• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2006 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #include "SkDashPathEffect.h"
11 #include "SkFlattenableBuffers.h"
12 #include "SkPathMeasure.h"
13 
is_even(int x)14 static inline int is_even(int x) {
15     return (~x) << 31;
16 }
17 
FindFirstInterval(const SkScalar intervals[],SkScalar phase,int32_t * index,int count)18 static SkScalar FindFirstInterval(const SkScalar intervals[], SkScalar phase,
19                                   int32_t* index, int count) {
20     for (int i = 0; i < count; ++i) {
21         if (phase > intervals[i]) {
22             phase -= intervals[i];
23         } else {
24             *index = i;
25             return intervals[i] - phase;
26         }
27     }
28     // If we get here, phase "appears" to be larger than our length. This
29     // shouldn't happen with perfect precision, but we can accumulate errors
30     // during the initial length computation (rounding can make our sum be too
31     // big or too small. In that event, we just have to eat the error here.
32     *index = 0;
33     return intervals[0];
34 }
35 
SkDashPathEffect(const SkScalar intervals[],int count,SkScalar phase,bool scaleToFit)36 SkDashPathEffect::SkDashPathEffect(const SkScalar intervals[], int count,
37                                    SkScalar phase, bool scaleToFit)
38         : fScaleToFit(scaleToFit) {
39     SkASSERT(intervals);
40     SkASSERT(count > 1 && SkAlign2(count) == count);
41 
42     fIntervals = (SkScalar*)sk_malloc_throw(sizeof(SkScalar) * count);
43     fCount = count;
44 
45     SkScalar len = 0;
46     for (int i = 0; i < count; i++) {
47         SkASSERT(intervals[i] >= 0);
48         fIntervals[i] = intervals[i];
49         len += intervals[i];
50     }
51     fIntervalLength = len;
52 
53     // watch out for values that might make us go out of bounds
54     if ((len > 0) && SkScalarIsFinite(phase) && SkScalarIsFinite(len)) {
55 
56         // Adjust phase to be between 0 and len, "flipping" phase if negative.
57         // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
58         if (phase < 0) {
59             phase = -phase;
60             if (phase > len) {
61                 phase = SkScalarMod(phase, len);
62             }
63             phase = len - phase;
64 
65             // Due to finite precision, it's possible that phase == len,
66             // even after the subtract (if len >>> phase), so fix that here.
67             // This fixes http://crbug.com/124652 .
68             SkASSERT(phase <= len);
69             if (phase == len) {
70                 phase = 0;
71             }
72         } else if (phase >= len) {
73             phase = SkScalarMod(phase, len);
74         }
75         SkASSERT(phase >= 0 && phase < len);
76 
77         fInitialDashLength = FindFirstInterval(intervals, phase,
78                                                &fInitialDashIndex, count);
79 
80         SkASSERT(fInitialDashLength >= 0);
81         SkASSERT(fInitialDashIndex >= 0 && fInitialDashIndex < fCount);
82     } else {
83         fInitialDashLength = -1;    // signal bad dash intervals
84     }
85 }
86 
~SkDashPathEffect()87 SkDashPathEffect::~SkDashPathEffect() {
88     sk_free(fIntervals);
89 }
90 
outset_for_stroke(SkRect * rect,const SkStrokeRec & rec)91 static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
92     SkScalar radius = SkScalarHalf(rec.getWidth());
93     if (0 == radius) {
94         radius = SK_Scalar1;    // hairlines
95     }
96     if (SkPaint::kMiter_Join == rec.getJoin()) {
97         radius = SkScalarMul(radius, rec.getMiter());
98     }
99     rect->outset(radius, radius);
100 }
101 
102 // Only handles lines for now. If returns true, dstPath is the new (smaller)
103 // path. If returns false, then dstPath parameter is ignored.
