1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkGpuDevice.h"
9
10 #include "effects/GrBicubicEffect.h"
11 #include "effects/GrTextureDomain.h"
12 #include "effects/GrSimpleTextureEffect.h"
13
14 #include "GrContext.h"
15 #include "GrBitmapTextContext.h"
16 #if SK_DISTANCEFIELD_FONTS
17 #include "GrDistanceFieldTextContext.h"
18 #endif
19
20 #include "SkGrTexturePixelRef.h"
21
22 #include "SkColorFilter.h"
23 #include "SkDeviceImageFilterProxy.h"
24 #include "SkDrawProcs.h"
25 #include "SkGlyphCache.h"
26 #include "SkImageFilter.h"
27 #include "SkPathEffect.h"
28 #include "SkRRect.h"
29 #include "SkStroke.h"
30 #include "SkUtils.h"
31 #include "SkErrorInternals.h"
32
33 #define CACHE_COMPATIBLE_DEVICE_TEXTURES 1
34
35 #if 0
36 extern bool (*gShouldDrawProc)();
37 #define CHECK_SHOULD_DRAW(draw, forceI) \
38 do { \
39 if (gShouldDrawProc && !gShouldDrawProc()) return; \
40 this->prepareDraw(draw, forceI); \
41 } while (0)
42 #else
43 #define CHECK_SHOULD_DRAW(draw, forceI) this->prepareDraw(draw, forceI)
44 #endif
45
46 // This constant represents the screen alignment criterion in texels for
47 // requiring texture domain clamping to prevent color bleeding when drawing
48 // a sub region of a larger source image.
49 #define COLOR_BLEED_TOLERANCE 0.001f
50
51 #define DO_DEFERRED_CLEAR() \
52 do { \
53 if (fNeedClear) { \
54 this->clear(SK_ColorTRANSPARENT); \
55 } \
56 } while (false) \
57
58 ///////////////////////////////////////////////////////////////////////////////
59
60 #define CHECK_FOR_ANNOTATION(paint) \
61 do { if (paint.getAnnotation()) { return; } } while (0)
62
63 ///////////////////////////////////////////////////////////////////////////////
64
65
66 class SkGpuDevice::SkAutoCachedTexture : public ::SkNoncopyable {
67 public:
SkAutoCachedTexture()68 SkAutoCachedTexture()
69 : fDevice(NULL)
70 , fTexture(NULL) {
71 }
72
SkAutoCachedTexture(SkGpuDevice * device,const SkBitmap & bitmap,const GrTextureParams * params,GrTexture ** texture)73 SkAutoCachedTexture(SkGpuDevice* device,
74 const SkBitmap& bitmap,
75 const GrTextureParams* params,
76 GrTexture** texture)
77 : fDevice(NULL)
78 , fTexture(NULL) {
79 SkASSERT(NULL != texture);
80 *texture = this->set(device, bitmap, params);
81 }
82
~SkAutoCachedTexture()83 ~SkAutoCachedTexture() {
84 if (NULL != fTexture) {
85 GrUnlockAndUnrefCachedBitmapTexture(fTexture);
86 }
87 }
88
set(SkGpuDevice * device,const SkBitmap & bitmap,const GrTextureParams * params)89 GrTexture* set(SkGpuDevice* device,
90 const SkBitmap& bitmap,
91 const GrTextureParams* params) {
92 if (NULL != fTexture) {
93 GrUnlockAndUnrefCachedBitmapTexture(fTexture);
94 fTexture = NULL;
95 }
96 fDevice = device;
97 GrTexture* result = (GrTexture*)bitmap.getTexture();
98 if (NULL == result) {
99 // Cannot return the native texture so look it up in our cache
100 fTexture = GrLockAndRefCachedBitmapTexture(device->context(), bitmap, params);
101 result = fTexture;
102 }
103 return result;
104 }
105
106 private:
107 SkGpuDevice* fDevice;
108 GrTexture* fTexture;
109 };
110
111 ///////////////////////////////////////////////////////////////////////////////
112
113 struct GrSkDrawProcs : public SkDrawProcs {
114 public:
115 GrContext* fContext;
116 GrTextContext* fTextContext;
117 GrFontScaler* fFontScaler; // cached in the skia glyphcache
118 };
119
120 ///////////////////////////////////////////////////////////////////////////////
121
grConfig2skConfig(GrPixelConfig config,bool * isOpaque)122 static SkBitmap::Config grConfig2skConfig(GrPixelConfig config, bool* isOpaque) {
123 switch (config) {
124 case kAlpha_8_GrPixelConfig:
125 *isOpaque = false;
126 return SkBitmap::kA8_Config;
127 case kRGB_565_GrPixelConfig:
128 *isOpaque = true;
129 return SkBitmap::kRGB_565_Config;
130 case kRGBA_4444_GrPixelConfig:
131 *isOpaque = false;
132 return SkBitmap::kARGB_4444_Config;
133 case kSkia8888_GrPixelConfig:
134 // we don't currently have a way of knowing whether
135 // a 8888 is opaque based on the config.
136 *isOpaque = false;
137 return SkBitmap::kARGB_8888_Config;
138 default:
139 *isOpaque = false;
140 return SkBitmap::kNo_Config;
141 }
142 }
143
144 /*
145 * GrRenderTarget does not know its opaqueness, only its config, so we have
146 * to make conservative guesses when we return an "equivalent" bitmap.
147 */
make_bitmap(GrContext * context,GrRenderTarget * renderTarget)148 static SkBitmap make_bitmap(GrContext* context, GrRenderTarget* renderTarget) {
149 bool isOpaque;
150 SkBitmap::Config config = grConfig2skConfig(renderTarget->config(), &isOpaque);
151
152 SkBitmap bitmap;
153 bitmap.setConfig(config, renderTarget->width(), renderTarget->height(), 0,
154 isOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType);
155 return bitmap;
156 }
157
158 /*
159 * Calling SkBitmapDevice with individual params asks it to allocate pixel memory.
160 * We never want that, so we always need to call it with a bitmap argument
161 * (which says take my allocate (or lack thereof)).
162 *
163 * This is a REALLY good reason to finish the clean-up of SkBaseDevice, and have
164 * SkGpuDevice inherit from that instead of SkBitmapDevice.
165 */
make_bitmap(SkBitmap::Config config,int width,int height,bool isOpaque)166 static SkBitmap make_bitmap(SkBitmap::Config config, int width, int height, bool isOpaque) {
167 SkBitmap bm;
168 bm.setConfig(config, width, height, isOpaque);
169 return bm;
170 }
171
Create(GrSurface * surface)172 SkGpuDevice* SkGpuDevice::Create(GrSurface* surface) {
173 SkASSERT(NULL != surface);
174 if (NULL == surface->asRenderTarget() || NULL == surface->getContext()) {
175 return NULL;
176 }
177 if (surface->asTexture()) {
178 return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asTexture()));
179 } else {
180 return SkNEW_ARGS(SkGpuDevice, (surface->getContext(), surface->asRenderTarget()));
181 }
182 }
183
SkGpuDevice(GrContext * context,GrTexture * texture)184 SkGpuDevice::SkGpuDevice(GrContext* context, GrTexture* texture)
185 : SkBitmapDevice(make_bitmap(context, texture->asRenderTarget())) {
186 this->initFromRenderTarget(context, texture->asRenderTarget(), false);
187 }
188
SkGpuDevice(GrContext * context,GrRenderTarget * renderTarget)189 SkGpuDevice::SkGpuDevice(GrContext* context, GrRenderTarget* renderTarget)
190 : SkBitmapDevice(make_bitmap(context, renderTarget)) {
191 this->initFromRenderTarget(context, renderTarget, false);
192 }
193
initFromRenderTarget(GrContext * context,GrRenderTarget * renderTarget,bool cached)194 void SkGpuDevice::initFromRenderTarget(GrContext* context,
195 GrRenderTarget* renderTarget,
196 bool cached) {
197 fDrawProcs = NULL;
198
199 fContext = context;
200 fContext->ref();
201
202 fRenderTarget = NULL;
203 fNeedClear = false;
204
205 SkASSERT(NULL != renderTarget);
206 fRenderTarget = renderTarget;
207 fRenderTarget->ref();
208
209 // Hold onto to the texture in the pixel ref (if there is one) because the texture holds a ref
210 // on the RT but not vice-versa.
