• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "SkConvolver.h"
6 #include "SkSize.h"
7 #include "SkTypes.h"
8 
9 namespace {
10 
11     // Converts the argument to an 8-bit unsigned value by clamping to the range
12     // 0-255.
ClampTo8(int a)13     inline unsigned char ClampTo8(int a) {
14         if (static_cast<unsigned>(a) < 256) {
15             return a;  // Avoid the extra check in the common case.
16         }
17         if (a < 0) {
18             return 0;
19         }
20         return 255;
21     }
22 
23     // Stores a list of rows in a circular buffer. The usage is you write into it
24     // by calling AdvanceRow. It will keep track of which row in the buffer it
25     // should use next, and the total number of rows added.
26     class CircularRowBuffer {
27     public:
28         // The number of pixels in each row is given in |sourceRowPixelWidth|.
29         // The maximum number of rows needed in the buffer is |maxYFilterSize|
30         // (we only need to store enough rows for the biggest filter).
31         //
32         // We use the |firstInputRow| to compute the coordinates of all of the
33         // following rows returned by Advance().
CircularRowBuffer(int destRowPixelWidth,int maxYFilterSize,int firstInputRow)34         CircularRowBuffer(int destRowPixelWidth, int maxYFilterSize,
35                           int firstInputRow)
36             : fRowByteWidth(destRowPixelWidth * 4),
37               fNumRows(maxYFilterSize),
38               fNextRow(0),
39               fNextRowCoordinate(firstInputRow) {
40             fBuffer.reset(fRowByteWidth * maxYFilterSize);
41             fRowAddresses.reset(fNumRows);
42         }
43 
44         // Moves to the next row in the buffer, returning a pointer to the beginning
45         // of it.
advanceRow()46         unsigned char* advanceRow() {
47             unsigned char* row = &fBuffer[fNextRow * fRowByteWidth];
48             fNextRowCoordinate++;
49 
50             // Set the pointer to the next row to use, wrapping around if necessary.
51             fNextRow++;
52             if (fNextRow == fNumRows) {
53                 fNextRow = 0;
54             }
55             return row;
56         }
57 
58         // Returns a pointer to an "unrolled" array of rows. These rows will start
59         // at the y coordinate placed into |*firstRowIndex| and will continue in
60         // order for the maximum number of rows in this circular buffer.
61         //
62         // The |firstRowIndex_| may be negative. This means the circular buffer
63         // starts before the top of the image (it hasn't been filled yet).
GetRowAddresses(int * firstRowIndex)64         unsigned char* const* GetRowAddresses(int* firstRowIndex) {
65             // Example for a 4-element circular buffer holding coords 6-9.
66             //   Row 0   Coord 8
67             //   Row 1   Coord 9
68             //   Row 2   Coord 6  <- fNextRow = 2, fNextRowCoordinate = 10.
69             //   Row 3   Coord 7
70             //
71             // The "next" row is also the first (lowest) coordinate. This computation
72             // may yield a negative value, but that's OK, the math will work out
73             // since the user of this buffer will compute the offset relative
74             // to the firstRowIndex and the negative rows will never be used.
75             *firstRowIndex = fNextRowCoordinate - fNumRows;
76 
77             int curRow = fNextRow;
78             for (int i = 0; i < fNumRows; i++) {
79                 fRowAddresses[i] = &fBuffer[curRow * fRowByteWidth];
80 
81                 // Advance to the next row, wrapping if necessary.
82                 curRow++;
83                 if (curRow == fNumRows) {
84                     curRow = 0;
85                 }
86             }
87             return &fRowAddresses[0];
88         }
89 
90     private:
91         // The buffer storing the rows. They are packed, each one fRowByteWidth.
92         SkTArray<unsigned char> fBuffer;
93 
94         // Number of bytes per row in the |buffer|.
95         int fRowByteWidth;
96 
97         // The number of rows available in the buffer.
98         int fNumRows;
99 
100         // The next row index we should write into. This wraps around as the
101         // circular buffer is used.
102         int fNextRow;
103 
104         // The y coordinate of the |fNextRow|. This is incremented each time a
105         // new row is appended and does not wrap.