cull_path(const SkPath & srcPath,const SkStrokeRec & rec,const SkRect * cullRect,SkScalar intervalLength,SkPath * dstPath)104 static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
105                       const SkRect* cullRect, SkScalar intervalLength,
106                       SkPath* dstPath) {
107     if (NULL == cullRect) {
108         return false;
109     }
110 
111     SkPoint pts[2];
112     if (!srcPath.isLine(pts)) {
113         return false;
114     }
115 
116     SkRect bounds = *cullRect;
117     outset_for_stroke(&bounds, rec);
118 
119     SkScalar dx = pts[1].x() - pts[0].x();
120     SkScalar dy = pts[1].y() - pts[0].y();
121 
122     // just do horizontal lines for now (lazy)
123     if (dy) {
124         return false;
125     }
126 
127     SkScalar minX = pts[0].fX;
128     SkScalar maxX = pts[1].fX;
129 
130     if (maxX < bounds.fLeft || minX > bounds.fRight) {
131         return false;
132     }
133 
134     if (dx < 0) {
135         SkTSwap(minX, maxX);
136     }
137 
138     // Now we actually perform the chop, removing the excess to the left and
139     // right of the bounds (keeping our new line "in phase" with the dash,
140     // hence the (mod intervalLength).
141 
142     if (minX < bounds.fLeft) {
143         minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX,
144                                           intervalLength);
145     }
146     if (maxX > bounds.fRight) {
147         maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight,
148                                            intervalLength);
149     }
150 
151     SkASSERT(maxX >= minX);
152     if (dx < 0) {
153         SkTSwap(minX, maxX);
154     }
155     pts[0].fX = minX;
156     pts[1].fX = maxX;
157 
158     dstPath->moveTo(pts[0]);
159     dstPath->lineTo(pts[1]);
160     return true;
161 }
162 
163 class SpecialLineRec {
164 public:
init(const SkPath & src,SkPath * dst,SkStrokeRec * rec,int intervalCount,SkScalar intervalLength)165     bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
166               int intervalCount, SkScalar intervalLength) {
167         if (rec->isHairlineStyle() || !src.isLine(fPts)) {
168             return false;
169         }
170 
171         // can relax this in the future, if we handle square and round caps
172         if (SkPaint::kButt_Cap != rec->getCap()) {
173             return false;
174         }
175 
176         SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
177 
178         fTangent = fPts[1] - fPts[0];
179         if (fTangent.isZero()) {
180             return false;
181         }
182 
183         fPathLength = pathLength;
184         fTangent.scale(SkScalarInvert(pathLength));
185         fTangent.rotateCCW(&fNormal);
186         fNormal.scale(SkScalarHalf(rec->getWidth()));
187 
188         // now estimate how many quads will be added to the path
189         //     resulting segments = pathLen * intervalCount / intervalLen
190         //     resulting points = 4 * segments
191 
192         SkScalar ptCount = SkScalarMulDiv(pathLength,
193                                           SkIntToScalar(intervalCount),
194                                           intervalLength);
195         int n = SkScalarCeilToInt(ptCount) << 2;
196         dst->incReserve(n);
197 
198         // we will take care of the stroking
199         rec->setFillStyle();
200         return true;
201     }
202 
addSegment(SkScalar d0,SkScalar d1,SkPath * path) const203     void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
204         SkASSERT(d0 < fPathLength);
205         // clamp the segment to our length
206         if (d1 > fPathLength) {
207             d1 = fPathLength;
208         }
209 
210         SkScalar x0 = fPts[0].fX + SkScalarMul(fTangent.fX, d0);
211         SkScalar x1 = fPts[0].fX + SkScalarMul(fTangent.fX, d1);
212         SkScalar y0 = fPts[0].fY + SkScalarMul(fTangent.fY, d0);
213         SkScalar y1 = fPts[0].fY + SkScalarMul(fTangent.fY, d1);
214 
215         SkPoint pts[4];
216         pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY);   // moveTo
217         pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY);   // lineTo
218         pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY);   // lineTo
219         pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY);   // lineTo
220 
221         path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
222     }
223 
224 private:
225     SkPoint fPts[2];
226     SkVector fTangent;
227     SkVector fNormal;
228     SkScalar fPathLength;
229 };
230 
filterPath(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect) const231 bool SkDashPathEffect::filterPath(SkPath* dst, const SkPath& src,
232                               SkStrokeRec* rec, const SkRect* cullRect) const {
233     // we do nothing if the src wants to be filled, or if our dashlength is 0
234     if (rec->isFillStyle() || fInitialDashLength < 0) {
235         return false;
236     }
237 
238     const SkScalar* intervals = fIntervals;
239     SkScalar        dashCount = 0;
240     int             segCount = 0;
241 
242     SkPath cullPathStorage;
243     const SkPath* srcPtr = &src;
244     if (cull_path(src, *rec, cullRect, fIntervalLength, &cullPathStorage)) {
245         srcPtr = &cullPathStorage;
246     }
247 
248     SpecialLineRec lineRec;
249     bool specialLine = lineRec.init(*srcPtr, dst, rec, fCount >> 1, fIntervalLength);
250 
251     SkPathMeasure   meas(*srcPtr, false);
252 
253     do {
254         bool        skipFirstSegment = meas.isClosed();
255         bool        addedSegment = false;
256         SkScalar    length = meas.getLength();
257         int         index = fInitialDashIndex;
258         SkScalar    scale = SK_Scalar1;
259 
260         // Since the path length / dash length ratio may be arbitrarily large, we can exert
261         // significant memory pressure while attempting to build the filtered path. To avoid this,
262         // we simply give up dashing beyond a certain threshold.
