• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2006 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #ifndef SkTemplates_DEFINED
11 #define SkTemplates_DEFINED
12 
13 #include "SkTypes.h"
14 #include <new>
15 
16 /** \file SkTemplates.h
17 
18     This file contains light-weight template classes for type-safe and exception-safe
19     resource management.
20 */
21 
22 /**
23  *  Marks a local variable as known to be unused (to avoid warnings).
24  *  Note that this does *not* prevent the local variable from being optimized away.
25  */
sk_ignore_unused_variable(const T &)26 template<typename T> inline void sk_ignore_unused_variable(const T&) { }
27 
28 /**
29  *  SkTIsConst<T>::value is true if the type T is const.
30  *  The type T is constrained not to be an array or reference type.
31  */
32 template <typename T> struct SkTIsConst {
33     static T* t;
34     static uint16_t test(const volatile void*);
35     static uint32_t test(volatile void *);
36     static const bool value = (sizeof(uint16_t) == sizeof(test(t)));
37 };
38 
39 ///@{
40 /** SkTConstType<T, CONST>::type will be 'const T' if CONST is true, 'T' otherwise. */
41 template <typename T, bool CONST> struct SkTConstType {
42     typedef T type;
43 };
44 template <typename T> struct SkTConstType<T, true> {
45     typedef const T type;
46 };
47 ///@}
48 
49 /**
50  *  Returns a pointer to a D which comes immediately after S[count].
51  */
52 template <typename D, typename S> static D* SkTAfter(S* ptr, size_t count = 1) {
53     return reinterpret_cast<D*>(ptr + count);
54 }
55 
56 /**
57  *  Returns a pointer to a D which comes byteOffset bytes after S.
58  */
59 template <typename D, typename S> static D* SkTAddOffset(S* ptr, size_t byteOffset) {
60     // The intermediate char* has the same const-ness as D as this produces better error messages.
61     // This relies on the fact that reinterpret_cast can add constness, but cannot remove it.
62     return reinterpret_cast<D*>(
63         reinterpret_cast<typename SkTConstType<char, SkTIsConst<D>::value>::type*>(ptr) + byteOffset
64     );
65 }
66 
67 /** \class SkAutoTCallVProc
68 
69     Call a function when this goes out of scope. The template uses two
70     parameters, the object, and a function that is to be called in the destructor.
71     If detach() is called, the object reference is set to null. If the object
72     reference is null when the destructor is called, we do not call the
73     function.
74 */
75 template <typename T, void (*P)(T*)> class SkAutoTCallVProc : SkNoncopyable {
76 public:
77     SkAutoTCallVProc(T* obj): fObj(obj) {}
78     ~SkAutoTCallVProc() { if (fObj) P(fObj); }
79     T* detach() { T* obj = fObj; fObj = NULL; return obj; }
80 private:
81     T* fObj;
82 };
83 
84 /** \class SkAutoTCallIProc
85 
86 Call a function when this goes out of scope. The template uses two
87 parameters, the object, and a function that is to be called in the destructor.
88 If detach() is called, the object reference is set to null. If the object
89 reference is null when the destructor is called, we do not call the
90 function.
91 */
92 template <typename T, int (*P)(T*)> class SkAutoTCallIProc : SkNoncopyable {
93 public:
94     SkAutoTCallIProc(T* obj): fObj(obj) {}
95     ~SkAutoTCallIProc() { if (fObj) P(fObj); }
96     T* detach() { T* obj = fObj; fObj = NULL; return obj; }
97 private:
98     T* fObj;
99 };
100 
101 /** \class SkAutoTDelete
102   An SkAutoTDelete<T> is like a T*, except that the destructor of SkAutoTDelete<T>
103   automatically deletes the pointer it holds (if any).  That is, SkAutoTDelete<T>
104   owns the T object that it points to.  Like a T*, an SkAutoTDelete<T> may hold
105   either NULL or a pointer to a T object.  Also like T*, SkAutoTDelete<T> is
106   thread-compatible, and once you dereference it, you get the threadsafety
107   guarantees of T.
108 
109   The size of a SkAutoTDelete is small: sizeof(SkAutoTDelete<T>) == sizeof(T*)
110 */
111 template <typename T> class SkAutoTDelete : SkNoncopyable {
112 public:
113     SkAutoTDelete(T* obj = NULL) : fObj(obj) {}
114     ~SkAutoTDelete() { SkDELETE(fObj); }
115 
116     T* get() const { return fObj; }
117     T& operator*() const { SkASSERT(fObj); return *fObj; }
118     T* operator->() const { SkASSERT(fObj); return fObj; }
119 
120     void reset(T* obj) {
121         if (fObj != obj) {
122             SkDELETE(fObj);
123             fObj = obj;
124         }
125     }
126 
127     /**
128      *  Delete the owned object, setting the internal pointer to NULL.