106         int fNextRowCoordinate;
107 
108         // Buffer used by GetRowAddresses().
109         SkTArray<unsigned char*> fRowAddresses;
110     };
111 
112 // Convolves horizontally along a single row. The row data is given in
113 // |srcData| and continues for the numValues() of the filter.
114 template<bool hasAlpha>
ConvolveHorizontally(const unsigned char * srcData,const SkConvolutionFilter1D & filter,unsigned char * outRow)115     void ConvolveHorizontally(const unsigned char* srcData,
116                               const SkConvolutionFilter1D& filter,
117                               unsigned char* outRow) {
118         // Loop over each pixel on this row in the output image.
119         int numValues = filter.numValues();
120         for (int outX = 0; outX < numValues; outX++) {
121             // Get the filter that determines the current output pixel.
122             int filterOffset, filterLength;
123             const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
124                 filter.FilterForValue(outX, &filterOffset, &filterLength);
125 
126             // Compute the first pixel in this row that the filter affects. It will
127             // touch |filterLength| pixels (4 bytes each) after this.
128             const unsigned char* rowToFilter = &srcData[filterOffset * 4];
129 
130             // Apply the filter to the row to get the destination pixel in |accum|.
131             int accum[4] = {0};
132             for (int filterX = 0; filterX < filterLength; filterX++) {
133                 SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterX];
134                 accum[0] += curFilter * rowToFilter[filterX * 4 + 0];
135                 accum[1] += curFilter * rowToFilter[filterX * 4 + 1];
136                 accum[2] += curFilter * rowToFilter[filterX * 4 + 2];
137                 if (hasAlpha) {
138                     accum[3] += curFilter * rowToFilter[filterX * 4 + 3];
139                 }
140             }
141 
142             // Bring this value back in range. All of the filter scaling factors
143             // are in fixed point with kShiftBits bits of fractional part.
144             accum[0] >>= SkConvolutionFilter1D::kShiftBits;
145             accum[1] >>= SkConvolutionFilter1D::kShiftBits;
146             accum[2] >>= SkConvolutionFilter1D::kShiftBits;
147             if (hasAlpha) {
148                 accum[3] >>= SkConvolutionFilter1D::kShiftBits;
149             }
150 
151             // Store the new pixel.
152             outRow[outX * 4 + 0] = ClampTo8(accum[0]);
153             outRow[outX * 4 + 1] = ClampTo8(accum[1]);
154             outRow[outX * 4 + 2] = ClampTo8(accum[2]);
155             if (hasAlpha) {
156                 outRow[outX * 4 + 3] = ClampTo8(accum[3]);
157             }
158         }
159     }
160 
161 // Does vertical convolution to produce one output row. The filter values and
162 // length are given in the first two parameters. These are applied to each
163 // of the rows pointed to in the |sourceDataRows| array, with each row
164 // being |pixelWidth| wide.
165 //
166 // The output must have room for |pixelWidth * 4| bytes.
167 template<bool hasAlpha>
ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed * filterValues,int filterLength,unsigned char * const * sourceDataRows,int pixelWidth,unsigned char * outRow)168     void ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
169                             int filterLength,
170                             unsigned char* const* sourceDataRows,
171                             int pixelWidth,
172                             unsigned char* outRow) {
173         // We go through each column in the output and do a vertical convolution,
174         // generating one output pixel each time.
175         for (int outX = 0; outX < pixelWidth; outX++) {
176             // Compute the number of bytes over in each row that the current column
177             // we're convolving starts at. The pixel will cover the next 4 bytes.
178             int byteOffset = outX * 4;
179 
180             // Apply the filter to one column of pixels.
181             int accum[4] = {0};
182             for (int filterY = 0; filterY < filterLength; filterY++) {
183                 SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterY];
184                 accum[0] += curFilter * sourceDataRows[filterY][byteOffset + 0];
185                 accum[1] += curFilter * sourceDataRows[filterY][byteOffset + 1];
186                 accum[2] += curFilter * sourceDataRows[filterY][byteOffset + 2];
187                 if (hasAlpha) {
188                     accum[3] += curFilter * sourceDataRows[filterY][byteOffset + 3];
189                 }
190             }
191 
192             // Bring this value back in range. All of the filter scaling factors
193             // are in fixed point with kShiftBits bits of precision.