263         //
264         // The original bug report (http://crbug.com/165432) is based on a path yielding more than
265         // 90 million dash segments and crashing the memory allocator. A limit of 1 million
266         // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
267         // maximum dash memory overhead at roughly 17MB per path.
268         static const SkScalar kMaxDashCount = 1000000;
269         dashCount += length * (fCount >> 1) / fIntervalLength;
270         if (dashCount > kMaxDashCount) {
271             dst->reset();
272             return false;
273         }
274 
275         if (fScaleToFit) {
276             if (fIntervalLength >= length) {
277                 scale = SkScalarDiv(length, fIntervalLength);
278             } else {
279                 SkScalar div = SkScalarDiv(length, fIntervalLength);
280                 int n = SkScalarFloor(div);
281                 scale = SkScalarDiv(length, n * fIntervalLength);
282             }
283         }
284 
285         // Using double precision to avoid looping indefinitely due to single precision rounding
286         // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
287         double  distance = 0;
288         double  dlen = SkScalarMul(fInitialDashLength, scale);
289 
290         while (distance < length) {
291             SkASSERT(dlen >= 0);
292             addedSegment = false;
293             if (is_even(index) && dlen > 0 && !skipFirstSegment) {
294                 addedSegment = true;
295                 ++segCount;
296 
297                 if (specialLine) {
298                     lineRec.addSegment(SkDoubleToScalar(distance),
299                                        SkDoubleToScalar(distance + dlen),
300                                        dst);
301                 } else {
302                     meas.getSegment(SkDoubleToScalar(distance),
303                                     SkDoubleToScalar(distance + dlen),
304                                     dst, true);
305                 }
306             }
307             distance += dlen;
308 
309             // clear this so we only respect it the first time around
310             skipFirstSegment = false;
311 
312             // wrap around our intervals array if necessary
313             index += 1;
314             SkASSERT(index <= fCount);
315             if (index == fCount) {
316                 index = 0;
317             }
318 
319             // fetch our next dlen
320             dlen = SkScalarMul(intervals[index], scale);
321         }
322 
323         // extend if we ended on a segment and we need to join up with the (skipped) initial segment
324         if (meas.isClosed() && is_even(fInitialDashIndex) &&
325                 fInitialDashLength > 0) {
326             meas.getSegment(0, SkScalarMul(fInitialDashLength, scale), dst, !addedSegment);
327             ++segCount;
328         }
329     } while (meas.nextContour());
330 
331     if (segCount > 1) {
332         dst->setConvexity(SkPath::kConcave_Convexity);
333     }
334 
335     return true;
336 }
337 
338 // Currently asPoints is more restrictive then it needs to be. In the future
339 // we need to:
340 //      allow kRound_Cap capping (could allow rotations in the matrix with this)
341 //      allow paths to be returned
asPoints(PointData * results,const SkPath & src,const SkStrokeRec & rec,const SkMatrix & matrix,const SkRect * cullRect) const342 bool SkDashPathEffect::asPoints(PointData* results,
343                                 const SkPath& src,
344                                 const SkStrokeRec& rec,
345                                 const SkMatrix& matrix,
346                                 const SkRect* cullRect) const {
347     // width < 0 -> fill && width == 0 -> hairline so requiring width > 0 rules both out
348     if (fInitialDashLength < 0 || 0 >= rec.getWidth()) {
349         return false;
350     }
351 
352     // TODO: this next test could be eased up. We could allow any number of
353     // intervals as long as all the ons match and all the offs match.
