• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkTArray_DEFINED
9 #define SkTArray_DEFINED
10 
11 #include <new>
12 #include "SkTypes.h"
13 #include "SkTemplates.h"
14 
15 template <typename T, bool MEM_COPY = false> class SkTArray;
16 
17 namespace SkTArrayExt {
18 
19 template<typename T>
copy(SkTArray<T,true> * self,const T * array)20 inline void copy(SkTArray<T, true>* self, const T* array) {
21     memcpy(self->fMemArray, array, self->fCount * sizeof(T));
22 }
23 template<typename T>
copyAndDelete(SkTArray<T,true> * self,char * newMemArray)24 inline void copyAndDelete(SkTArray<T, true>* self, char* newMemArray) {
25     memcpy(newMemArray, self->fMemArray, self->fCount * sizeof(T));
26 }
27 
28 template<typename T>
copy(SkTArray<T,false> * self,const T * array)29 inline void copy(SkTArray<T, false>* self, const T* array) {
30     for (int i = 0; i < self->fCount; ++i) {
31         SkNEW_PLACEMENT_ARGS(self->fItemArray + i, T, (array[i]));
32     }
33 }
34 template<typename T>
copyAndDelete(SkTArray<T,false> * self,char * newMemArray)35 inline void copyAndDelete(SkTArray<T, false>* self, char* newMemArray) {
36     for (int i = 0; i < self->fCount; ++i) {
37         SkNEW_PLACEMENT_ARGS(newMemArray + sizeof(T) * i, T, (self->fItemArray[i]));
38         self->fItemArray[i].~T();
39     }
40 }
41 
42 }
43 
44 template <typename T, bool MEM_COPY> void* operator new(size_t, SkTArray<T, MEM_COPY>*, int);
45 
46 /** When MEM_COPY is true T will be bit copied when moved.
47     When MEM_COPY is false, T will be copy constructed / destructed.
48     In all cases T's constructor will be called on allocation,
49     and its destructor will be called from this object's destructor.
50 */
51 template <typename T, bool MEM_COPY> class SkTArray {
52 public:
53     /**
54      * Creates an empty array with no initial storage
55      */
SkTArray()56     SkTArray() {
57         fCount = 0;
58         fReserveCount = gMIN_ALLOC_COUNT;
59         fAllocCount = 0;
60         fMemArray = NULL;
61         fPreAllocMemArray = NULL;
62     }
63 
64     /**
65      * Creates an empty array that will preallocate space for reserveCount
66      * elements.
67      */
SkTArray(int reserveCount)68     explicit SkTArray(int reserveCount) {
69         this->init(NULL, 0, NULL, reserveCount);
70     }
71 
72     /**
73      * Copies one array to another. The new array will be heap allocated.
74      */
SkTArray(const SkTArray & array)75     explicit SkTArray(const SkTArray& array) {
76         this->init(array.fItemArray, array.fCount, NULL, 0);
77     }
78 
79     /**
80      * Creates a SkTArray by copying contents of a standard C array. The new
81      * array will be heap allocated. Be careful not to use this constructor
82      * when you really want the (void*, int) version.
83      */
SkTArray(const T * array,int count)84     SkTArray(const T* array, int count) {
85         this->init(array, count, NULL, 0);
86     }
87 
88     /**
89      * assign copy of array to this
90      */
91     SkTArray& operator =(const SkTArray& array) {
92         for (int i = 0; i < fCount; ++i) {
93             fItemArray[i].~T();
94         }
95         fCount = 0;
96         this->checkRealloc((int)array.count());
97         fCount = array.count();
98         SkTArrayExt::copy(this, static_cast<const T*>(array.fMemArray));
99         return *this;
100     }
101 
~SkTArray()102     virtual ~SkTArray() {
103         for (int i = 0; i < fCount; ++i) {
104             fItemArray[i].~T();
105         }
106         if (fMemArray != fPreAllocMemArray) {
107             sk_free(fMemArray);
108         }
109     }
110 
111     /**
112      * Resets to count() == 0
113      */
reset()114     void reset() { this->pop_back_n(fCount); }
115 
116     /**
117      * Resets to count() = n newly constructed T objects.
118      */
reset(int n)119     void reset(int n) {
120         SkASSERT(n >= 0);
121         for (int i = 0; i < fCount; ++i) {
122             fItemArray[i].~T();
123         }
124         // set fCount to 0 before calling checkRealloc so that no copy cons. are called.
