1
2 /*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10 #include "SkEdge.h"
11 #include "SkFDot6.h"
12 #include "SkMath.h"
13
14 /*
15 In setLine, setQuadratic, setCubic, the first thing we do is to convert
16 the points into FDot6. This is modulated by the shift parameter, which
17 will either be 0, or something like 2 for antialiasing.
18
19 In the float case, we want to turn the float into .6 by saying pt * 64,
20 or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
21
22 In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
23 or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
24 */
25
SkFDot6ToFixedDiv2(SkFDot6 value)26 static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
27 // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
28 // away data in value, so just perform a modify up-shift
29 return value << (16 - 6 - 1);
30 }
31
32 /////////////////////////////////////////////////////////////////////////
33
setLine(const SkPoint & p0,const SkPoint & p1,const SkIRect * clip,int shift)34 int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
35 int shift) {
36 SkFDot6 x0, y0, x1, y1;
37
38 {
39 #ifdef SK_SCALAR_IS_FLOAT
40 float scale = float(1 << (shift + 6));
41 x0 = int(p0.fX * scale);
42 y0 = int(p0.fY * scale);
43 x1 = int(p1.fX * scale);
44 y1 = int(p1.fY * scale);
45 #else
46 shift = 10 - shift;
47 x0 = p0.fX >> shift;
48 y0 = p0.fY >> shift;
49 x1 = p1.fX >> shift;
50 y1 = p1.fY >> shift;
51 #endif
52 }
53
54 int winding = 1;
55
56 if (y0 > y1) {
57 SkTSwap(x0, x1);
58 SkTSwap(y0, y1);
59 winding = -1;
60 }
61
62 int top = SkFDot6Round(y0);
63 int bot = SkFDot6Round(y1);
64
65 // are we a zero-height line?
66 if (top == bot) {
67 return 0;
68 }
69 // are we completely above or below the clip?
70 if (NULL != clip && (top >= clip->fBottom || bot <= clip->fTop)) {
71 return 0;
72 }
73
74 SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
75 const int dy = SkEdge_Compute_DY(top, y0);
76
77 fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2
78 fDX = slope;
79 fFirstY = top;
80 fLastY = bot - 1;
81 fCurveCount = 0;
82 fWinding = SkToS8(winding);
83 fCurveShift = 0;
84
85 if (clip) {
86 this->chopLineWithClip(*clip);
87 }
88 return 1;
89 }
90
91 // called from a curve subclass
updateLine(SkFixed x0,SkFixed y0,SkFixed x1,SkFixed y1)92 int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
93 {
94 SkASSERT(fWinding == 1 || fWinding == -1);
95 SkASSERT(fCurveCount != 0);
96 // SkASSERT(fCurveShift != 0);
97
98 y0 >>= 10;
99 y1 >>= 10;
100
101 SkASSERT(y0 <= y1);
102
103 int top = SkFDot6Round(y0);
104 int bot = SkFDot6Round(y1);
105
106 // SkASSERT(top >= fFirstY);
107
108 // are we a zero-height line?
109 if (top == bot)
110 return 0;
111
112 x0 >>= 10;
113 x1 >>= 10;
114
115 SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
116 const int dy = SkEdge_Compute_DY(top, y0);
117
118 fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2
119 fDX = slope;
120 fFirstY = top;
121 fLastY = bot - 1;
122
123 return 1;
124 }
125
chopLineWithClip(const SkIRect & clip)126 void SkEdge::chopLineWithClip(const SkIRect& clip)
127 {
128 int top = fFirstY;
129
130 SkASSERT(top < clip.fBottom);
131
132 // clip the line to the top
133 if (top < clip.fTop)
134 {
135 SkASSERT(fLastY >= clip.fTop);
136 fX += fDX * (clip.fTop - top);
137 fFirstY = clip.fTop;
138 }
139 }
140
141 ///////////////////////////////////////////////////////////////////////////////
142
143 /* We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
144 Note that this limits the number of lines we use to approximate a curve.
145 If we need to increase this, we need to store fCurveCount in something
146 larger than int8_t.
