kBlockSize;
232   }
233 }
234 
235 VCD_COMPILE_ASSERT((BlockHash::kBlockSize % sizeof(uword_t)) == 0,
236                    kBlockSize_must_be_a_multiple_of_machine_word_size);
237 
238 // A recursive template to compare a fixed number
239 // of (possibly unaligned) machine words starting
240 // at addresses block1 and block2.  Returns true or false
241 // depending on whether an exact match was found.
242 template<int number_of_words>
CompareWholeWordValues(const char * block1,const char * block2)243 inline bool CompareWholeWordValues(const char* block1,
244                                    const char* block2) {
245   return CompareWholeWordValues<1>(block1, block2) &&
246          CompareWholeWordValues<number_of_words - 1>(block1 + sizeof(uword_t),
247                                                      block2 + sizeof(uword_t));
248 }
249 
250 // The base of the recursive template: compare one pair of machine words.
251 template<>
CompareWholeWordValues(const char * word1,const char * word2)252 inline bool CompareWholeWordValues<1>(const char* word1,
253                                       const char* word2) {
254   uword_t aligned_word1, aligned_word2;
255   memcpy(&aligned_word1, word1, sizeof(aligned_word1));
256   memcpy(&aligned_word2, word2, sizeof(aligned_word2));
257   return aligned_word1 == aligned_word2;
258 }
259 
260 // A block must be composed of an integral number of machine words
261 // (uword_t values.)  This function takes advantage of that fact
262 // by comparing the blocks as series of (possibly unaligned) word values.
263 // A word-sized comparison can be performed as a single
264 // machine instruction.  Comparing words instead of bytes means that,
265 // on a 64-bit platform, this function will use 8 times fewer test-and-branch
266 // instructions than a byte-by-byte comparison.  Even with the extra
267 // cost of the calls to memcpy, this method is still at least twice as fast
268 // as memcmp (measured using gcc on a 64-bit platform, with a block size
269 // of 32.)  For blocks with identical contents (a common case), this method
270 // is over six times faster than memcmp.
BlockCompareWordsInline(const char * block1,const char * block2)271 inline bool BlockCompareWordsInline(const char* block1, const char* block2) {
272   static const size_t kWordsPerBlock = BlockHash::kBlockSize / sizeof(uword_t);
273   return CompareWholeWordValues<kWordsPerBlock>(block1, block2);
274 }
275 
BlockCompareWords(const char * block1,const char * block2)276 bool BlockHash::BlockCompareWords(const char* block1, const char* block2) {
277   return BlockCompareWordsInline(block1, block2);
278 }
279 
BlockContentsMatchInline(const char * block1,const char * block2)280 inline bool BlockContentsMatchInline(const char* block1, const char* block2) {
281   // Optimize for mismatch in first byte.  Since this function is called only
282   // when the hash values of the two blocks match, it is very likely that either
283   // the blocks are identical, or else the first byte does not match.
284   if (*block1 != *block2) {
285     return false;
286   }
287 #ifdef VCDIFF_USE_BLOCK_COMPARE_WORDS
288   return BlockCompareWordsInline(block1, block2);
289 #else  // !VCDIFF_USE_BLOCK_COMPARE_WORDS
290   return memcmp(block1, block2, BlockHash::kBlockSize) == 0;
291 #endif  // VCDIFF_USE_BLOCK_COMPARE_WORDS
292 }
293 
BlockContentsMatch(const char * block1,const char * block2)294 bool BlockHash::BlockContentsMatch(const char* block1, const char* block2) {
295   return BlockContentsMatchInline(block1, block2);
296 }
297 
SkipNonMatchingBlocks(int block_number,const char * block_ptr) const298 inline int BlockHash::SkipNonMatchingBlocks(int block_number,
299                                             const char* block_ptr) const {
300   int probes = 0;
301   while ((block_number >= 0) &&
302          !BlockContentsMatchInline(block_ptr,
303                                    &source_data_[block_number * kBlockSize])) {
304     if (++probes > kMaxProbes) {
305       return -1;  // Avoid too much chaining
306     }
307     block_number = next_block_table_[block_number];
308   }
309   return block_number;
310 }
311 
312 // Init() must have been called and returned true before using
313 // FirstMatchingBlock or NextMatchingBlock.  No check is performed
314 // for this condition; the code will crash if this condition is violated.
FirstMatchingBlockInline(uint32_t hash_value,const char * block_ptr) const315 inline int BlockHash::FirstMatchingBlockInline(uint32_t hash_value,
316                                                const char* block_ptr) const {
317   return SkipNonMatchingBlocks(hash_table_[GetHashTableIndex(hash_value)],
318                                block_ptr);
319 }
320 
FirstMatchingBlock(uint32_t hash_value,const char * block_ptr) const321 int BlockHash::FirstMatchingBlock(uint32_t hash_value,
322                                   const char* block_ptr) const {
323   return FirstMatchingBlockInline(hash_value, block_ptr);
324 }
325 
NextMatchingBlock(int block_number,const char * block_ptr) const326 int BlockHash::NextMatchingBlock(int block_number,
327                                  const char* block_ptr) const {
328   if (static_cast<size_t>(block_number) >= GetNumberOfBlocks()) {
329     VCD_DFATAL << "NextMatchingBlock called for invalid block number "
330                << block_number << VCD_ENDL;
331     return -1;
332   }
333   return SkipNonMatchingBlocks(next_block_table_[block_number], block_ptr);
334 }
335 
336 // Keep a count of the number of matches found.  This will throttle the
337 // number of iterations in FindBestMatch.  For example, if the entire
338 // dictionary is made up of spaces (' ') and the search string is also
339 // made up of spaces, there will be one match for each block in the
340 // dictionary.