211 // TODO: Remove this trickery once we figure out how to make SkGrPixelRef do this without
212 // busting chrome (for a currently unknown reason).
213 GrSurface* surface = fRenderTarget->asTexture();
214 if (NULL == surface) {
215 surface = fRenderTarget;
216 }
217
218 SkImageInfo info;
219 surface->asImageInfo(&info);
220 SkPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (info, surface, cached));
221
222 this->setPixelRef(pr, 0)->unref();
223 }
224
SkGpuDevice(GrContext * context,SkBitmap::Config config,int width,int height,int sampleCount)225 SkGpuDevice::SkGpuDevice(GrContext* context,
226 SkBitmap::Config config,
227 int width,
228 int height,
229 int sampleCount)
230 : SkBitmapDevice(make_bitmap(config, width, height, false /*isOpaque*/))
231 {
232 fDrawProcs = NULL;
233
234 fContext = context;
235 fContext->ref();
236
237 fRenderTarget = NULL;
238 fNeedClear = false;
239
240 if (config != SkBitmap::kRGB_565_Config) {
241 config = SkBitmap::kARGB_8888_Config;
242 }
243
244 GrTextureDesc desc;
245 desc.fFlags = kRenderTarget_GrTextureFlagBit;
246 desc.fWidth = width;
247 desc.fHeight = height;
248 desc.fConfig = SkBitmapConfig2GrPixelConfig(config);
249 desc.fSampleCnt = sampleCount;
250
251 SkImageInfo info;
252 if (!GrPixelConfig2ColorType(desc.fConfig, &info.fColorType)) {
253 sk_throw();
254 }
255 info.fWidth = width;
256 info.fHeight = height;
257 info.fAlphaType = kPremul_SkAlphaType;
258
259 SkAutoTUnref<GrTexture> texture(fContext->createUncachedTexture(desc, NULL, 0));
260
261 if (NULL != texture) {
262 fRenderTarget = texture->asRenderTarget();
263 fRenderTarget->ref();
264
265 SkASSERT(NULL != fRenderTarget);
266
267 // wrap the bitmap with a pixelref to expose our texture
268 SkGrPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (info, texture));
269 this->setPixelRef(pr, 0)->unref();
270 } else {
271 GrPrintf("--- failed to create gpu-offscreen [%d %d]\n",
272 width, height);
273 SkASSERT(false);
274 }
275 }
276
~SkGpuDevice()277 SkGpuDevice::~SkGpuDevice() {
278 if (fDrawProcs) {
279 delete fDrawProcs;
280 }
281
282 // The GrContext takes a ref on the target. We don't want to cause the render
283 // target to be unnecessarily kept alive.
284 if (fContext->getRenderTarget() == fRenderTarget) {
285 fContext->setRenderTarget(NULL);
286 }
287
288 if (fContext->getClip() == &fClipData) {
289 fContext->setClip(NULL);
290 }
291
292 SkSafeUnref(fRenderTarget);
293 fContext->unref();
294 }
295
296 ///////////////////////////////////////////////////////////////////////////////
297
makeRenderTargetCurrent()298 void SkGpuDevice::makeRenderTargetCurrent() {
299 DO_DEFERRED_CLEAR();
300 fContext->setRenderTarget(fRenderTarget);
301 }
302
303 ///////////////////////////////////////////////////////////////////////////////
304
305 namespace {
config8888_to_grconfig_and_flags(SkCanvas::Config8888 config8888,uint32_t * flags)306 GrPixelConfig config8888_to_grconfig_and_flags(SkCanvas::Config8888 config8888, uint32_t* flags) {
307 switch (config8888) {
308 case SkCanvas::kNative_Premul_Config8888:
309 *flags = 0;
310 return kSkia8888_GrPixelConfig;
311 case SkCanvas::kNative_Unpremul_Config8888:
312 *flags = GrContext::kUnpremul_PixelOpsFlag;
313 return kSkia8888_GrPixelConfig;
314 case SkCanvas::kBGRA_Premul_Config8888:
315 *flags = 0;
316 return kBGRA_8888_GrPixelConfig;
317 case SkCanvas::kBGRA_Unpremul_Config8888:
318 *flags = GrContext::kUnpremul_PixelOpsFlag;
319 return kBGRA_8888_GrPixelConfig;
320 case SkCanvas::kRGBA_Premul_Config8888:
321 *flags = 0;
322 return kRGBA_8888_GrPixelConfig;
323 case SkCanvas::kRGBA_Unpremul_Config8888:
324 *flags = GrContext::kUnpremul_PixelOpsFlag;
325 return kRGBA_8888_GrPixelConfig;
326 default:
327 GrCrash("Unexpected Config8888.");
328 *flags = 0; // suppress warning
329 return kSkia8888_GrPixelConfig;
330 }
331 }
332 }
333
onReadPixels(const SkBitmap & bitmap,int x,int y,SkCanvas::Config8888 config8888)334 bool SkGpuDevice::onReadPixels(const SkBitmap& bitmap,
335 int x, int y,
336 SkCanvas::Config8888 config8888) {
337 DO_DEFERRED_CLEAR();
338 SkASSERT(SkBitmap::kARGB_8888_Config == bitmap.config());
339 SkASSERT(!bitmap.isNull());
340 SkASSERT(SkIRect::MakeWH(this->width(), this->height()).contains(SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height())));
341
342 SkAutoLockPixels alp(bitmap);
343 GrPixelConfig config;
344 uint32_t flags;
345 config = config8888_to_grconfig_and_flags(config8888, &flags);
346 return fContext->readRenderTargetPixels(fRenderTarget,
347 x, y,
348 bitmap.width(),
349 bitmap.height(),
350 config,
351 bitmap.getPixels(),
352 bitmap.rowBytes(),
353 flags);
354 }
355
writePixels(const SkBitmap & bitmap,int x,int y,SkCanvas::Config8888 config8888)356 void SkGpuDevice::writePixels(const SkBitmap& bitmap, int x, int y,
357 SkCanvas::Config8888 config8888) {
358 SkAutoLockPixels alp(bitmap);
359 if (!bitmap.readyToDraw()) {
360 return;
361 }
362
363 GrPixelConfig config;
364 uint32_t flags;
365 if (SkBitmap::kARGB_8888_Config == bitmap.config()) {
366 config = config8888_to_grconfig_and_flags(config8888, &flags);
367 } else {
368 flags = 0;
369 config= SkBitmapConfig2GrPixelConfig(bitmap.config());
370 }
371
372 fRenderTarget->writePixels(x, y, bitmap.width(), bitmap.height(),
373 config, bitmap.getPixels(), bitmap.rowBytes(), flags);
374 }
375
onAttachToCanvas(SkCanvas * canvas)376 void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) {
377 INHERITED::onAttachToCanvas(canvas);
378
379 // Canvas promises that this ptr is valid until onDetachFromCanvas is called