129      */
130     void free() {
131         SkDELETE(fObj);
132         fObj = NULL;
133     }
134 
135     /**
136      *  Transfer ownership of the object to the caller, setting the internal
137      *  pointer to NULL. Note that this differs from get(), which also returns
138      *  the pointer, but it does not transfer ownership.
139      */
140     T* detach() {
141         T* obj = fObj;
142         fObj = NULL;
143         return obj;
144     }
145 
146 private:
147     T*  fObj;
148 };
149 
150 // Calls ~T() in the destructor.
151 template <typename T> class SkAutoTDestroy : SkNoncopyable {
152 public:
153     SkAutoTDestroy(T* obj = NULL) : fObj(obj) {}
154     ~SkAutoTDestroy() {
155         if (NULL != fObj) {
156             fObj->~T();
157         }
158     }
159 
160     T* get() const { return fObj; }
161     T& operator*() const { SkASSERT(fObj); return *fObj; }
162     T* operator->() const { SkASSERT(fObj); return fObj; }
163 
164 private:
165     T*  fObj;
166 };
167 
168 template <typename T> class SkAutoTDeleteArray : SkNoncopyable {
169 public:
170     SkAutoTDeleteArray(T array[]) : fArray(array) {}
171     ~SkAutoTDeleteArray() { SkDELETE_ARRAY(fArray); }
172 
173     T*      get() const { return fArray; }
174     void    free() { SkDELETE_ARRAY(fArray); fArray = NULL; }
175     T*      detach() { T* array = fArray; fArray = NULL; return array; }
176 
177 private:
178     T*  fArray;
179 };
180 
181 /** Allocate an array of T elements, and free the array in the destructor
182  */
183 template <typename T> class SkAutoTArray : SkNoncopyable {
184 public:
185     SkAutoTArray() {
186         fArray = NULL;
187         SkDEBUGCODE(fCount = 0;)
188     }
189     /** Allocate count number of T elements
190      */
191     explicit SkAutoTArray(int count) {
192         SkASSERT(count >= 0);
193         fArray = NULL;
194         if (count) {
195             fArray = SkNEW_ARRAY(T, count);
196         }
197         SkDEBUGCODE(fCount = count;)
198     }
199 
200     /** Reallocates given a new count. Reallocation occurs even if new count equals old count.
201      */
202     void reset(int count) {
203         SkDELETE_ARRAY(fArray);
204         SkASSERT(count >= 0);
205         fArray = NULL;
206         if (count) {
207             fArray = SkNEW_ARRAY(T, count);
208         }
209         SkDEBUGCODE(fCount = count;)
210     }
211 
212     ~SkAutoTArray() {
213         SkDELETE_ARRAY(fArray);
214     }
215 
216     /** Return the array of T elements. Will be NULL if count == 0
217      */
218     T* get() const { return fArray; }
219 
220     /** Return the nth element in the array
221      */
222     T&  operator[](int index) const {
223         SkASSERT((unsigned)index < (unsigned)fCount);
224         return fArray[index];
225     }
226 
227 private:
228     T*  fArray;
229     SkDEBUGCODE(int fCount;)
230 };
231 
232 /** Wraps SkAutoTArray, with room for up to N elements preallocated
233  */
234 template <int N, typename T> class SkAutoSTArray : SkNoncopyable {
235 public:
236     /** Initialize with no objects */
237     SkAutoSTArray() {
238         fArray = NULL;
239         fCount = 0;
240     }
241 
242     /** Allocate count number of T elements
243      */
244     SkAutoSTArray(int count) {
245         fArray = NULL;
246         fCount = 0;
247         this->reset(count);
248     }
249 
250     ~SkAutoSTArray() {
251         this->reset(0);
252     }
253 
254     /** Destroys previous objects in the array and default constructs count number of objects */
255     void reset(int count) {
256         T* start = fArray;
257         T* iter = start + fCount;
258         while (iter > start) {
259             (--iter)->~T();
260         }
261 
262         if (fCount != count) {
263             if (fCount > N) {
264                 // 'fArray' was allocated last time so free it now
265                 SkASSERT((T*) fStorage != fArray);
266                 sk_free(fArray);
267             }
268 
269             if (count > N) {
270                 fArray = (T*) sk_malloc_throw(count * sizeof(T));
271             } else if (count > 0) {
272                 fArray = (T*) fStorage;
273             } else {
274                 fArray = NULL;
275             }
276 
277             fCount = count;
278         }
279 
280         iter = fArray;
281         T* stop = fArray + count;
282         while (iter < stop) {
283             SkNEW_PLACEMENT(iter++, T);
284         }
285     }
286 
287     /** Return the number of T elements in the array
288      */
289     int count() const { return fCount; }
290 
291     /** Return the array of T elements. Will be NULL if count == 0
292      */
293     T* get() const { return fArray; }
294 
295     /** Return the nth element in the array
296      */
297     T&  operator[](int index) const {
298         SkASSERT(index < fCount);
299         return fArray[index];
300     }
301 
302 private:
303     int     fCount;
304     T*      fArray;
305     // since we come right after fArray, fStorage should be properly aligned
306     char    fStorage[N * sizeof(T)];
307 };
308 
309 /** Manages an array of T elements, freeing the array in the destructor.