147 */
148 #define MAX_COEFF_SHIFT 6
149
cheap_distance(SkFDot6 dx,SkFDot6 dy)150 static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
151 {
152 dx = SkAbs32(dx);
153 dy = SkAbs32(dy);
154 // return max + min/2
155 if (dx > dy)
156 dx += dy >> 1;
157 else
158 dx = dy + (dx >> 1);
159 return dx;
160 }
161
diff_to_shift(SkFDot6 dx,SkFDot6 dy)162 static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy)
163 {
164 // cheap calc of distance from center of p0-p2 to the center of the curve
165 SkFDot6 dist = cheap_distance(dx, dy);
166
167 // shift down dist (it is currently in dot6)
168 // down by 5 should give us 1/2 pixel accuracy (assuming our dist is accurate...)
169 // this is chosen by heuristic: make it as big as possible (to minimize segments)
170 // ... but small enough so that our curves still look smooth
171 dist = (dist + (1 << 4)) >> 5;
172
173 // each subdivision (shift value) cuts this dist (error) by 1/4
174 return (32 - SkCLZ(dist)) >> 1;
175 }
176
setQuadratic(const SkPoint pts[3],int shift)177 int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift)
178 {
179 SkFDot6 x0, y0, x1, y1, x2, y2;
180
181 {
182 #ifdef SK_SCALAR_IS_FLOAT
183 float scale = float(1 << (shift + 6));
184 x0 = int(pts[0].fX * scale);
185 y0 = int(pts[0].fY * scale);
186 x1 = int(pts[1].fX * scale);
187 y1 = int(pts[1].fY * scale);
188 x2 = int(pts[2].fX * scale);
189 y2 = int(pts[2].fY * scale);
190 #else
191 shift = 10 - shift;
192 x0 = pts[0].fX >> shift;
193 y0 = pts[0].fY >> shift;
194 x1 = pts[1].fX >> shift;
195 y1 = pts[1].fY >> shift;
196 x2 = pts[2].fX >> shift;
197 y2 = pts[2].fY >> shift;
198 #endif
199 }
200
201 int winding = 1;
202 if (y0 > y2)
203 {
204 SkTSwap(x0, x2);
205 SkTSwap(y0, y2);
206 winding = -1;
207 }
208 SkASSERT(y0 <= y1 && y1 <= y2);
209
210 int top = SkFDot6Round(y0);
211 int bot = SkFDot6Round(y2);
212
213 // are we a zero-height quad (line)?
214 if (top == bot)
215 return 0;
216
217 // compute number of steps needed (1 << shift)
218 {
219 SkFDot6 dx = ((x1 << 1) - x0 - x2) >> 2;
220 SkFDot6 dy = ((y1 << 1) - y0 - y2) >> 2;
221 shift = diff_to_shift(dx, dy);
222 SkASSERT(shift >= 0);
223 }
224 // need at least 1 subdivision for our bias trick
225 if (shift == 0) {
226 shift = 1;
227 } else if (shift > MAX_COEFF_SHIFT) {
228 shift = MAX_COEFF_SHIFT;
229 }
230
231 fWinding = SkToS8(winding);
232 //fCubicDShift only set for cubics
233 fCurveCount = SkToS8(1 << shift);
234
235 /*
236 * We want to reformulate into polynomial form, to make it clear how we
237 * should forward-difference.
238 *
239 * p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
240 *
241 * A = p0 - 2p1 + p2
242 * B = 2(p1 - p0)
243 * C = p0
244 *
245 * Our caller must have constrained our inputs (p0..p2) to all fit into
246 * 16.16. However, as seen above, we sometimes compute values that can be
247 * larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
248 * A and B at 1/2 of their actual value, and just apply a 2x scale during
249 * application in updateQuadratic(). Hence we store (shift - 1) in
250 * fCurveShift.