380 fClipData.fClipStack = canvas->getClipStack();
381 }
382
onDetachFromCanvas()383 void SkGpuDevice::onDetachFromCanvas() {
384 INHERITED::onDetachFromCanvas();
385 fClipData.fClipStack = NULL;
386 }
387
388 // call this every draw call, to ensure that the context reflects our state,
389 // and not the state from some other canvas/device
prepareDraw(const SkDraw & draw,bool forceIdentity)390 void SkGpuDevice::prepareDraw(const SkDraw& draw, bool forceIdentity) {
391 SkASSERT(NULL != fClipData.fClipStack);
392
393 fContext->setRenderTarget(fRenderTarget);
394
395 SkASSERT(draw.fClipStack && draw.fClipStack == fClipData.fClipStack);
396
397 if (forceIdentity) {
398 fContext->setIdentityMatrix();
399 } else {
400 fContext->setMatrix(*draw.fMatrix);
401 }
402 fClipData.fOrigin = this->getOrigin();
403
404 fContext->setClip(&fClipData);
405
406 DO_DEFERRED_CLEAR();
407 }
408
accessRenderTarget()409 GrRenderTarget* SkGpuDevice::accessRenderTarget() {
410 DO_DEFERRED_CLEAR();
411 return fRenderTarget;
412 }
413
414 ///////////////////////////////////////////////////////////////////////////////
415
416 SK_COMPILE_ASSERT(SkShader::kNone_BitmapType == 0, shader_type_mismatch);
417 SK_COMPILE_ASSERT(SkShader::kDefault_BitmapType == 1, shader_type_mismatch);
418 SK_COMPILE_ASSERT(SkShader::kRadial_BitmapType == 2, shader_type_mismatch);
419 SK_COMPILE_ASSERT(SkShader::kSweep_BitmapType == 3, shader_type_mismatch);
420 SK_COMPILE_ASSERT(SkShader::kTwoPointRadial_BitmapType == 4,
421 shader_type_mismatch);
422 SK_COMPILE_ASSERT(SkShader::kTwoPointConical_BitmapType == 5,
423 shader_type_mismatch);
424 SK_COMPILE_ASSERT(SkShader::kLinear_BitmapType == 6, shader_type_mismatch);
425 SK_COMPILE_ASSERT(SkShader::kLast_BitmapType == 6, shader_type_mismatch);
426
427 namespace {
428
429 // converts a SkPaint to a GrPaint, ignoring the skPaint's shader
430 // justAlpha indicates that skPaint's alpha should be used rather than the color
431 // Callers may subsequently modify the GrPaint. Setting constantColor indicates
432 // that the final paint will draw the same color at every pixel. This allows
433 // an optimization where the the color filter can be applied to the skPaint's
434 // color once while converting to GrPaint and then ignored.
skPaint2GrPaintNoShader(SkGpuDevice * dev,const SkPaint & skPaint,bool justAlpha,bool constantColor,GrPaint * grPaint)435 inline bool skPaint2GrPaintNoShader(SkGpuDevice* dev,
436 const SkPaint& skPaint,
437 bool justAlpha,
438 bool constantColor,
439 GrPaint* grPaint) {
440
441 grPaint->setDither(skPaint.isDither());
442 grPaint->setAntiAlias(skPaint.isAntiAlias());
443
444 SkXfermode::Coeff sm;
445 SkXfermode::Coeff dm;
446
447 SkXfermode* mode = skPaint.getXfermode();
448 GrEffectRef* xferEffect = NULL;
449 if (SkXfermode::AsNewEffectOrCoeff(mode, &xferEffect, &sm, &dm)) {
450 if (NULL != xferEffect) {
451 grPaint->addColorEffect(xferEffect)->unref();
452 sm = SkXfermode::kOne_Coeff;
453 dm = SkXfermode::kZero_Coeff;
454 }
455 } else {
456 //SkDEBUGCODE(SkDebugf("Unsupported xfer mode.\n");)
457 #if 0
458 return false;
459 #else
460 // Fall back to src-over
461 sm = SkXfermode::kOne_Coeff;
462 dm = SkXfermode::kISA_Coeff;
463 #endif
464 }
465 grPaint->setBlendFunc(sk_blend_to_grblend(sm), sk_blend_to_grblend(dm));
466
467 if (justAlpha) {
468 uint8_t alpha = skPaint.getAlpha();
469 grPaint->setColor(GrColorPackRGBA(alpha, alpha, alpha, alpha));
470 // justAlpha is currently set to true only if there is a texture,
471 // so constantColor should not also be true.
472 SkASSERT(!constantColor);
473 } else {
474 grPaint->setColor(SkColor2GrColor(skPaint.getColor()));
475 }
476
477 SkColorFilter* colorFilter = skPaint.getColorFilter();
478 if (NULL != colorFilter) {
479 // if the source color is a constant then apply the filter here once rather than per pixel
480 // in a shader.
481 if (constantColor) {
482 SkColor filtered = colorFilter->filterColor(skPaint.getColor());
483 grPaint->setColor(SkColor2GrColor(filtered));
484 } else {
485 SkAutoTUnref<GrEffectRef> effect(colorFilter->asNewEffect(dev->context()));
486 if (NULL != effect.get()) {
487 grPaint->addColorEffect(effect);
488 }
489 }
490 }
491
492 return true;
493 }
494
495 // This function is similar to skPaint2GrPaintNoShader but also converts
496 // skPaint's shader to a GrTexture/GrEffectStage if possible. The texture to
497 // be used is set on grPaint and returned in param act. constantColor has the
498 // same meaning as in skPaint2GrPaintNoShader.
skPaint2GrPaintShader(SkGpuDevice * dev,const SkPaint & skPaint,bool constantColor,GrPaint * grPaint)499 inline bool skPaint2GrPaintShader(SkGpuDevice* dev,
500 const SkPaint& skPaint,
501 bool constantColor,
502 GrPaint* grPaint) {
503 SkShader* shader = skPaint.getShader();
504 if (NULL == shader) {
505 return skPaint2GrPaintNoShader(dev, skPaint, false, constantColor, grPaint);
506 }
507
508 // SkShader::asNewEffect() may do offscreen rendering. Setup default drawing state
509 // Also require shader to set the render target .
510 GrContext::AutoWideOpenIdentityDraw awo(dev->context(), NULL);
511 GrContext::AutoRenderTarget(dev->context(), NULL);
512
513 // setup the shader as the first color effect on the paint
514 SkAutoTUnref<GrEffectRef> effect(shader->asNewEffect(dev->context(), skPaint));
515 if (NULL != effect.get()) {
516 grPaint->addColorEffect(effect);
517 // Now setup the rest of the paint.
518 return skPaint2GrPaintNoShader(dev, skPaint, true, false, grPaint);
519 } else {
520 // We still don't have SkColorShader::asNewEffect() implemented.