125         fCount = 0;
126         this->checkRealloc(n);
127         fCount = n;
128         for (int i = 0; i < fCount; ++i) {
129             SkNEW_PLACEMENT(fItemArray + i, T);
130         }
131     }
132 
133     /**
134      * Resets to a copy of a C array.
135      */
reset(const T * array,int count)136     void reset(const T* array, int count) {
137         for (int i = 0; i < fCount; ++i) {
138             fItemArray[i].~T();
139         }
140         int delta = count - fCount;
141         this->checkRealloc(delta);
142         fCount = count;
143         for (int i = 0; i < count; ++i) {
144             SkTArrayExt::copy(this, array);
145         }
146     }
147 
148     /**
149      * Number of elements in the array.
150      */
count()151     int count() const { return fCount; }
152 
153     /**
154      * Is the array empty.
155      */
empty()156     bool empty() const { return !fCount; }
157 
158     /**
159      * Adds 1 new default-constructed T value and returns in by reference. Note
160      * the reference only remains valid until the next call that adds or removes
161      * elements.
162      */
push_back()163     T& push_back() {
164         T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
165         SkNEW_PLACEMENT(newT, T);
166         return *newT;
167     }
168 
169     /**
170      * Version of above that uses a copy constructor to initialize the new item
171      */
push_back(const T & t)172     T& push_back(const T& t) {
173         T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
174         SkNEW_PLACEMENT_ARGS(newT, T, (t));
175         return *newT;
176     }
177 
178     /**
179      * Allocates n more default T values, and returns the address of the start
180      * of that new range. Note: this address is only valid until the next API
181      * call made on the array that might add or remove elements.
182      */
push_back_n(int n)183     T* push_back_n(int n) {
184         SkASSERT(n >= 0);
185         T* newTs = reinterpret_cast<T*>(this->push_back_raw(n));
186         for (int i = 0; i < n; ++i) {
187             SkNEW_PLACEMENT(newTs + i, T);
188         }
189         return newTs;
190     }
191 
192     /**
193      * Version of above that uses a copy constructor to initialize all n items
194      * to the same T.
195      */
push_back_n(int n,const T & t)196     T* push_back_n(int n, const T& t) {
197         SkASSERT(n >= 0);
198         T* newTs = reinterpret_cast<T*>(this->push_back_raw(n));
199         for (int i = 0; i < n; ++i) {
200             SkNEW_PLACEMENT_ARGS(newTs[i], T, (t));
201         }
202         return newTs;
203     }
204 
205     /**
206      * Version of above that uses a copy constructor to initialize the n items
207      * to separate T values.
208      */
push_back_n(int n,const T t[])209     T* push_back_n(int n, const T t[]) {
210         SkASSERT(n >= 0);
211         this->checkRealloc(n);
212         for (int i = 0; i < n; ++i) {
213             SkNEW_PLACEMENT_ARGS(fItemArray + fCount + i, T, (t[i]));
214         }
215         fCount += n;
216         return fItemArray + fCount - n;
217     }
218 
219     /**
220      * Removes the last element. Not safe to call when count() == 0.
221      */
pop_back()222     void pop_back() {
223         SkASSERT(fCount > 0);
224         --fCount;
225         fItemArray[fCount].~T();
226         this->checkRealloc(0);
227     }
228 
229     /**
230      * Removes the last n elements. Not safe to call when count() < n.
231      */
pop_back_n(int n)232     void pop_back_n(int n) {
233         SkASSERT(n >= 0);
234         SkASSERT(fCount >= n);
235         fCount -= n;
236         for (int i = 0; i < n; ++i) {
237             fItemArray[fCount + i].~T();
238         }
239         this->checkRealloc(0);
240     }
241 
242     /**
243      * Pushes or pops from the back to resize. Pushes will be default
244      * initialized.
245      */
resize_back(int newCount)246     void resize_back(int newCount) {
247         SkASSERT(newCount >= 0);
248 
249         if (newCount > fCount) {
250             this->push_back_n(newCount - fCount);
251         } else if (newCount < fCount) {
252             this->pop_back_n(fCount - newCount);
253         }
254     }
255 
begin()256     T* begin() {
257         return fItemArray;
258     }
begin()259     const T* begin() const {
260         return fItemArray;
261     }
end()262     T* end() {
263         return fItemArray ? fItemArray + fCount : NULL;
264     }
end()265     const T* end() const {
266         return fItemArray ? fItemArray + fCount : NULL;;
267     }
268 
269    /**
270      * Get the i^th element.
