1 #include "SkBitmapScaler.h"
2 #include "SkBitmapFilter.h"
3 #include "SkRect.h"
4 #include "SkTArray.h"
5 #include "SkErrorInternals.h"
6 #include "SkConvolver.h"
7
8 // SkResizeFilter ----------------------------------------------------------------
9
10 // Encapsulates computation and storage of the filters required for one complete
11 // resize operation.
12 class SkResizeFilter {
13 public:
14 SkResizeFilter(SkBitmapScaler::ResizeMethod method,
15 int srcFullWidth, int srcFullHeight,
16 int destWidth, int destHeight,
17 const SkIRect& destSubset,
18 const SkConvolutionProcs& convolveProcs);
~SkResizeFilter()19 ~SkResizeFilter() {
20 SkDELETE( fBitmapFilter );
21 }
22
23 // Returns the filled filter values.
xFilter()24 const SkConvolutionFilter1D& xFilter() { return fXFilter; }
yFilter()25 const SkConvolutionFilter1D& yFilter() { return fYFilter; }
26
27 private:
28
29 SkBitmapFilter* fBitmapFilter;
30
31 // Computes one set of filters either horizontally or vertically. The caller
32 // will specify the "min" and "max" rather than the bottom/top and
33 // right/bottom so that the same code can be re-used in each dimension.
34 //
35 // |srcDependLo| and |srcDependSize| gives the range for the source
36 // depend rectangle (horizontally or vertically at the caller's discretion
37 // -- see above for what this means).
38 //
39 // Likewise, the range of destination values to compute and the scale factor
40 // for the transform is also specified.
41
42 void computeFilters(int srcSize,
43 int destSubsetLo, int destSubsetSize,
44 float scale,
45 SkConvolutionFilter1D* output,
46 const SkConvolutionProcs& convolveProcs);
47
48 SkConvolutionFilter1D fXFilter;
49 SkConvolutionFilter1D fYFilter;
50 };
51
SkResizeFilter(SkBitmapScaler::ResizeMethod method,int srcFullWidth,int srcFullHeight,int destWidth,int destHeight,const SkIRect & destSubset,const SkConvolutionProcs & convolveProcs)52 SkResizeFilter::SkResizeFilter(SkBitmapScaler::ResizeMethod method,
53 int srcFullWidth, int srcFullHeight,
54 int destWidth, int destHeight,
55 const SkIRect& destSubset,
56 const SkConvolutionProcs& convolveProcs) {
57
58 // method will only ever refer to an "algorithm method".
59 SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
60 (method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD));
61
62 switch(method) {
63 case SkBitmapScaler::RESIZE_BOX:
64 fBitmapFilter = SkNEW(SkBoxFilter);
65 break;
66 case SkBitmapScaler::RESIZE_TRIANGLE:
67 fBitmapFilter = SkNEW(SkTriangleFilter);
68 break;
69 case SkBitmapScaler::RESIZE_MITCHELL:
70 fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f));
71 break;
72 case SkBitmapScaler::RESIZE_HAMMING:
73 fBitmapFilter = SkNEW(SkHammingFilter);
74 break;
75 case SkBitmapScaler::RESIZE_LANCZOS3:
76 fBitmapFilter = SkNEW(SkLanczosFilter);
77 break;
78 default:
79 // NOTREACHED:
80 fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f));
81 break;
82 }
83
84
85 float scaleX = static_cast<float>(destWidth) /
86 static_cast<float>(srcFullWidth);
87 float scaleY = static_cast<float>(destHeight) /
88 static_cast<float>(srcFullHeight);
89
90 this->computeFilters(srcFullWidth, destSubset.fLeft, destSubset.width(),
91 scaleX, &fXFilter, convolveProcs);
92 this->computeFilters(srcFullHeight, destSubset.fTop, destSubset.height(),
93 scaleY, &fYFilter, convolveProcs);
94 }
95
96 // TODO(egouriou): Take advantage of periods in the convolution.
97 // Practical resizing filters are periodic outside of the border area.
98 // For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
99 // source become p pixels in the destination) will have a period of p.
100 // A nice consequence is a period of 1 when downscaling by an integral
101 // factor. Downscaling from typical display resolutions is also bound
102 // to produce interesting periods as those are chosen to have multiple
103 // small factors.