521 SkShader::GradientInfo info;
522 SkColor color;
523
524 info.fColors = &color;
525 info.fColorOffsets = NULL;
526 info.fColorCount = 1;
527 if (SkShader::kColor_GradientType == shader->asAGradient(&info)) {
528 SkPaint copy(skPaint);
529 copy.setShader(NULL);
530 // modulate the paint alpha by the shader's solid color alpha
531 U8CPU newA = SkMulDiv255Round(SkColorGetA(color), copy.getAlpha());
532 copy.setColor(SkColorSetA(color, newA));
533 return skPaint2GrPaintNoShader(dev, copy, false, constantColor, grPaint);
534 } else {
535 return false;
536 }
537 }
538 }
539 }
540
541 ///////////////////////////////////////////////////////////////////////////////
542
config() const543 SkBitmap::Config SkGpuDevice::config() const {
544 if (NULL == fRenderTarget) {
545 return SkBitmap::kNo_Config;
546 }
547
548 bool isOpaque;
549 return grConfig2skConfig(fRenderTarget->config(), &isOpaque);
550 }
551
clear(SkColor color)552 void SkGpuDevice::clear(SkColor color) {
553 SkIRect rect = SkIRect::MakeWH(this->width(), this->height());
554 fContext->clear(&rect, SkColor2GrColor(color), true, fRenderTarget);
555 fNeedClear = false;
556 }
557
drawPaint(const SkDraw & draw,const SkPaint & paint)558 void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) {
559 CHECK_SHOULD_DRAW(draw, false);
560
561 GrPaint grPaint;
562 if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) {
563 return;
564 }
565
566 fContext->drawPaint(grPaint);
567 }
568
569 // must be in SkCanvas::PointMode order
570 static const GrPrimitiveType gPointMode2PrimtiveType[] = {
571 kPoints_GrPrimitiveType,
572 kLines_GrPrimitiveType,
573 kLineStrip_GrPrimitiveType
574 };
575
drawPoints(const SkDraw & draw,SkCanvas::PointMode mode,size_t count,const SkPoint pts[],const SkPaint & paint)576 void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode,
577 size_t count, const SkPoint pts[], const SkPaint& paint) {
578 CHECK_FOR_ANNOTATION(paint);
579 CHECK_SHOULD_DRAW(draw, false);
580
581 SkScalar width = paint.getStrokeWidth();
582 if (width < 0) {
583 return;
584 }
585
586 // we only handle hairlines and paints without path effects or mask filters,
587 // else we let the SkDraw call our drawPath()
588 if (width > 0 || paint.getPathEffect() || paint.getMaskFilter()) {
589 draw.drawPoints(mode, count, pts, paint, true);
590 return;
591 }
592
593 GrPaint grPaint;
594 if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) {
595 return;
596 }
597
598 fContext->drawVertices(grPaint,
599 gPointMode2PrimtiveType[mode],
600 SkToS32(count),
601 (GrPoint*)pts,
602 NULL,
603 NULL,
604 NULL,
605 0);
606 }
607
608 ///////////////////////////////////////////////////////////////////////////////
609
drawRect(const SkDraw & draw,const SkRect & rect,const SkPaint & paint)610 void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect,
611 const SkPaint& paint) {
612 CHECK_FOR_ANNOTATION(paint);
613 CHECK_SHOULD_DRAW(draw, false);
614
615 bool doStroke = paint.getStyle() != SkPaint::kFill_Style;
616 SkScalar width = paint.getStrokeWidth();
617
618 /*
619 We have special code for hairline strokes, miter-strokes, bevel-stroke
620 and fills. Anything else we just call our path code.
621 */
622 bool usePath = doStroke && width > 0 &&
623 (paint.getStrokeJoin() == SkPaint::kRound_Join ||
624 (paint.getStrokeJoin() == SkPaint::kBevel_Join && rect.isEmpty()));
625 // another two reasons we might need to call drawPath...
626 if (paint.getMaskFilter() || paint.getPathEffect()) {
627 usePath = true;
628 }
629 if (!usePath && paint.isAntiAlias() && !fContext->getMatrix().rectStaysRect()) {
630 #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT)
631 if (doStroke) {
632 #endif
633 usePath = true;
634 #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT)
635 } else {
636 usePath = !fContext->getMatrix().preservesRightAngles();
637 }
638 #endif
639 }
640 // until we can both stroke and fill rectangles
641 if (paint.getStyle() == SkPaint::kStrokeAndFill_Style) {
642 usePath = true;
643 }
644
645 if (usePath) {
646 SkPath path;
647 path.addRect(rect);
648 this->drawPath(draw, path, paint, NULL, true);
649 return;
650 }
651
652 GrPaint grPaint;
653 if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) {
654 return;
655 }
656
657 if (!doStroke) {
658 fContext->drawRect(grPaint, rect);
659 } else {
660 SkStrokeRec stroke(paint);
661 fContext->drawRect(grPaint, rect, &stroke);
662 }
663 }
664
665 ///////////////////////////////////////////////////////////////////////////////
666
drawRRect(const SkDraw & draw,const SkRRect & rect,const SkPaint & paint)667 void SkGpuDevice::drawRRect(const SkDraw& draw, const SkRRect& rect,
668 const SkPaint& paint) {
669 CHECK_FOR_ANNOTATION(paint);
670 CHECK_SHOULD_DRAW(draw, false);
671
672 bool usePath = !rect.isSimple();
673 // another two reasons we might need to call drawPath...
674 if (paint.getMaskFilter() || paint.getPathEffect()) {
675 usePath = true;
676 }
677 // until we can rotate rrects...
678 if (!usePath && !fContext->getMatrix().rectStaysRect()) {
679 usePath = true;
680 }
681
682 if (usePath) {
683 SkPath path;
684 path.addRRect(rect);
685 this->drawPath(draw, path, paint, NULL, true);
686 return;
687 }
688
689 GrPaint grPaint;
690 if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) {
691 return;
692 }
693
694 SkStrokeRec stroke(paint);
695 fContext->drawRRect(grPaint, rect, stroke);
696 }
697
698 ///////////////////////////////////////////////////////////////////////////////
699
drawOval(const SkDraw & draw,const SkRect & oval,const SkPaint & paint)700 void SkGpuDevice::drawOval(const SkDraw& draw, const SkRect& oval,
701 const SkPaint& paint) {
702 CHECK_FOR_ANNOTATION(paint);
703 CHECK_SHOULD_DRAW(draw, false);
704
705 bool usePath = false;
706 // some basic reasons we might need to call drawPath...
707 if (paint.getMaskFilter() || paint.getPathEffect()) {
708 usePath = true;
709 }
710
711 if (usePath) {
712 SkPath path;
713 path.addOval(oval);
714 this->drawPath(draw, path, paint, NULL, true);
715 return;
716 }
717
718 GrPaint grPaint;
719 if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) {
720 return;
721 }
722 SkStrokeRec stroke(paint);
723
724 fContext->drawOval(grPaint, oval, stroke);
725 }
726
727 #include "SkMaskFilter.h"
728 #include "SkBounder.h"
729
730 ///////////////////////////////////////////////////////////////////////////////
731
732 // helpers for applying mask filters
733 namespace {
734
735 // Draw a mask using the supplied paint. Since the coverage/geometry
736 // is already burnt into the mask this boils down to a rect draw.