271      */
272     T& operator[] (int i) {
273         SkASSERT(i < fCount);
274         SkASSERT(i >= 0);
275         return fItemArray[i];
276     }
277 
278     const T& operator[] (int i) const {
279         SkASSERT(i < fCount);
280         SkASSERT(i >= 0);
281         return fItemArray[i];
282     }
283 
284     /**
285      * equivalent to operator[](0)
286      */
front()287     T& front() { SkASSERT(fCount > 0); return fItemArray[0];}
288 
front()289     const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];}
290 
291     /**
292      * equivalent to operator[](count() - 1)
293      */
back()294     T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];}
295 
back()296     const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];}
297 
298     /**
299      * equivalent to operator[](count()-1-i)
300      */
fromBack(int i)301     T& fromBack(int i) {
302         SkASSERT(i >= 0);
303         SkASSERT(i < fCount);
304         return fItemArray[fCount - i - 1];
305     }
306 
fromBack(int i)307     const T& fromBack(int i) const {
308         SkASSERT(i >= 0);
309         SkASSERT(i < fCount);
310         return fItemArray[fCount - i - 1];
311     }
312 
313     bool operator==(const SkTArray<T, MEM_COPY>& right) const {
314         int leftCount = this->count();
315         if (leftCount != right.count()) {
316             return false;
317         }
318         for (int index = 0; index < leftCount; ++index) {
319             if (fItemArray[index] != right.fItemArray[index]) {
320                 return false;
321             }
322         }
323         return true;
324     }
325 
326     bool operator!=(const SkTArray<T, MEM_COPY>& right) const {
327         return !(*this == right);
328     }
329 
330 protected:
331     /**
332      * Creates an empty array that will use the passed storage block until it
333      * is insufficiently large to hold the entire array.
334      */
335     template <int N>
SkTArray(SkAlignedSTStorage<N,T> * storage)336     SkTArray(SkAlignedSTStorage<N,T>* storage) {
337         this->init(NULL, 0, storage->get(), N);
338     }
339 
340     /**
341      * Copy another array, using preallocated storage if preAllocCount >=
342      * array.count(). Otherwise storage will only be used when array shrinks
343      * to fit.
344      */
345     template <int N>
SkTArray(const SkTArray & array,SkAlignedSTStorage<N,T> * storage)346     SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) {
347         this->init(array.fItemArray, array.fCount, storage->get(), N);
348     }
349 
350     /**
351      * Copy a C array, using preallocated storage if preAllocCount >=
352      * count. Otherwise storage will only be used when array shrinks
353      * to fit.
354      */
355     template <int N>
SkTArray(const T * array,int count,SkAlignedSTStorage<N,T> * storage)356     SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) {
357         this->init(array, count, storage->get(), N);
358     }
359 
init(const T * array,int count,void * preAllocStorage,int preAllocOrReserveCount)360     void init(const T* array, int count,
361                void* preAllocStorage, int preAllocOrReserveCount) {
362         SkASSERT(count >= 0);
363         SkASSERT(preAllocOrReserveCount >= 0);
364         fCount              = count;
365         fReserveCount       = (preAllocOrReserveCount > 0) ?
366                                     preAllocOrReserveCount :
367                                     gMIN_ALLOC_COUNT;
368         fPreAllocMemArray   = preAllocStorage;
369         if (fReserveCount >= fCount &&
370             NULL != preAllocStorage) {
371             fAllocCount = fReserveCount;
372             fMemArray = preAllocStorage;
373         } else {
374             fAllocCount = SkMax32(fCount, fReserveCount);
375             fMemArray = sk_malloc_throw(fAllocCount * sizeof(T));
376         }
377 
378         SkTArrayExt::copy(this, array);
379     }
380 
381 private:
382 
383     static const int gMIN_ALLOC_COUNT = 8;
384 
385     // Helper function that makes space for n objects, adjusts the count, but does not initialize
386     // the new objects.
push_back_raw(int n)387     void* push_back_raw(int n) {
388         this->checkRealloc(n);
389         void* ptr = fItemArray + fCount;
390         fCount += n;
391         return ptr;
392     }
393 
checkRealloc(int delta)394     inline void checkRealloc(int delta) {
395         SkASSERT(fCount >= 0);
396         SkASSERT(fAllocCount >= 0);
397 
398         SkASSERT(-delta <= fCount);
399 
400         int newCount = fCount + delta;
401         int newAllocCount = fAllocCount;
402 
403         if (newCount > fAllocCount || newCount < (fAllocCount / 3)) {
404             // whether we're growing or shrinking, we leave at least 50% extra space for future
405             // growth (clamped to the reserve count).