194             accum[0] >>= SkConvolutionFilter1D::kShiftBits;
195             accum[1] >>= SkConvolutionFilter1D::kShiftBits;
196             accum[2] >>= SkConvolutionFilter1D::kShiftBits;
197             if (hasAlpha) {
198                 accum[3] >>= SkConvolutionFilter1D::kShiftBits;
199             }
200 
201             // Store the new pixel.
202             outRow[byteOffset + 0] = ClampTo8(accum[0]);
203             outRow[byteOffset + 1] = ClampTo8(accum[1]);
204             outRow[byteOffset + 2] = ClampTo8(accum[2]);
205             if (hasAlpha) {
206                 unsigned char alpha = ClampTo8(accum[3]);
207 
208                 // Make sure the alpha channel doesn't come out smaller than any of the
209                 // color channels. We use premultipled alpha channels, so this should
210                 // never happen, but rounding errors will cause this from time to time.
211                 // These "impossible" colors will cause overflows (and hence random pixel
212                 // values) when the resulting bitmap is drawn to the screen.
213                 //
214                 // We only need to do this when generating the final output row (here).
215                 int maxColorChannel = SkTMax(outRow[byteOffset + 0],
216                                                SkTMax(outRow[byteOffset + 1],
217                                                       outRow[byteOffset + 2]));
218                 if (alpha < maxColorChannel) {
219                     outRow[byteOffset + 3] = maxColorChannel;
220                 } else {
221                     outRow[byteOffset + 3] = alpha;
222                 }
223             } else {
224                 // No alpha channel, the image is opaque.
225                 outRow[byteOffset + 3] = 0xff;
226             }
227         }
228     }
229 
ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed * filterValues,int filterLength,unsigned char * const * sourceDataRows,int pixelWidth,unsigned char * outRow,bool sourceHasAlpha)230     void ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
231                             int filterLength,
232                             unsigned char* const* sourceDataRows,
233                             int pixelWidth,
234                             unsigned char* outRow,
235                             bool sourceHasAlpha) {
236         if (sourceHasAlpha) {
237             ConvolveVertically<true>(filterValues, filterLength,
238                                      sourceDataRows, pixelWidth,
239                                      outRow);
240         } else {
241             ConvolveVertically<false>(filterValues, filterLength,
242                                       sourceDataRows, pixelWidth,
243                                       outRow);
244         }
245     }
246 
247 }  // namespace
248 
249 // SkConvolutionFilter1D ---------------------------------------------------------
250 
SkConvolutionFilter1D()251 SkConvolutionFilter1D::SkConvolutionFilter1D()
252 : fMaxFilter(0) {
253 }
254 
~SkConvolutionFilter1D()255 SkConvolutionFilter1D::~SkConvolutionFilter1D() {
256 }
257 
AddFilter(int filterOffset,const float * filterValues,int filterLength)258 void SkConvolutionFilter1D::AddFilter(int filterOffset,
259                                       const float* filterValues,
260                                       int filterLength) {
261     SkASSERT(filterLength > 0);
262 
263     SkTArray<ConvolutionFixed> fixedValues;
264     fixedValues.reset(filterLength);
265 
266     for (int i = 0; i < filterLength; ++i) {
267         fixedValues.push_back(FloatToFixed(filterValues[i]));
268     }
269 
270     AddFilter(filterOffset, &fixedValues[0], filterLength);
271 }
272 
AddFilter(int filterOffset,const ConvolutionFixed * filterValues,int filterLength)273 void SkConvolutionFilter1D::AddFilter(int filterOffset,
274                                       const ConvolutionFixed* filterValues,
275                                       int filterLength) {
276     // It is common for leading/trailing filter values to be zeros. In such
277     // cases it is beneficial to only store the central factors.
278     // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on
279     // a 1080p image this optimization gives a ~10% speed improvement.