737 // Return true if the mask was successfully drawn.
draw_mask(GrContext * context,const SkRect & maskRect,GrPaint * grp,GrTexture * mask)738 bool draw_mask(GrContext* context, const SkRect& maskRect,
739 GrPaint* grp, GrTexture* mask) {
740 GrContext::AutoMatrix am;
741 if (!am.setIdentity(context, grp)) {
742 return false;
743 }
744
745 SkMatrix matrix;
746 matrix.setTranslate(-maskRect.fLeft, -maskRect.fTop);
747 matrix.postIDiv(mask->width(), mask->height());
748
749 grp->addCoverageEffect(GrSimpleTextureEffect::Create(mask, matrix))->unref();
750 context->drawRect(*grp, maskRect);
751 return true;
752 }
753
draw_with_mask_filter(GrContext * context,const SkPath & devPath,SkMaskFilter * filter,const SkRegion & clip,SkBounder * bounder,GrPaint * grp,SkPaint::Style style)754 bool draw_with_mask_filter(GrContext* context, const SkPath& devPath,
755 SkMaskFilter* filter, const SkRegion& clip, SkBounder* bounder,
756 GrPaint* grp, SkPaint::Style style) {
757 SkMask srcM, dstM;
758
759 if (!SkDraw::DrawToMask(devPath, &clip.getBounds(), filter, &context->getMatrix(), &srcM,
760 SkMask::kComputeBoundsAndRenderImage_CreateMode, style)) {
761 return false;
762 }
763 SkAutoMaskFreeImage autoSrc(srcM.fImage);
764
765 if (!filter->filterMask(&dstM, srcM, context->getMatrix(), NULL)) {
766 return false;
767 }
768 // this will free-up dstM when we're done (allocated in filterMask())
769 SkAutoMaskFreeImage autoDst(dstM.fImage);
770
771 if (clip.quickReject(dstM.fBounds)) {
772 return false;
773 }
774 if (bounder && !bounder->doIRect(dstM.fBounds)) {
775 return false;
776 }
777
778 // we now have a device-aligned 8bit mask in dstM, ready to be drawn using
779 // the current clip (and identity matrix) and GrPaint settings
780 GrTextureDesc desc;
781 desc.fWidth = dstM.fBounds.width();
782 desc.fHeight = dstM.fBounds.height();
783 desc.fConfig = kAlpha_8_GrPixelConfig;
784
785 GrAutoScratchTexture ast(context, desc);
786 GrTexture* texture = ast.texture();
787
788 if (NULL == texture) {
789 return false;
790 }
791 texture->writePixels(0, 0, desc.fWidth, desc.fHeight, desc.fConfig,
792 dstM.fImage, dstM.fRowBytes);
793
794 SkRect maskRect = SkRect::Make(dstM.fBounds);
795
796 return draw_mask(context, maskRect, grp, texture);
797 }
798
799 // Create a mask of 'devPath' and place the result in 'mask'. Return true on
800 // success; false otherwise.
create_mask_GPU(GrContext * context,const SkRect & maskRect,const SkPath & devPath,const SkStrokeRec & stroke,bool doAA,GrAutoScratchTexture * mask)801 bool create_mask_GPU(GrContext* context,
802 const SkRect& maskRect,
803 const SkPath& devPath,
804 const SkStrokeRec& stroke,
805 bool doAA,
806 GrAutoScratchTexture* mask) {
807 GrTextureDesc desc;
808 desc.fFlags = kRenderTarget_GrTextureFlagBit;
809 desc.fWidth = SkScalarCeilToInt(maskRect.width());
810 desc.fHeight = SkScalarCeilToInt(maskRect.height());
811 // We actually only need A8, but it often isn't supported as a
812 // render target so default to RGBA_8888
813 desc.fConfig = kRGBA_8888_GrPixelConfig;
814 if (context->isConfigRenderable(kAlpha_8_GrPixelConfig, false)) {
815 desc.fConfig = kAlpha_8_GrPixelConfig;
816 }
817
818 mask->set(context, desc);
819 if (NULL == mask->texture()) {
820 return false;
821 }
822
823 GrTexture* maskTexture = mask->texture();
824 SkRect clipRect = SkRect::MakeWH(maskRect.width(), maskRect.height());
825
826 GrContext::AutoRenderTarget art(context, maskTexture->asRenderTarget());
827 GrContext::AutoClip ac(context, clipRect);
828
829 context->clear(NULL, 0x0, true);
830
831 GrPaint tempPaint;
832 if (doAA) {
833 tempPaint.setAntiAlias(true);
834 // AA uses the "coverage" stages on GrDrawTarget. Coverage with a dst
835 // blend coeff of zero requires dual source blending support in order
836 // to properly blend partially covered pixels. This means the AA
837 // code path may not be taken. So we use a dst blend coeff of ISA. We
838 // could special case AA draws to a dst surface with known alpha=0 to
839 // use a zero dst coeff when dual source blending isn't available.
840 tempPaint.setBlendFunc(kOne_GrBlendCoeff, kISC_GrBlendCoeff);
841 }
842
843 GrContext::AutoMatrix am;
844
845 // Draw the mask into maskTexture with the path's top-left at the origin using tempPaint.
846 SkMatrix translate;
847 translate.setTranslate(-maskRect.fLeft, -maskRect.fTop);
848 am.set(context, translate);
849 context->drawPath(tempPaint, devPath, stroke);
850 return true;
851 }
852
wrap_texture(GrTexture * texture)853 SkBitmap wrap_texture(GrTexture* texture) {
854 SkImageInfo info;
855 texture->asImageInfo(&info);
856
857 SkBitmap result;
858 result.setConfig(info);
859 result.setPixelRef(SkNEW_ARGS(SkGrPixelRef, (info, texture)))->unref();
860 return result;
861 }
862
863 };
864
drawPath(const SkDraw & draw,const SkPath & origSrcPath,const SkPaint & paint,const SkMatrix * prePathMatrix,bool pathIsMutable)865 void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath,
866 const SkPaint& paint, const SkMatrix* prePathMatrix,
867 bool pathIsMutable) {
868 CHECK_FOR_ANNOTATION(paint);
869 CHECK_SHOULD_DRAW(draw, false);
870
871 GrPaint grPaint;
872 if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) {
873 return;
874 }
875
876 // If we have a prematrix, apply it to the path, optimizing for the case
877 // where the original path can in fact be modified in place (even though
878 // its parameter type is const).
879 SkPath* pathPtr = const_cast<SkPath*>(&origSrcPath);
880 SkPath tmpPath, effectPath;
881
882 if (prePathMatrix) {
883 SkPath* result = pathPtr;
884
885 if (!pathIsMutable) {
886 result = &tmpPath;
887 pathIsMutable = true;
888 }
889 // should I push prePathMatrix on our MV stack temporarily, instead
890 // of applying it here? See SkDraw.cpp
891 pathPtr->transform(*prePathMatrix, result);
892 pathPtr = result;
893 }
894 // at this point we're done with prePathMatrix
895 SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;)
896
897 SkStrokeRec stroke(paint);
898 SkPathEffect* pathEffect = paint.getPathEffect();
899 const SkRect* cullRect = NULL; // TODO: what is our bounds?