406             newAllocCount = SkMax32(newCount + ((newCount + 1) >> 1), fReserveCount);
407         }
408         if (newAllocCount != fAllocCount) {
409 
410             fAllocCount = newAllocCount;
411             char* newMemArray;
412 
413             if (fAllocCount == fReserveCount && NULL != fPreAllocMemArray) {
414                 newMemArray = (char*) fPreAllocMemArray;
415             } else {
416                 newMemArray = (char*) sk_malloc_throw(fAllocCount*sizeof(T));
417             }
418 
419             SkTArrayExt::copyAndDelete<T>(this, newMemArray);
420 
421             if (fMemArray != fPreAllocMemArray) {
422                 sk_free(fMemArray);
423             }
424             fMemArray = newMemArray;
425         }
426     }
427 
428     friend void* operator new<T>(size_t, SkTArray*, int);
429 
430     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, const X*);
431     template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, true>* that, char*);
432 
433     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, const X*);
434     template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, false>* that, char*);
435 
436     int fReserveCount;
437     int fCount;
438     int fAllocCount;
439     void*    fPreAllocMemArray;
440     union {
441         T*       fItemArray;
442         void*    fMemArray;
443     };
444 };
445 
446 // Use the below macro (SkNEW_APPEND_TO_TARRAY) rather than calling this directly
447 template <typename T, bool MEM_COPY>
new(size_t,SkTArray<T,MEM_COPY> * array,int atIndex)448 void* operator new(size_t, SkTArray<T, MEM_COPY>* array, int atIndex) {
449     // Currently, we only support adding to the end of the array. When the array class itself
450     // supports random insertion then this should be updated.
451     // SkASSERT(atIndex >= 0 && atIndex <= array->count());
452     SkASSERT(atIndex == array->count());
453     return array->push_back_raw(1);
454 }
455 
456 // Skia doesn't use C++ exceptions but it may be compiled with them enabled. Having an op delete
457 // to match the op new silences warnings about missing op delete when a constructor throws an
458 // exception.
459 template <typename T, bool MEM_COPY>
delete(void *,SkTArray<T,MEM_COPY> * array,int atIndex)460 void operator delete(void*, SkTArray<T, MEM_COPY>* array, int atIndex) {
461     SK_CRASH();
462 }
463 
464 // Constructs a new object as the last element of an SkTArray.
465 #define SkNEW_APPEND_TO_TARRAY(array_ptr, type_name, args)  \
466     (new ((array_ptr), (array_ptr)->count()) type_name args)
467 
468 
469 /**
470  * Subclass of SkTArray that contains a preallocated memory block for the array.
471  */
472 template <int N, typename T, bool MEM_COPY = false>
473 class SkSTArray : public SkTArray<T, MEM_COPY> {
474 private:
475     typedef SkTArray<T, MEM_COPY> INHERITED;
476 
477 public:
SkSTArray()478     SkSTArray() : INHERITED(&fStorage) {
479     }
480 
SkSTArray(const SkSTArray & array)481     SkSTArray(const SkSTArray& array)
482         : INHERITED(array, &fStorage) {
483     }
484 
SkSTArray(const INHERITED & array)485     explicit SkSTArray(const INHERITED& array)
486         : INHERITED(array, &fStorage) {
487     }
488 
SkSTArray(int reserveCount)489     explicit SkSTArray(int reserveCount)
490         : INHERITED(reserveCount) {
491     }
492 
SkSTArray(const T * array,int count)493     SkSTArray(const T* array, int count)
494         : INHERITED(array, count, &fStorage) {
495     }
496 
497     SkSTArray& operator= (const SkSTArray& array) {
498         return *this = *(const INHERITED*)&array;
499     }
500 
501     SkSTArray& operator= (const INHERITED& array) {
502         INHERITED::operator=(array);
503         return *this;
504     }
505 
506 private:
507     SkAlignedSTStorage<N,T> fStorage;
508 };
509 
510 #endif
511