310  *  Does NOT call any constructors/destructors on T (T must be POD).
311  */
312 template <typename T> class SkAutoTMalloc : SkNoncopyable {
313 public:
314     /** Takes ownership of the ptr. The ptr must be a value which can be passed to sk_free. */
315     explicit SkAutoTMalloc(T* ptr = NULL) {
316         fPtr = ptr;
317     }
318 
319     /** Allocates space for 'count' Ts. */
320     explicit SkAutoTMalloc(size_t count) {
321         fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
322     }
323 
324     ~SkAutoTMalloc() {
325         sk_free(fPtr);
326     }
327 
328     /** Resize the memory area pointed to by the current ptr preserving contents. */
329     void realloc(size_t count) {
330         fPtr = reinterpret_cast<T*>(sk_realloc_throw(fPtr, count * sizeof(T)));
331     }
332 
333     /** Resize the memory area pointed to by the current ptr without preserving contents. */
334     void reset(size_t count) {
335         sk_free(fPtr);
336         fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
337     }
338 
339     T* get() const { return fPtr; }
340 
341     operator T*() {
342         return fPtr;
343     }
344 
345     operator const T*() const {
346         return fPtr;
347     }
348 
349     T& operator[](int index) {
350         return fPtr[index];
351     }
352 
353     const T& operator[](int index) const {
354         return fPtr[index];
355     }
356 
357     /**
358      *  Transfer ownership of the ptr to the caller, setting the internal
359      *  pointer to NULL. Note that this differs from get(), which also returns
360      *  the pointer, but it does not transfer ownership.
361      */
362     T* detach() {
363         T* ptr = fPtr;
364         fPtr = NULL;
365         return ptr;
366     }
367 
368 private:
369     T* fPtr;
370 };
371 
372 template <size_t N, typename T> class SkAutoSTMalloc : SkNoncopyable {
373 public:
374     SkAutoSTMalloc() {
375         fPtr = NULL;
376     }
377 
378     SkAutoSTMalloc(size_t count) {
379         if (count > N) {
380             fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
381         } else if (count) {
382             fPtr = fTStorage;
383         } else {
384             fPtr = NULL;
385         }
386     }
387 
388     ~SkAutoSTMalloc() {
389         if (fPtr != fTStorage) {
390             sk_free(fPtr);
391         }
392     }
393 
394     // doesn't preserve contents
395     T* reset(size_t count) {
396         if (fPtr != fTStorage) {
397             sk_free(fPtr);
398         }
399         if (count > N) {
400             fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
401         } else if (count) {
402             fPtr = fTStorage;
403         } else {
404             fPtr = NULL;
405         }
406         return fPtr;
407     }
408 
409     T* get() const { return fPtr; }
410 
411     operator T*() {
412         return fPtr;
413     }
414 
415     operator const T*() const {
416         return fPtr;
417     }
418 
419     T& operator[](int index) {
420         return fPtr[index];
421     }
422 
423     const T& operator[](int index) const {
424         return fPtr[index];
425     }
426 
427 private:
428     T*          fPtr;
429     union {
430         uint32_t    fStorage32[(N*sizeof(T) + 3) >> 2];
431         T           fTStorage[1];   // do NOT want to invoke T::T()
432     };
433 };
434 
435 /**
436  * Reserves memory that is aligned on double and pointer boundaries.
437  * Hopefully this is sufficient for all practical purposes.
438  */
439 template <size_t N> class SkAlignedSStorage : SkNoncopyable {
440 public:
441     void* get() { return fData; }
442 private:
443     union {
444         void*   fPtr;
445         double  fDouble;
446         char    fData[N];
447     };
448 };
449 
450 /**
451  * Reserves memory that is aligned on double and pointer boundaries.
452  * Hopefully this is sufficient for all practical purposes. Otherwise,
453  * we have to do some arcane trickery to determine alignment of non-POD
454  * types. Lifetime of the memory is the lifetime of the object.
455  */
456 template <int N, typename T> class SkAlignedSTStorage : SkNoncopyable {
457 public:
458     /**
459      * Returns void* because this object does not initialize the
460      * memory. Use placement new for types that require a cons.
461      */
462     void* get() { return fStorage.get(); }
463 private:
464     SkAlignedSStorage<sizeof(T)*N> fStorage;
465 };
466 
467 #endif
468