104 // Small periods reduce computational load and improve cache usage if
105 // the coefficients can be shared. For periods of 1 we can consider
106 // loading the factors only once outside the borders.
computeFilters(int srcSize,int destSubsetLo,int destSubsetSize,float scale,SkConvolutionFilter1D * output,const SkConvolutionProcs & convolveProcs)107 void SkResizeFilter::computeFilters(int srcSize,
108 int destSubsetLo, int destSubsetSize,
109 float scale,
110 SkConvolutionFilter1D* output,
111 const SkConvolutionProcs& convolveProcs) {
112 int destSubsetHi = destSubsetLo + destSubsetSize; // [lo, hi)
113
114 // When we're doing a magnification, the scale will be larger than one. This
115 // means the destination pixels are much smaller than the source pixels, and
116 // that the range covered by the filter won't necessarily cover any source
117 // pixel boundaries. Therefore, we use these clamped values (max of 1) for
118 // some computations.
119 float clampedScale = SkTMin(1.0f, scale);
120
121 // This is how many source pixels from the center we need to count
122 // to support the filtering function.
123 float srcSupport = fBitmapFilter->width() / clampedScale;
124
125 // Speed up the divisions below by turning them into multiplies.
126 float invScale = 1.0f / scale;
127
128 SkTArray<float> filterValues(64);
129 SkTArray<short> fixedFilterValues(64);
130
131 // Loop over all pixels in the output range. We will generate one set of
132 // filter values for each one. Those values will tell us how to blend the
133 // source pixels to compute the destination pixel.
134 for (int destSubsetI = destSubsetLo; destSubsetI < destSubsetHi;
135 destSubsetI++) {
136 // Reset the arrays. We don't declare them inside so they can re-use the
137 // same malloc-ed buffer.
138 filterValues.reset();
139 fixedFilterValues.reset();
140
141 // This is the pixel in the source directly under the pixel in the dest.
142 // Note that we base computations on the "center" of the pixels. To see
143 // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
144 // downscale should "cover" the pixels around the pixel with *its center*
145 // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
146 // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
147 float srcPixel = (static_cast<float>(destSubsetI) + 0.5f) * invScale;
148
149 // Compute the (inclusive) range of source pixels the filter covers.
150 int srcBegin = SkTMax(0, SkScalarFloorToInt(srcPixel - srcSupport));
151 int srcEnd = SkTMin(srcSize - 1, SkScalarCeilToInt(srcPixel + srcSupport));
152
153 // Compute the unnormalized filter value at each location of the source
154 // it covers.
155 float filterSum = 0.0f; // Sub of the filter values for normalizing.
156 for (int curFilterPixel = srcBegin; curFilterPixel <= srcEnd;
157 curFilterPixel++) {
158 // Distance from the center of the filter, this is the filter coordinate
159 // in source space. We also need to consider the center of the pixel
160 // when comparing distance against 'srcPixel'. In the 5x downscale
161 // example used above the distance from the center of the filter to
162 // the pixel with coordinates (2, 2) should be 0, because its center
163 // is at (2.5, 2.5).
164 float srcFilterDist =
165 ((static_cast<float>(curFilterPixel) + 0.5f) - srcPixel);
166
167 // Since the filter really exists in dest space, map it there.
168 float destFilterDist = srcFilterDist * clampedScale;
169
170 // Compute the filter value at that location.
171 float filterValue = fBitmapFilter->evaluate(destFilterDist);
172 filterValues.push_back(filterValue);
173
174 filterSum += filterValue;
175 }
176 SkASSERT(!filterValues.empty());
177
178 // The filter must be normalized so that we don't affect the brightness of
179 // the image. Convert to normalized fixed point.
180 short fixedSum = 0;
181 for (int i = 0; i < filterValues.count(); i++) {
182 short curFixed = output->FloatToFixed(filterValues[i] / filterSum);
183 fixedSum += curFixed;
184 fixedFilterValues.push_back(curFixed);
185 }
186
187 // The conversion to fixed point will leave some rounding errors, which
188 // we add back in to avoid affecting the brightness of the image. We
189 // arbitrarily add this to the center of the filter array (this won't always
190 // be the center of the filter function since it could get clipped on the
191 // edges, but it doesn't matter enough to worry about that case).
192 short leftovers = output->FloatToFixed(1.0f) - fixedSum;
193 fixedFilterValues[fixedFilterValues.count() / 2] += leftovers;
194
195 // Now it's ready to go.
196 output->AddFilter(srcBegin, &fixedFilterValues[0],
197 static_cast<int>(fixedFilterValues.count()));
198 }
199
200 if (convolveProcs.fApplySIMDPadding) {
201 convolveProcs.fApplySIMDPadding( output );
202 }
203 }
204
ResizeMethodToAlgorithmMethod(SkBitmapScaler::ResizeMethod method)205 static SkBitmapScaler::ResizeMethod ResizeMethodToAlgorithmMethod(
206 SkBitmapScaler::ResizeMethod method) {
207 // Convert any "Quality Method" into an "Algorithm Method"
208 if (method >= SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD &&
209 method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD) {
210 return method;
211 }
212 // The call to SkBitmapScalerGtv::Resize() above took care of
213 // GPU-acceleration in the cases where it is possible. So now we just
214 // pick the appropriate software method for each resize quality.