TooManyMatches(int * match_counter)341 inline bool BlockHash::TooManyMatches(int* match_counter) {
342   ++(*match_counter);
343   return (*match_counter) > kMaxMatchesToCheck;
344 }
345 
346 // Returns the number of bytes to the left of source_match_start
347 // that match the corresponding bytes to the left of target_match_start.
348 // Will not examine more than max_bytes bytes, which is to say that
349 // the return value will be in the range [0, max_bytes] inclusive.
MatchingBytesToLeft(const char * source_match_start,const char * target_match_start,int max_bytes)350 int BlockHash::MatchingBytesToLeft(const char* source_match_start,
351                                    const char* target_match_start,
352                                    int max_bytes) {
353   const char* source_ptr = source_match_start;
354   const char* target_ptr = target_match_start;
355   int bytes_found = 0;
356   while (bytes_found < max_bytes) {
357     --source_ptr;
358     --target_ptr;
359     if (*source_ptr != *target_ptr) {
360       break;
361     }
362     ++bytes_found;
363   }
364   return bytes_found;
365 }
366 
367 // Returns the number of bytes starting at source_match_end
368 // that match the corresponding bytes starting at target_match_end.
369 // Will not examine more than max_bytes bytes, which is to say that
370 // the return value will be in the range [0, max_bytes] inclusive.
MatchingBytesToRight(const char * source_match_end,const char * target_match_end,int max_bytes)371 int BlockHash::MatchingBytesToRight(const char* source_match_end,
372                                     const char* target_match_end,
373                                     int max_bytes) {
374   const char* source_ptr = source_match_end;
375   const char* target_ptr = target_match_end;
376   int bytes_found = 0;
377   while ((bytes_found < max_bytes) && (*source_ptr == *target_ptr)) {
378     ++bytes_found;
379     ++source_ptr;
380     ++target_ptr;
381   }
382   return bytes_found;
383 }
384 
385 // No NULL checks are performed on the pointer arguments.  The caller
386 // must guarantee that none of the arguments is NULL, or a crash will occur.
387 //
388 // The vast majority of calls to FindBestMatch enter the loop *zero* times,
389 // which is to say that most candidate blocks find no matches in the dictionary.
390 // The important sections for optimization are therefore the code outside the
391 // loop and the code within the loop conditions.  Keep this to a minimum.
FindBestMatch(uint32_t hash_value,const char * target_candidate_start,const char * target_start,size_t target_size,Match * best_match) const392 void BlockHash::FindBestMatch(uint32_t hash_value,
393                               const char* target_candidate_start,
394                               const char* target_start,
395                               size_t target_size,
396                               Match* best_match) const {
397   int match_counter = 0;
398   for (int block_number = FirstMatchingBlockInline(hash_value,
399                                                    target_candidate_start);
400        (block_number >= 0) && !TooManyMatches(&match_counter);
401        block_number = NextMatchingBlock(block_number, target_candidate_start)) {
402     int source_match_offset = block_number * kBlockSize;
403     const int source_match_end = source_match_offset + kBlockSize;
404 
405     int target_match_offset =
406         static_cast<int>(target_candidate_start - target_start);
407     const int target_match_end = target_match_offset + kBlockSize;
408 
409     size_t match_size = kBlockSize;
410     {
411       // Extend match start towards beginning of unencoded data
412       const int limit_bytes_to_left = std::min(source_match_offset,
413                                                target_match_offset);
414       const int matching_bytes_to_left =
415           MatchingBytesToLeft(source_data_ + source_match_offset,
416                               target_start + target_match_offset,
417                               limit_bytes_to_left);
418       source_match_offset -= matching_bytes_to_left;
419       target_match_offset -= matching_bytes_to_left;
420       match_size += matching_bytes_to_left;
421     }
422     {
423       // Extend match end towards end of unencoded data
424       const size_t source_bytes_to_right = source_size_ - source_match_end;
425       const size_t target_bytes_to_right = target_size - target_match_end;
426       const size_t limit_bytes_to_right = std::min(source_bytes_to_right,
427                                                    target_bytes_to_right);
428       match_size +=
429           MatchingBytesToRight(source_data_ + source_match_end,
430                                target_start + target_match_end,
431                                static_cast<int>(limit_bytes_to_right));
432     }
433     // Update in/out parameter if the best match found was better
434     // than any match already stored in *best_match.
435     best_match->ReplaceIfBetterMatch(match_size,
436                                      source_match_offset + starting_offset_,
437                                      target_match_offset);
438   }
439 }
440 
441 }  // namespace open_vcdiff
442