900 if (pathEffect && pathEffect->filterPath(&effectPath, *pathPtr, &stroke,
901 cullRect)) {
902 pathPtr = &effectPath;
903 }
904
905 if (paint.getMaskFilter()) {
906 if (!stroke.isHairlineStyle()) {
907 if (stroke.applyToPath(&tmpPath, *pathPtr)) {
908 pathPtr = &tmpPath;
909 pathIsMutable = true;
910 stroke.setFillStyle();
911 }
912 }
913
914 // avoid possibly allocating a new path in transform if we can
915 SkPath* devPathPtr = pathIsMutable ? pathPtr : &tmpPath;
916
917 // transform the path into device space
918 pathPtr->transform(fContext->getMatrix(), devPathPtr);
919
920 SkRect maskRect;
921 if (paint.getMaskFilter()->canFilterMaskGPU(devPathPtr->getBounds(),
922 draw.fClip->getBounds(),
923 fContext->getMatrix(),
924 &maskRect)) {
925 SkIRect finalIRect;
926 maskRect.roundOut(&finalIRect);
927 if (draw.fClip->quickReject(finalIRect)) {
928 // clipped out
929 return;
930 }
931 if (NULL != draw.fBounder && !draw.fBounder->doIRect(finalIRect)) {
932 // nothing to draw
933 return;
934 }
935
936 GrAutoScratchTexture mask;
937
938 if (create_mask_GPU(fContext, maskRect, *devPathPtr, stroke,
939 grPaint.isAntiAlias(), &mask)) {
940 GrTexture* filtered;
941
942 if (paint.getMaskFilter()->filterMaskGPU(mask.texture(), maskRect, &filtered, true)) {
943 // filterMaskGPU gives us ownership of a ref to the result
944 SkAutoTUnref<GrTexture> atu(filtered);
945
946 // If the scratch texture that we used as the filter src also holds the filter
947 // result then we must detach so that this texture isn't recycled for a later
948 // draw.
949 if (filtered == mask.texture()) {
950 mask.detach();
951 filtered->unref(); // detach transfers GrAutoScratchTexture's ref to us.
952 }
953
954 if (draw_mask(fContext, maskRect, &grPaint, filtered)) {
955 // This path is completely drawn
956 return;
957 }
958 }
959 }
960 }
961
962 // draw the mask on the CPU - this is a fallthrough path in case the
963 // GPU path fails
964 SkPaint::Style style = stroke.isHairlineStyle() ? SkPaint::kStroke_Style :
965 SkPaint::kFill_Style;
966 draw_with_mask_filter(fContext, *devPathPtr, paint.getMaskFilter(),
967 *draw.fClip, draw.fBounder, &grPaint, style);
968 return;
969 }
970
971 fContext->drawPath(grPaint, *pathPtr, stroke);
972 }
973
974 static const int kBmpSmallTileSize = 1 << 10;
975
get_tile_count(const SkIRect & srcRect,int tileSize)976 static inline int get_tile_count(const SkIRect& srcRect, int tileSize) {
977 int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1;
978 int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1;
979 return tilesX * tilesY;
980 }
981
determine_tile_size(const SkBitmap & bitmap,const SkIRect & src,int maxTileSize)982 static int determine_tile_size(const SkBitmap& bitmap, const SkIRect& src, int maxTileSize) {
983 if (maxTileSize <= kBmpSmallTileSize) {
984 return maxTileSize;
985 }
986
987 size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize);
988 size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize);
989
990 maxTileTotalTileSize *= maxTileSize * maxTileSize;
991 smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize;
992
993 if (maxTileTotalTileSize > 2 * smallTotalTileSize) {
994 return kBmpSmallTileSize;
995 } else {
996 return maxTileSize;
997 }
998 }
999
1000 // Given a bitmap, an optional src rect, and a context with a clip and matrix determine what
1001 // pixels from the bitmap are necessary.
determine_clipped_src_rect(const GrContext * context,const SkBitmap & bitmap,const SkRect * srcRectPtr,SkIRect * clippedSrcIRect)1002 static void determine_clipped_src_rect(const GrContext* context,
1003 const SkBitmap& bitmap,
1004 const SkRect* srcRectPtr,
1005 SkIRect* clippedSrcIRect) {
1006 const GrClipData* clip = context->getClip();
1007 clip->getConservativeBounds(context->getRenderTarget(), clippedSrcIRect, NULL);
1008 SkMatrix inv;
1009 if (!context->getMatrix().invert(&inv)) {
1010 clippedSrcIRect->setEmpty();
1011 return;
1012 }
1013 SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect);
1014 inv.mapRect(&clippedSrcRect);
1015 if (NULL != srcRectPtr) {
1016 if (!clippedSrcRect.intersect(*srcRectPtr)) {
1017 clippedSrcIRect->setEmpty();
1018 return;
1019 }
1020 }
1021 clippedSrcRect.roundOut(clippedSrcIRect);
1022 SkIRect bmpBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height());
1023 if (!clippedSrcIRect->intersect(bmpBounds)) {
1024 clippedSrcIRect->setEmpty();
1025 }
1026 }
1027
shouldTileBitmap(const SkBitmap & bitmap,const GrTextureParams & params,const SkRect * srcRectPtr,int maxTileSize,int * tileSize,SkIRect * clippedSrcRect) const1028 bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap,
1029 const GrTextureParams& params,
1030 const SkRect* srcRectPtr,
1031 int maxTileSize,
1032 int* tileSize,
1033 SkIRect* clippedSrcRect) const {
1034 // if bitmap is explictly texture backed then just use the texture
1035 if (NULL != bitmap.getTexture()) {
1036 return false;
1037 }
1038
1039 // if it's larger than the max tile size, then we have no choice but tiling.
1040 if (bitmap.width() > maxTileSize || bitmap.height() > maxTileSize) {
1041 determine_clipped_src_rect(fContext, bitmap, srcRectPtr, clippedSrcRect);
1042 *tileSize = determine_tile_size(bitmap, *clippedSrcRect, maxTileSize);
1043 return true;
1044 }
1045
1046 if (bitmap.width() * bitmap.height() < 4 * kBmpSmallTileSize * kBmpSmallTileSize) {
1047 return false;
1048 }
1049
1050 // if the entire texture is already in our cache then no reason to tile it
1051 if (GrIsBitmapInCache(fContext, bitmap, ¶ms)) {
1052 return false;
1053 }
1054
1055 // At this point we know we could do the draw by uploading the entire bitmap
1056 // as a texture. However, if the texture would be large compared to the
1057 // cache size and we don't require most of it for this draw then tile to
1058 // reduce the amount of upload and cache spill.
1059
1060 // assumption here is that sw bitmap size is a good proxy for its size as
1061 // a texture
1062 size_t bmpSize = bitmap.getSize();
1063 size_t cacheSize;
1064 fContext->getTextureCacheLimits(NULL, &cacheSize);
1065 if (bmpSize < cacheSize / 2) {
1066 return false;
1067 }
1068
1069 // Figure out how much of the src we will need based on the src rect and clipping.
1070 determine_clipped_src_rect(fContext, bitmap, srcRectPtr, clippedSrcRect);
1071 *tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile.