280     int filterSize = filterLength;
281     int firstNonZero = 0;
282     while (firstNonZero < filterLength && filterValues[firstNonZero] == 0) {
283         firstNonZero++;
284     }
285 
286     if (firstNonZero < filterLength) {
287         // Here we have at least one non-zero factor.
288         int lastNonZero = filterLength - 1;
289         while (lastNonZero >= 0 && filterValues[lastNonZero] == 0) {
290             lastNonZero--;
291         }
292 
293         filterOffset += firstNonZero;
294         filterLength = lastNonZero + 1 - firstNonZero;
295         SkASSERT(filterLength > 0);
296 
297         for (int i = firstNonZero; i <= lastNonZero; i++) {
298             fFilterValues.push_back(filterValues[i]);
299         }
300     } else {
301         // Here all the factors were zeroes.
302         filterLength = 0;
303     }
304 
305     FilterInstance instance;
306 
307     // We pushed filterLength elements onto fFilterValues
308     instance.fDataLocation = (static_cast<int>(fFilterValues.count()) -
309                                                filterLength);
310     instance.fOffset = filterOffset;
311     instance.fTrimmedLength = filterLength;
312     instance.fLength = filterSize;
313     fFilters.push_back(instance);
314 
315     fMaxFilter = SkTMax(fMaxFilter, filterLength);
316 }
317 
GetSingleFilter(int * specifiedFilterlength,int * filterOffset,int * filterLength) const318 const SkConvolutionFilter1D::ConvolutionFixed* SkConvolutionFilter1D::GetSingleFilter(
319                                         int* specifiedFilterlength,
320                                         int* filterOffset,
321                                         int* filterLength) const {
322     const FilterInstance& filter = fFilters[0];
323     *filterOffset = filter.fOffset;
324     *filterLength = filter.fTrimmedLength;
325     *specifiedFilterlength = filter.fLength;
326     if (filter.fTrimmedLength == 0) {
327         return NULL;
328     }
329 
330     return &fFilterValues[filter.fDataLocation];
331 }
332 
BGRAConvolve2D(const unsigned char * sourceData,int sourceByteRowStride,bool sourceHasAlpha,const SkConvolutionFilter1D & filterX,const SkConvolutionFilter1D & filterY,int outputByteRowStride,unsigned char * output,const SkConvolutionProcs & convolveProcs,bool useSimdIfPossible)333 void BGRAConvolve2D(const unsigned char* sourceData,
334                     int sourceByteRowStride,
335                     bool sourceHasAlpha,
336                     const SkConvolutionFilter1D& filterX,
337                     const SkConvolutionFilter1D& filterY,
338                     int outputByteRowStride,
339                     unsigned char* output,
340                     const SkConvolutionProcs& convolveProcs,
341                     bool useSimdIfPossible) {
342 
343     int maxYFilterSize = filterY.maxFilter();
344 
345     // The next row in the input that we will generate a horizontally
346     // convolved row for. If the filter doesn't start at the beginning of the
347     // image (this is the case when we are only resizing a subset), then we
348     // don't want to generate any output rows before that. Compute the starting
349     // row for convolution as the first pixel for the first vertical filter.
350     int filterOffset, filterLength;
351     const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
352         filterY.FilterForValue(0, &filterOffset, &filterLength);
353     int nextXRow = filterOffset;
354 
355     // We loop over each row in the input doing a horizontal convolution. This
356     // will result in a horizontally convolved image. We write the results into
357     // a circular buffer of convolved rows and do vertical convolution as rows
358     // are available. This prevents us from having to store the entire
359     // intermediate image and helps cache coherency.
360     // We will need four extra rows to allow horizontal convolution could be done
361     // simultaneously. We also pad each row in row buffer to be aligned-up to
362     // 16 bytes.
363     // TODO(jiesun): We do not use aligned load from row buffer in vertical
364     // convolution pass yet. Somehow Windows does not like it.
365     int rowBufferWidth = (filterX.numValues() + 15) & ~0xF;
366     int rowBufferHeight = maxYFilterSize +
367                           (convolveProcs.fConvolve4RowsHorizontally ? 4 : 0);
368     CircularRowBuffer rowBuffer(rowBufferWidth,
369                                 rowBufferHeight,
370                                 filterOffset);
371 
372     // Loop over every possible output row, processing just enough horizontal
373     // convolutions to run each subsequent vertical convolution.