354     // Additionally, they do not necessarily need to be integers.
355     // We cannot allow arbitrary intervals since we want the returned points
356     // to be uniformly sized.
357     if (fCount != 2 ||
358         !SkScalarNearlyEqual(fIntervals[0], fIntervals[1]) ||
359         !SkScalarIsInt(fIntervals[0]) ||
360         !SkScalarIsInt(fIntervals[1])) {
361         return false;
362     }
363 
364     // TODO: this next test could be eased up. The rescaling should not impact
365     // the equality of the ons & offs. However, we would need to remove the
366     // integer intervals restriction first
367     if (fScaleToFit) {
368         return false;
369     }
370 
371     SkPoint pts[2];
372 
373     if (!src.isLine(pts)) {
374         return false;
375     }
376 
377     // TODO: this test could be eased up to allow circles
378     if (SkPaint::kButt_Cap != rec.getCap()) {
379         return false;
380     }
381 
382     // TODO: this test could be eased up for circles. Rotations could be allowed.
383     if (!matrix.rectStaysRect()) {
384         return false;
385     }
386 
387     SkScalar        length = SkPoint::Distance(pts[1], pts[0]);
388 
389     SkVector tangent = pts[1] - pts[0];
390     if (tangent.isZero()) {
391         return false;
392     }
393 
394     tangent.scale(SkScalarInvert(length));
395 
396     // TODO: make this test for horizontal & vertical lines more robust
397     bool isXAxis = true;
398     if (SK_Scalar1 == tangent.fX || -SK_Scalar1 == tangent.fX) {
399         results->fSize.set(SkScalarHalf(fIntervals[0]), SkScalarHalf(rec.getWidth()));
400     } else if (SK_Scalar1 == tangent.fY || -SK_Scalar1 == tangent.fY) {
401         results->fSize.set(SkScalarHalf(rec.getWidth()), SkScalarHalf(fIntervals[0]));
402         isXAxis = false;
403     } else if (SkPaint::kRound_Cap != rec.getCap()) {
404         // Angled lines don't have axis-aligned boxes.
405         return false;
406     }
407 
408     if (NULL != results) {
409         results->fFlags = 0;
410         SkScalar clampedInitialDashLength = SkMinScalar(length, fInitialDashLength);
411 
412         if (SkPaint::kRound_Cap == rec.getCap()) {
413             results->fFlags |= PointData::kCircles_PointFlag;
414         }
415 
416         results->fNumPoints = 0;
417         SkScalar len2 = length;
418         if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) {
419             SkASSERT(len2 >= clampedInitialDashLength);
420             if (0 == fInitialDashIndex) {
421                 if (clampedInitialDashLength > 0) {
422                     if (clampedInitialDashLength >= fIntervals[0]) {
423                         ++results->fNumPoints;  // partial first dash
424                     }
425                     len2 -= clampedInitialDashLength;
426                 }
427                 len2 -= fIntervals[1];  // also skip first space
428                 if (len2 < 0) {
429                     len2 = 0;
430                 }
431             } else {
432                 len2 -= clampedInitialDashLength; // skip initial partial empty
433             }
434         }
435         int numMidPoints = SkScalarFloorToInt(SkScalarDiv(len2, fIntervalLength));
436         results->fNumPoints += numMidPoints;
437         len2 -= numMidPoints * fIntervalLength;
438         bool partialLast = false;
439         if (len2 > 0) {
440             if (len2 < fIntervals[0]) {
441                 partialLast = true;
442             } else {
443                 ++numMidPoints;
444                 ++results->fNumPoints;
445             }
446         }
447 
448         results->fPoints = new SkPoint[results->fNumPoints];
449 
450         SkScalar    distance = 0;
451         int         curPt = 0;
452 
453         if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) {
454             SkASSERT(clampedInitialDashLength <= length);
455 
456             if (0 == fInitialDashIndex) {
457                 if (clampedInitialDashLength > 0) {
458                     // partial first block
459                     SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles
460                     SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, SkScalarHalf(clampedInitialDashLength));
461                     SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, SkScalarHalf(clampedInitialDashLength));