1072 size_t usedTileBytes = get_tile_count(*clippedSrcRect, kBmpSmallTileSize) *
1073 kBmpSmallTileSize * kBmpSmallTileSize;
1074
1075 return usedTileBytes < 2 * bmpSize;
1076 }
1077
drawBitmap(const SkDraw & draw,const SkBitmap & bitmap,const SkMatrix & m,const SkPaint & paint)1078 void SkGpuDevice::drawBitmap(const SkDraw& draw,
1079 const SkBitmap& bitmap,
1080 const SkMatrix& m,
1081 const SkPaint& paint) {
1082 // We cannot call drawBitmapRect here since 'm' could be anything
1083 this->drawBitmapCommon(draw, bitmap, NULL, m, paint,
1084 SkCanvas::kNone_DrawBitmapRectFlag);
1085 }
1086
1087 // This method outsets 'iRect' by 'outset' all around and then clamps its extents to
1088 // 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner
1089 // of 'iRect' for all possible outsets/clamps.
clamped_outset_with_offset(SkIRect * iRect,int outset,SkPoint * offset,const SkIRect & clamp)1090 static inline void clamped_outset_with_offset(SkIRect* iRect,
1091 int outset,
1092 SkPoint* offset,
1093 const SkIRect& clamp) {
1094 iRect->outset(outset, outset);
1095
1096 int leftClampDelta = clamp.fLeft - iRect->fLeft;
1097 if (leftClampDelta > 0) {
1098 offset->fX -= outset - leftClampDelta;
1099 iRect->fLeft = clamp.fLeft;
1100 } else {
1101 offset->fX -= outset;
1102 }
1103
1104 int topClampDelta = clamp.fTop - iRect->fTop;
1105 if (topClampDelta > 0) {
1106 offset->fY -= outset - topClampDelta;
1107 iRect->fTop = clamp.fTop;
1108 } else {
1109 offset->fY -= outset;
1110 }
1111
1112 if (iRect->fRight > clamp.fRight) {
1113 iRect->fRight = clamp.fRight;
1114 }
1115 if (iRect->fBottom > clamp.fBottom) {
1116 iRect->fBottom = clamp.fBottom;
1117 }
1118 }
1119
drawBitmapCommon(const SkDraw & draw,const SkBitmap & bitmap,const SkRect * srcRectPtr,const SkMatrix & m,const SkPaint & paint,SkCanvas::DrawBitmapRectFlags flags)1120 void SkGpuDevice::drawBitmapCommon(const SkDraw& draw,
1121 const SkBitmap& bitmap,
1122 const SkRect* srcRectPtr,
1123 const SkMatrix& m,
1124 const SkPaint& paint,
1125 SkCanvas::DrawBitmapRectFlags flags) {
1126 CHECK_SHOULD_DRAW(draw, false);
1127
1128 SkRect srcRect;
1129 // If there is no src rect, or the src rect contains the entire bitmap then we're effectively
1130 // in the (easier) bleed case, so update flags.
1131 if (NULL == srcRectPtr) {
1132 srcRect.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height()));
1133 flags = (SkCanvas::DrawBitmapRectFlags) (flags | SkCanvas::kBleed_DrawBitmapRectFlag);
1134 } else {
1135 srcRect = *srcRectPtr;
1136 if (srcRect.fLeft <= 0 && srcRect.fTop <= 0 &&
1137 srcRect.fRight >= bitmap.width() && srcRect.fBottom >= bitmap.height()) {
1138 flags = (SkCanvas::DrawBitmapRectFlags) (flags | SkCanvas::kBleed_DrawBitmapRectFlag);
1139 }
1140 }
1141
1142 if (paint.getMaskFilter()){
1143 // Convert the bitmap to a shader so that the rect can be drawn
1144 // through drawRect, which supports mask filters.
1145 SkMatrix newM(m);
1146 SkBitmap tmp; // subset of bitmap, if necessary
1147 const SkBitmap* bitmapPtr = &bitmap;
1148 if (NULL != srcRectPtr) {
1149 // In bleed mode we position and trim the bitmap based on the src rect which is
1150 // already accounted for in 'm' and 'srcRect'. In clamp mode we need to chop out
1151 // the desired portion of the bitmap and then update 'm' and 'srcRect' to
1152 // compensate.
1153 if (!(SkCanvas::kBleed_DrawBitmapRectFlag & flags)) {
1154 SkIRect iSrc;
1155 srcRect.roundOut(&iSrc);
1156
1157 SkPoint offset = SkPoint::Make(SkIntToScalar(iSrc.fLeft),
1158 SkIntToScalar(iSrc.fTop));
1159
1160 if (!bitmap.extractSubset(&tmp, iSrc)) {
1161 return; // extraction failed
1162 }
1163 bitmapPtr = &tmp;
1164 srcRect.offset(-offset.fX, -offset.fY);
1165 // The source rect has changed so update the matrix
1166 newM.preTranslate(offset.fX, offset.fY);
1167 }
1168 }
1169
1170 SkPaint paintWithTexture(paint);
1171 paintWithTexture.setShader(SkShader::CreateBitmapShader(*bitmapPtr,
1172 SkShader::kClamp_TileMode, SkShader::kClamp_TileMode))->unref();
1173
1174 // Transform 'newM' needs to be concatenated to the current matrix,
1175 // rather than transforming the primitive directly, so that 'newM' will
1176 // also affect the behavior of the mask filter.
1177 SkMatrix drawMatrix;
1178 drawMatrix.setConcat(fContext->getMatrix(), newM);
1179 SkDraw transformedDraw(draw);
1180 transformedDraw.fMatrix = &drawMatrix;
1181
1182 this->drawRect(transformedDraw, srcRect, paintWithTexture);
1183
1184 return;
1185 }
1186
1187 fContext->concatMatrix(m);
1188
1189 GrTextureParams params;
1190 SkPaint::FilterLevel paintFilterLevel = paint.getFilterLevel();
1191 GrTextureParams::FilterMode textureFilterMode;
1192
1193 int tileFilterPad;
1194 bool doBicubic = false;
1195
1196 switch(paintFilterLevel) {
1197 case SkPaint::kNone_FilterLevel:
1198 tileFilterPad = 0;
1199 textureFilterMode = GrTextureParams::kNone_FilterMode;
1200 break;
1201 case SkPaint::kLow_FilterLevel:
1202 tileFilterPad = 1;
1203 textureFilterMode = GrTextureParams::kBilerp_FilterMode;
1204 break;
1205 case SkPaint::kMedium_FilterLevel:
1206 tileFilterPad = 1;
1207 textureFilterMode = GrTextureParams::kMipMap_FilterMode;
1208 break;
1209 case SkPaint::kHigh_FilterLevel: {
1210 // Minification can look bad with the bicubic effect.
1211 if (fContext->getMatrix().getMinStretch() >= SK_Scalar1 &&
1212 (flags & SkCanvas::kBleed_DrawBitmapRectFlag)) {
1213 // We will install an effect that does the filtering in the shader.