251 */
252
253 fCurveShift = SkToU8(shift - 1);
254
255 SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2); // 1/2 the real value
256 SkFixed B = SkFDot6ToFixed(x1 - x0); // 1/2 the real value
257
258 fQx = SkFDot6ToFixed(x0);
259 fQDx = B + (A >> shift); // biased by shift
260 fQDDx = A >> (shift - 1); // biased by shift
261
262 A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2); // 1/2 the real value
263 B = SkFDot6ToFixed(y1 - y0); // 1/2 the real value
264
265 fQy = SkFDot6ToFixed(y0);
266 fQDy = B + (A >> shift); // biased by shift
267 fQDDy = A >> (shift - 1); // biased by shift
268
269 fQLastX = SkFDot6ToFixed(x2);
270 fQLastY = SkFDot6ToFixed(y2);
271
272 return this->updateQuadratic();
273 }
274
updateQuadratic()275 int SkQuadraticEdge::updateQuadratic()
276 {
277 int success;
278 int count = fCurveCount;
279 SkFixed oldx = fQx;
280 SkFixed oldy = fQy;
281 SkFixed dx = fQDx;
282 SkFixed dy = fQDy;
283 SkFixed newx, newy;
284 int shift = fCurveShift;
285
286 SkASSERT(count > 0);
287
288 do {
289 if (--count > 0)
290 {
291 newx = oldx + (dx >> shift);
292 dx += fQDDx;
293 newy = oldy + (dy >> shift);
294 dy += fQDDy;
295 }
296 else // last segment
297 {
298 newx = fQLastX;
299 newy = fQLastY;
300 }
301 success = this->updateLine(oldx, oldy, newx, newy);
302 oldx = newx;
303 oldy = newy;
304 } while (count > 0 && !success);
305
306 fQx = newx;
307 fQy = newy;
308 fQDx = dx;
309 fQDy = dy;
310 fCurveCount = SkToS8(count);
311 return success;
312 }
313
314 /////////////////////////////////////////////////////////////////////////
315
SkFDot6UpShift(SkFDot6 x,int upShift)316 static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
317 SkASSERT((x << upShift >> upShift) == x);
318 return x << upShift;
319 }
320
321 /* f(1/3) = (8a + 12b + 6c + d) / 27
322 f(2/3) = (a + 6b + 12c + 8d) / 27
323
324 f(1/3)-b = (8a - 15b + 6c + d) / 27
325 f(2/3)-c = (a + 6b - 15c + 8d) / 27
326
327 use 16/512 to approximate 1/27
328 */
cubic_delta_from_line(SkFDot6 a,SkFDot6 b,SkFDot6 c,SkFDot6 d)329 static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
330 {
331 SkFDot6 oneThird = ((a << 3) - ((b << 4) - b) + 6*c + d) * 19 >> 9;
332 SkFDot6 twoThird = (a + 6*b - ((c << 4) - c) + (d << 3)) * 19 >> 9;
333
334 return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
335 }
336
setCubic(const SkPoint pts[4],const SkIRect * clip,int shift)337 int SkCubicEdge::setCubic(const SkPoint pts[4], const SkIRect* clip, int shift)
338 {
339 SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
340
341 {
342 #ifdef SK_SCALAR_IS_FLOAT
343 float scale = float(1 << (shift + 6));
344 x0 = int(pts[0].fX * scale);
345 y0 = int(pts[0].fY * scale);
346 x1 = int(pts[1].fX * scale);
347 y1 = int(pts[1].fY * scale);
348 x2 = int(pts[2].fX * scale);
349 y2 = int(pts[2].fY * scale);
350 x3 = int(pts[3].fX * scale);
351 y3 = int(pts[3].fY * scale);
352 #else
353 shift = 10 - shift;
354 x0 = pts[0].fX >> shift;
355 y0 = pts[0].fY >> shift;
356 x1 = pts[1].fX >> shift;
357 y1 = pts[1].fY >> shift;
358 x2 = pts[2].fX >> shift;
359 y2 = pts[2].fY >> shift;
360 x3 = pts[3].fX >> shift;
361 y3 = pts[3].fY >> shift;
362 #endif
363 }
364
365 int winding = 1;
366 if (y0 > y3)
367 {
368 SkTSwap(x0, x3);
369 SkTSwap(x1, x2);
370 SkTSwap(y0, y3);
371 SkTSwap(y1, y2);
372 winding = -1;
373 }
374
375 int top = SkFDot6Round(y0);
376 int bot = SkFDot6Round(y3);
377
378 // are we a zero-height cubic (line)?
