• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2012 Google Inc.
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 #ifndef SkRTree_DEFINED
10 #define SkRTree_DEFINED
11 
12 #include "SkRect.h"
13 #include "SkTDArray.h"
14 #include "SkChunkAlloc.h"
15 #include "SkBBoxHierarchy.h"
16 
17 /**
18  * An R-Tree implementation. In short, it is a balanced n-ary tree containing a hierarchy of
19  * bounding rectangles.
20  *
21  * Much like a B-Tree it maintains balance by enforcing minimum and maximum child counts, and
22  * splitting nodes when they become overfull. Unlike B-trees, however, we're using spatial data; so
23  * there isn't a canonical ordering to use when choosing insertion locations and splitting
24  * distributions. A variety of heuristics have been proposed for these problems; here, we're using
25  * something resembling an R*-tree, which attempts to minimize area and overlap during insertion,
26  * and aims to minimize a combination of margin, overlap, and area when splitting.
27  *
28  * One detail that is thus far unimplemented that may improve tree quality is attempting to remove
29  * and reinsert nodes when they become full, instead of immediately splitting (nodes that may have
30  * been placed well early on may hurt the tree later when more nodes have been added; removing
31  * and reinserting nodes generally helps reduce overlap and make a better tree). Deletion of nodes
32  * is also unimplemented.
33  *
34  * For more details see:
35  *
36  *  Beckmann, N.; Kriegel, H. P.; Schneider, R.; Seeger, B. (1990). "The R*-tree:
37  *      an efficient and robust access method for points and rectangles"
38  *
39  * It also supports bulk-loading from a batch of bounds and values; if you don't require the tree
40  * to be usable in its intermediate states while it is being constructed, this is significantly
41  * quicker than individual insertions and produces more consistent trees.
42  */
43 class SkRTree : public SkBBoxHierarchy {
44 public:
45     SK_DECLARE_INST_COUNT(SkRTree)
46 
47     /**
48      * Create a new R-Tree with specified min/max child counts.
49      * The child counts are valid iff:
50      * - (max + 1) / 2 >= min (splitting an overfull node must be enough to populate 2 nodes)
51      * - min < max
52      * - min > 0
53      * - max < SK_MaxU16
54      * If you have some prior information about the distribution of bounds you're expecting, you
55      * can provide an optional aspect ratio parameter. This allows the bulk-load algorithm to create
56      * better proportioned tiles of rectangles.
57      */
58     static SkRTree* Create(int minChildren, int maxChildren, SkScalar aspectRatio = 1,
59             bool orderWhenBulkLoading = true);
60     virtual ~SkRTree();
61 
62     /**
63      * Insert a node, consisting of bounds and a data value into the tree, if we don't immediately
64      * need to use the tree; we may allow the insert to be deferred (this can allow us to bulk-load
65      * a large batch of nodes at once, which tends to be faster and produce a better tree).