462                     SkScalar halfWidth, halfHeight;
463                     if (isXAxis) {
464                         halfWidth = SkScalarHalf(clampedInitialDashLength);
465                         halfHeight = SkScalarHalf(rec.getWidth());
466                     } else {
467                         halfWidth = SkScalarHalf(rec.getWidth());
468                         halfHeight = SkScalarHalf(clampedInitialDashLength);
469                     }
470                     if (clampedInitialDashLength < fIntervals[0]) {
471                         // This one will not be like the others
472                         results->fFirst.addRect(x - halfWidth, y - halfHeight,
473                                                 x + halfWidth, y + halfHeight);
474                     } else {
475                         SkASSERT(curPt < results->fNumPoints);
476                         results->fPoints[curPt].set(x, y);
477                         ++curPt;
478                     }
479 
480                     distance += clampedInitialDashLength;
481                 }
482 
483                 distance += fIntervals[1];  // skip over the next blank block too
484             } else {
485                 distance += clampedInitialDashLength;
486             }
487         }
488 
489         if (0 != numMidPoints) {
490             distance += SkScalarHalf(fIntervals[0]);
491 
492             for (int i = 0; i < numMidPoints; ++i) {
493                 SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, distance);
494                 SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, distance);
495 
496                 SkASSERT(curPt < results->fNumPoints);
497                 results->fPoints[curPt].set(x, y);
498                 ++curPt;
499 
500                 distance += fIntervalLength;
501             }
502 
503             distance -= SkScalarHalf(fIntervals[0]);
504         }
505 
506         if (partialLast) {
507             // partial final block
508             SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles
509             SkScalar temp = length - distance;
510             SkASSERT(temp < fIntervals[0]);
511             SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, distance + SkScalarHalf(temp));
512             SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, distance + SkScalarHalf(temp));
513             SkScalar halfWidth, halfHeight;
514             if (isXAxis) {
515                 halfWidth = SkScalarHalf(temp);
516                 halfHeight = SkScalarHalf(rec.getWidth());
517             } else {
518                 halfWidth = SkScalarHalf(rec.getWidth());
519                 halfHeight = SkScalarHalf(temp);
520             }
521             results->fLast.addRect(x - halfWidth, y - halfHeight,
522                                    x + halfWidth, y + halfHeight);
523         }
524 
525         SkASSERT(curPt == results->fNumPoints);
526     }
527 
528     return true;
529 }
530 
getFactory() const531 SkFlattenable::Factory SkDashPathEffect::getFactory() const {
532     return fInitialDashLength < 0 ? NULL : CreateProc;
533 }
534 
flatten(SkFlattenableWriteBuffer & buffer) const535 void SkDashPathEffect::flatten(SkFlattenableWriteBuffer& buffer) const {
536     SkASSERT(fInitialDashLength >= 0);
537 
538     this->INHERITED::flatten(buffer);
539     buffer.writeInt(fInitialDashIndex);
540     buffer.writeScalar(fInitialDashLength);
541     buffer.writeScalar(fIntervalLength);
542     buffer.writeBool(fScaleToFit);
543     buffer.writeScalarArray(fIntervals, fCount);
544 }
545 
CreateProc(SkFlattenableReadBuffer & buffer)546 SkFlattenable* SkDashPathEffect::CreateProc(SkFlattenableReadBuffer& buffer) {
547     return SkNEW_ARGS(SkDashPathEffect, (buffer));
548 }
549 
SkDashPathEffect(SkFlattenableReadBuffer & buffer)550 SkDashPathEffect::SkDashPathEffect(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) {
551     fInitialDashIndex = buffer.readInt();
552     fInitialDashLength = buffer.readScalar();
553     fIntervalLength = buffer.readScalar();
554     fScaleToFit = buffer.readBool();
555 
556     fCount = buffer.getArrayCount();
557     fIntervals = (SkScalar*)sk_malloc_throw(sizeof(SkScalar) * fCount);
558     buffer.readScalarArray(fIntervals, fCount);
559 }
560