379 if (top == bot)
380 return 0;
381
382 // are we completely above or below the clip?
383 if (clip && (top >= clip->fBottom || bot <= clip->fTop))
384 return 0;
385
386 // compute number of steps needed (1 << shift)
387 {
388 // Can't use (center of curve - center of baseline), since center-of-curve
389 // need not be the max delta from the baseline (it could even be coincident)
390 // so we try just looking at the two off-curve points
391 SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
392 SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
393 // add 1 (by observation)
394 shift = diff_to_shift(dx, dy) + 1;
395 }
396 // need at least 1 subdivision for our bias trick
397 SkASSERT(shift > 0);
398 if (shift > MAX_COEFF_SHIFT) {
399 shift = MAX_COEFF_SHIFT;
400 }
401
402 /* Since our in coming data is initially shifted down by 10 (or 8 in
403 antialias). That means the most we can shift up is 8. However, we
404 compute coefficients with a 3*, so the safest upshift is really 6
405 */
406 int upShift = 6; // largest safe value
407 int downShift = shift + upShift - 10;
408 if (downShift < 0) {
409 downShift = 0;
410 upShift = 10 - shift;
411 }
412
413 fWinding = SkToS8(winding);
414 fCurveCount = SkToS8(-1 << shift);
415 fCurveShift = SkToU8(shift);
416 fCubicDShift = SkToU8(downShift);
417
418 SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
419 SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
420 SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
421
422 fCx = SkFDot6ToFixed(x0);
423 fCDx = B + (C >> shift) + (D >> 2*shift); // biased by shift
424 fCDDx = 2*C + (3*D >> (shift - 1)); // biased by 2*shift
425 fCDDDx = 3*D >> (shift - 1); // biased by 2*shift
426
427 B = SkFDot6UpShift(3 * (y1 - y0), upShift);
428 C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
429 D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
430
431 fCy = SkFDot6ToFixed(y0);
432 fCDy = B + (C >> shift) + (D >> 2*shift); // biased by shift
433 fCDDy = 2*C + (3*D >> (shift - 1)); // biased by 2*shift
434 fCDDDy = 3*D >> (shift - 1); // biased by 2*shift
435
436 fCLastX = SkFDot6ToFixed(x3);
437 fCLastY = SkFDot6ToFixed(y3);
438
439 if (clip)
440 {
441 do {
442 if (!this->updateCubic()) {
443 return 0;
444 }
445 } while (!this->intersectsClip(*clip));
446 this->chopLineWithClip(*clip);
447 return 1;
448 }
449 return this->updateCubic();
450 }
451
updateCubic()452 int SkCubicEdge::updateCubic()
453 {
454 int success;
455 int count = fCurveCount;
456 SkFixed oldx = fCx;
457 SkFixed oldy = fCy;
458 SkFixed newx, newy;
459 const int ddshift = fCurveShift;
460 const int dshift = fCubicDShift;
461
462 SkASSERT(count < 0);
463
464 do {
465 if (++count < 0)
466 {
467 newx = oldx + (fCDx >> dshift);
468 fCDx += fCDDx >> ddshift;
469 fCDDx += fCDDDx;
470
471 newy = oldy + (fCDy >> dshift);
472 fCDy += fCDDy >> ddshift;
473 fCDDy += fCDDDy;
474 }
475 else // last segment
476 {
477 // SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
478 newx = fCLastX;
479 newy = fCLastY;
480 }
481
482 // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
483 // doesn't always achieve that, so we have to explicitly pin it here.
484 if (newy < oldy) {
485 newy = oldy;
486 }
487
488 success = this->updateLine(oldx, oldy, newx, newy);
489 oldx = newx;
490 oldy = newy;
491 } while (count < 0 && !success);
492
493 fCx = newx;
494 fCy = newy;
495 fCurveCount = SkToS8(count);
496 return success;
497 }
498