66      *  @param data The data value
67      *  @param bounds The corresponding bounding box
68      *  @param defer Can this insert be deferred? (this may be ignored)
69      */
70     virtual void insert(void* data, const SkIRect& bounds, bool defer = false);
71 
72     /**
73      * If any inserts have been deferred, this will add them into the tree
74      */
75     virtual void flushDeferredInserts();
76 
77     /**
78      * Given a query rectangle, populates the passed-in array with the elements it intersects
79      */
80     virtual void search(const SkIRect& query, SkTDArray<void*>* results);
81 
82     virtual void clear();
isEmpty()83     bool isEmpty() const { return 0 == fCount; }
getDepth()84     int getDepth() const { return this->isEmpty() ? 0 : fRoot.fChild.subtree->fLevel + 1; }
85 
86     /**
87      * This gets the insertion count (rather than the node count)
88      */
getCount()89     virtual int getCount() const { return fCount; }
90 
91     virtual void rewindInserts() SK_OVERRIDE;
92 
93 private:
94 
95     struct Node;
96 
97     /**
98      * A branch of the tree, this may contain a pointer to another interior node, or a data value
99      */
100     struct Branch {
101         union {
102             Node* subtree;
103             void* data;
104         } fChild;
105         SkIRect fBounds;
106     };
107 
108     /**
109      * A node in the tree, has between fMinChildren and fMaxChildren (the root is a special case)
110      */
111     struct Node {
112         uint16_t fNumChildren;
113         uint16_t fLevel;
isLeafNode114         bool isLeaf() { return 0 == fLevel; }
115         // Since we want to be able to pick min/max child counts at runtime, we assume the creator
116         // has allocated sufficient space directly after us in memory, and index into that space
childNode117         Branch* child(size_t index) {
118             return reinterpret_cast<Branch*>(this + 1) + index;
119         }
120     };
121 
122     typedef int32_t SkIRect::*SortSide;
123 
124     // Helper for sorting our children arrays by sides of their rects
125     struct RectLessThan {
RectLessThanRectLessThan126         RectLessThan(SkRTree::SortSide side) : fSide(side) { }
operatorRectLessThan127         bool operator()(const SkRTree::Branch lhs, const SkRTree::Branch rhs) const {
128             return lhs.fBounds.*fSide < rhs.fBounds.*fSide;
129         }
130     private:
131         const SkRTree::SortSide fSide;
132     };
133 
134     struct RectLessX {
operatorRectLessX135         bool operator()(const SkRTree::Branch lhs, const SkRTree::Branch rhs) {
136             return ((lhs.fBounds.fRight - lhs.fBounds.fLeft) >> 1) <
137                    ((rhs.fBounds.fRight - lhs.fBounds.fLeft) >> 1);
138         }
139     };
140 
141     struct RectLessY {
operatorRectLessY142         bool operator()(const SkRTree::Branch lhs, const SkRTree::Branch rhs) {
143             return ((lhs.fBounds.fBottom - lhs.fBounds.fTop) >> 1) <
144                    ((rhs.fBounds.fBottom - lhs.fBounds.fTop) >> 1);
145         }
146     };
147 
148     SkRTree(int minChildren, int maxChildren, SkScalar aspectRatio, bool orderWhenBulkLoading);
149 
150     /**
151      * Recursively descend the tree to find an insertion position for 'branch', updates
152      * bounding boxes on the way up.
153      */
154     Branch* insert(Node* root, Branch* branch, uint16_t level = 0);
155 
156     int chooseSubtree(Node* root, Branch* branch);
157     SkIRect computeBounds(Node* n);
158     int distributeChildren(Branch* children);
159     void search(Node* root, const SkIRect query, SkTDArray<void*>* results) const;
160 
161     /**
162      * This performs a bottom-up bulk load using the STR (sort-tile-recursive) algorithm, this
163      * seems to generally produce better, more consistent trees at significantly lower cost than
164      * repeated insertions.
165      *
166      * This consumes the input array.
167      *
168      * TODO: Experiment with other bulk-load algorithms (in particular the Hilbert pack variant,
169      * which groups rects by position on the Hilbert curve, is probably worth a look). There also
170      * exist top-down bulk load variants (VAMSplit, TopDownGreedy, etc).
171      */
172     Branch bulkLoad(SkTDArray<Branch>* branches, int level = 0);
173 
174     void validate();
175     int validateSubtree(Node* root, SkIRect bounds, bool isRoot = false);
176 
177     const int fMinChildren;
178     const int fMaxChildren;
179     const size_t fNodeSize;
180 
181     // This is the count of data elements (rather than total nodes in the tree)
182     int fCount;
183 
184     Branch fRoot;
185     SkChunkAlloc fNodes;
186     SkTDArray<Branch> fDeferredInserts;
187     SkScalar fAspectRatio;
188     bool fSortWhenBulkLoading;
189 
190     Node* allocateNode(uint16_t level);
191 
192     typedef SkBBoxHierarchy INHERITED;
193 };
194 
195 #endif
196