215 switch (method) {
216 // Users of RESIZE_GOOD are willing to trade a lot of quality to
217 // get speed, allowing the use of linear resampling to get hardware
218 // acceleration (SRB). Hence any of our "good" software filters
219 // will be acceptable, so we use a triangle.
220 case SkBitmapScaler::RESIZE_GOOD:
221 return SkBitmapScaler::RESIZE_TRIANGLE;
222 // Users of RESIZE_BETTER are willing to trade some quality in order
223 // to improve performance, but are guaranteed not to devolve to a linear
224 // resampling. In visual tests we see that Hamming-1 is not as good as
225 // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
226 // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
227 // an acceptable trade-off between quality and speed.
228 case SkBitmapScaler::RESIZE_BETTER:
229 return SkBitmapScaler::RESIZE_HAMMING;
230 default:
231 return SkBitmapScaler::RESIZE_MITCHELL;
232 }
233 }
234
235 // static
Resize(SkBitmap * resultPtr,const SkBitmap & source,ResizeMethod method,int destWidth,int destHeight,const SkIRect & destSubset,const SkConvolutionProcs & convolveProcs,SkBitmap::Allocator * allocator)236 bool SkBitmapScaler::Resize(SkBitmap* resultPtr,
237 const SkBitmap& source,
238 ResizeMethod method,
239 int destWidth, int destHeight,
240 const SkIRect& destSubset,
241 const SkConvolutionProcs& convolveProcs,
242 SkBitmap::Allocator* allocator) {
243 // Ensure that the ResizeMethod enumeration is sound.
244 SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) &&
245 (method <= RESIZE_LAST_QUALITY_METHOD)) ||
246 ((RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
247 (method <= RESIZE_LAST_ALGORITHM_METHOD)));
248
249 SkIRect dest = { 0, 0, destWidth, destHeight };
250 if (!dest.contains(destSubset)) {
251 SkErrorInternals::SetError( kInvalidArgument_SkError,
252 "Sorry, you passed me a bitmap resize "
253 " method I have never heard of: %d",
254 method );
255 }
256
257 // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just
258 // return empty.
259 if (source.width() < 1 || source.height() < 1 ||
260 destWidth < 1 || destHeight < 1) {
261 // todo: seems like we could handle negative dstWidth/Height, since that
262 // is just a negative scale (flip)
263 return false;
264 }
265
266 method = ResizeMethodToAlgorithmMethod(method);
267
268 // Check that we deal with an "algorithm methods" from this point onward.
269 SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
270 (method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD));
271
272 SkAutoLockPixels locker(source);
273 if (!source.readyToDraw() ||
274 source.config() != SkBitmap::kARGB_8888_Config) {
275 return false;
276 }
277
278 SkResizeFilter filter(method, source.width(), source.height(),
279 destWidth, destHeight, destSubset, convolveProcs);
280
281 // Get a source bitmap encompassing this touched area. We construct the
282 // offsets and row strides such that it looks like a new bitmap, while
283 // referring to the old data.
284 const unsigned char* sourceSubset =
285 reinterpret_cast<const unsigned char*>(source.getPixels());
286
287 // Convolve into the result.
288 SkBitmap result;
289 result.setConfig(SkBitmap::kARGB_8888_Config,
290 destSubset.width(), destSubset.height(), 0,
291 source.alphaType());
292 result.allocPixels(allocator, NULL);
293 if (!result.readyToDraw()) {
294 return false;
295 }
296
297 BGRAConvolve2D(sourceSubset, static_cast<int>(source.rowBytes()),
298 !source.isOpaque(), filter.xFilter(), filter.yFilter(),
299 static_cast<int>(result.rowBytes()),
300 static_cast<unsigned char*>(result.getPixels()),
301 convolveProcs, true);
302
303 *resultPtr = result;
304 resultPtr->lockPixels();
305 SkASSERT(NULL != resultPtr->getPixels());
306 return true;
307 }
308
309 // static
Resize(SkBitmap * resultPtr,const SkBitmap & source,ResizeMethod method,int destWidth,int destHeight,const SkConvolutionProcs & convolveProcs,SkBitmap::Allocator * allocator)310 bool SkBitmapScaler::Resize(SkBitmap* resultPtr,
311 const SkBitmap& source,
312 ResizeMethod method,
313 int destWidth, int destHeight,
314 const SkConvolutionProcs& convolveProcs,
315 SkBitmap::Allocator* allocator) {
316 SkIRect destSubset = { 0, 0, destWidth, destHeight };
317 return Resize(resultPtr, source, method, destWidth, destHeight, destSubset,
318 convolveProcs, allocator);
319 }
320