374     SkASSERT(outputByteRowStride >= filterX.numValues() * 4);
375     int numOutputRows = filterY.numValues();
376 
377     // We need to check which is the last line to convolve before we advance 4
378     // lines in one iteration.
379     int lastFilterOffset, lastFilterLength;
380 
381     // SSE2 can access up to 3 extra pixels past the end of the
382     // buffer. At the bottom of the image, we have to be careful
383     // not to access data past the end of the buffer. Normally
384     // we fall back to the C++ implementation for the last row.
385     // If the last row is less than 3 pixels wide, we may have to fall
386     // back to the C++ version for more rows. Compute how many
387     // rows we need to avoid the SSE implementation for here.
388     filterX.FilterForValue(filterX.numValues() - 1, &lastFilterOffset,
389                            &lastFilterLength);
390     int avoidSimdRows = 1 + convolveProcs.fExtraHorizontalReads /
391         (lastFilterOffset + lastFilterLength);
392 
393     filterY.FilterForValue(numOutputRows - 1, &lastFilterOffset,
394                            &lastFilterLength);
395 
396     for (int outY = 0; outY < numOutputRows; outY++) {
397         filterValues = filterY.FilterForValue(outY,
398                                               &filterOffset, &filterLength);
399 
400         // Generate output rows until we have enough to run the current filter.
401         while (nextXRow < filterOffset + filterLength) {
402             if (convolveProcs.fConvolve4RowsHorizontally &&
403                 nextXRow + 3 < lastFilterOffset + lastFilterLength -
404                 avoidSimdRows) {
405                 const unsigned char* src[4];
406                 unsigned char* outRow[4];
407                 for (int i = 0; i < 4; ++i) {
408                     src[i] = &sourceData[(nextXRow + i) * sourceByteRowStride];
409                     outRow[i] = rowBuffer.advanceRow();
410                 }
411                 convolveProcs.fConvolve4RowsHorizontally(src, filterX, outRow);
412                 nextXRow += 4;
413             } else {
414                 // Check if we need to avoid SSE2 for this row.
415                 if (convolveProcs.fConvolveHorizontally &&
416                     nextXRow < lastFilterOffset + lastFilterLength -
417                     avoidSimdRows) {
418                     convolveProcs.fConvolveHorizontally(
419                         &sourceData[nextXRow * sourceByteRowStride],
420                         filterX, rowBuffer.advanceRow(), sourceHasAlpha);
421                 } else {
422                     if (sourceHasAlpha) {
423                         ConvolveHorizontally<true>(
424                             &sourceData[nextXRow * sourceByteRowStride],
425                             filterX, rowBuffer.advanceRow());
426                     } else {
427                         ConvolveHorizontally<false>(
428                             &sourceData[nextXRow * sourceByteRowStride],
429                             filterX, rowBuffer.advanceRow());
430                     }
431                 }
432                 nextXRow++;
433             }
434         }
435 
436         // Compute where in the output image this row of final data will go.
437         unsigned char* curOutputRow = &output[outY * outputByteRowStride];
438 
439         // Get the list of rows that the circular buffer has, in order.
440         int firstRowInCircularBuffer;
441         unsigned char* const* rowsToConvolve =
442             rowBuffer.GetRowAddresses(&firstRowInCircularBuffer);
443 
444         // Now compute the start of the subset of those rows that the filter
445         // needs.
446         unsigned char* const* firstRowForFilter =
447             &rowsToConvolve[filterOffset - firstRowInCircularBuffer];
448 
449         if (convolveProcs.fConvolveVertically) {
450             convolveProcs.fConvolveVertically(filterValues, filterLength,
451                                                firstRowForFilter,
452                                                filterX.numValues(), curOutputRow,
453                                                sourceHasAlpha);
454         } else {
455             ConvolveVertically(filterValues, filterLength,
456                                firstRowForFilter,
457                                filterX.numValues(), curOutputRow,
458                                sourceHasAlpha);
459         }
460     }
461 }
462