1214 textureFilterMode = GrTextureParams::kNone_FilterMode;
1215 tileFilterPad = GrBicubicEffect::kFilterTexelPad;
1216 doBicubic = true;
1217 } else {
1218 // We don't yet support doing bicubic filtering with an interior clamp. Fall back
1219 // to MIPs
1220 textureFilterMode = GrTextureParams::kMipMap_FilterMode;
1221 tileFilterPad = 1;
1222 }
1223 break;
1224 }
1225 default:
1226 SkErrorInternals::SetError( kInvalidPaint_SkError,
1227 "Sorry, I don't understand the filtering "
1228 "mode you asked for. Falling back to "
1229 "MIPMaps.");
1230 tileFilterPad = 1;
1231 textureFilterMode = GrTextureParams::kMipMap_FilterMode;
1232 break;
1233 }
1234
1235 params.setFilterMode(textureFilterMode);
1236
1237 int maxTileSize = fContext->getMaxTextureSize() - 2 * tileFilterPad;
1238 int tileSize;
1239
1240 SkIRect clippedSrcRect;
1241 if (this->shouldTileBitmap(bitmap, params, srcRectPtr, maxTileSize, &tileSize,
1242 &clippedSrcRect)) {
1243 this->drawTiledBitmap(bitmap, srcRect, clippedSrcRect, params, paint, flags, tileSize,
1244 doBicubic);
1245 } else {
1246 // take the simple case
1247 this->internalDrawBitmap(bitmap, srcRect, params, paint, flags, doBicubic);
1248 }
1249 }
1250
1251 // Break 'bitmap' into several tiles to draw it since it has already
1252 // been determined to be too large to fit in VRAM
drawTiledBitmap(const SkBitmap & bitmap,const SkRect & srcRect,const SkIRect & clippedSrcIRect,const GrTextureParams & params,const SkPaint & paint,SkCanvas::DrawBitmapRectFlags flags,int tileSize,bool bicubic)1253 void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap,
1254 const SkRect& srcRect,
1255 const SkIRect& clippedSrcIRect,
1256 const GrTextureParams& params,
1257 const SkPaint& paint,
1258 SkCanvas::DrawBitmapRectFlags flags,
1259 int tileSize,
1260 bool bicubic) {
1261 SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect);
1262
1263 int nx = bitmap.width() / tileSize;
1264 int ny = bitmap.height() / tileSize;
1265 for (int x = 0; x <= nx; x++) {
1266 for (int y = 0; y <= ny; y++) {
1267 SkRect tileR;
1268 tileR.set(SkIntToScalar(x * tileSize),
1269 SkIntToScalar(y * tileSize),
1270 SkIntToScalar((x + 1) * tileSize),
1271 SkIntToScalar((y + 1) * tileSize));
1272
1273 if (!SkRect::Intersects(tileR, clippedSrcRect)) {
1274 continue;
1275 }
1276
1277 if (!tileR.intersect(srcRect)) {
1278 continue;
1279 }
1280
1281 SkBitmap tmpB;
1282 SkIRect iTileR;
1283 tileR.roundOut(&iTileR);
1284 SkPoint offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft),
1285 SkIntToScalar(iTileR.fTop));
1286
1287 if (SkPaint::kNone_FilterLevel != paint.getFilterLevel() || bicubic) {
1288 SkIRect iClampRect;
1289
1290 if (SkCanvas::kBleed_DrawBitmapRectFlag & flags) {
1291 // In bleed mode we want to always expand the tile on all edges
1292 // but stay within the bitmap bounds
1293 iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height());
1294 } else {
1295 SkASSERT(!bicubic); // Bicubic is not supported with non-bleed yet.
1296
1297 // In texture-domain/clamp mode we only want to expand the
1298 // tile on edges interior to "srcRect" (i.e., we want to
1299 // not bleed across the original clamped edges)
1300 srcRect.roundOut(&iClampRect);
1301 }
1302 int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1;
1303 clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect);
1304 }
1305
1306 if (bitmap.extractSubset(&tmpB, iTileR)) {
1307 // now offset it to make it "local" to our tmp bitmap
1308 tileR.offset(-offset.fX, -offset.fY);
1309 SkMatrix tmpM;
1310 tmpM.setTranslate(offset.fX, offset.fY);
1311 GrContext::AutoMatrix am;
1312 am.setPreConcat(fContext, tmpM);
1313 this->internalDrawBitmap(tmpB, tileR, params, paint, flags, bicubic);
1314 }
1315 }
1316 }
1317 }
1318
has_aligned_samples(const SkRect & srcRect,const SkRect & transformedRect)1319 static bool has_aligned_samples(const SkRect& srcRect,
1320 const SkRect& transformedRect) {
1321 // detect pixel disalignment
1322 if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) -
1323 transformedRect.left()) < COLOR_BLEED_TOLERANCE &&
1324 SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) -
1325 transformedRect.top()) < COLOR_BLEED_TOLERANCE &&
1326 SkScalarAbs(transformedRect.width() - srcRect.width()) <
1327 COLOR_BLEED_TOLERANCE &&
1328 SkScalarAbs(transformedRect.height() - srcRect.height()) <
1329 COLOR_BLEED_TOLERANCE) {
1330 return true;
1331 }
1332 return false;
1333 }
1334
may_color_bleed(const SkRect & srcRect,const SkRect & transformedRect,const SkMatrix & m)1335 static bool may_color_bleed(const SkRect& srcRect,
1336 const SkRect& transformedRect,
1337 const SkMatrix& m) {
1338 // Only gets called if has_aligned_samples returned false.
1339 // So we can assume that sampling is axis aligned but not texel aligned.
1340 SkASSERT(!has_aligned_samples(srcRect, transformedRect));
1341 SkRect innerSrcRect(srcRect), innerTransformedRect,
1342 outerTransformedRect(transformedRect);
1343 innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf);
1344 m.mapRect(&innerTransformedRect, innerSrcRect);
1345
1346 // The gap between outerTransformedRect and innerTransformedRect
1347 // represents the projection of the source border area, which is
1348 // problematic for color bleeding. We must check whether any
1349 // destination pixels sample the border area.
1350 outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE);
1351 innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE);
1352 SkIRect outer, inner;
1353 outerTransformedRect.round(&outer);
1354 innerTransformedRect.round(&inner);
1355 // If the inner and outer rects round to the same result, it means the
1356 // border does not overlap any pixel centers. Yay!
1357 return inner != outer;
1358 }
1359
1360
1361 /*
1362 * This is called by drawBitmap(), which has to handle images that may be too
1363 * large to be represented by a single texture.
1364 *
1365 * internalDrawBitmap assumes that the specified bitmap will fit in a texture
1366 * and that non-texture portion of the GrPaint has already been setup.
1367 */
internalDrawBitmap(const SkBitmap & bitmap,const SkRect & srcRect,const GrTextureParams & params,const SkPaint & paint,SkCanvas::DrawBitmapRectFlags flags,bool bicubic)1368 void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap,
1369 const SkRect& srcRect,
1370 const GrTextureParams& params,
1371 const SkPaint& paint,
1372 SkCanvas::DrawBitmapRectFlags flags,
1373 bool bicubic) {
1374 SkASSERT(bitmap.width() <= fContext->getMaxTextureSize() &&
1375 bitmap.height() <= fContext->getMaxTextureSize());
1376
1377 GrTexture* texture;
1378 SkAutoCachedTexture act(this, bitmap, ¶ms, &texture);
1379 if (NULL == texture) {
1380 return;
1381 }
1382
1383 SkRect dstRect(srcRect);
1384 SkRect paintRect;
1385 SkScalar wInv = SkScalarInvert(SkIntToScalar(texture->width()));
1386 SkScalar hInv = SkScalarInvert(SkIntToScalar(texture->height()));
1387 paintRect.setLTRB(SkScalarMul(srcRect.fLeft, wInv),
1388 SkScalarMul(srcRect.fTop, hInv),
1389 SkScalarMul(srcRect.fRight, wInv),
1390 SkScalarMul(srcRect.fBottom, hInv));
1391
1392 bool needsTextureDomain = false;
1393 if (!(flags & SkCanvas::kBleed_DrawBitmapRectFlag) &&
1394 params.filterMode() != GrTextureParams::kNone_FilterMode) {
1395 SkASSERT(!bicubic);
1396 // Need texture domain if drawing a sub rect.
1397 needsTextureDomain = srcRect.width() < bitmap.width() ||
1398 srcRect.height() < bitmap.height();
1399 if (needsTextureDomain && fContext->getMatrix().rectStaysRect()) {
1400 const SkMatrix& matrix = fContext->getMatrix();
1401 // sampling is axis-aligned
1402 SkRect transformedRect;
1403 matrix.mapRect(&transformedRect, srcRect);
1404
1405 if (has_aligned_samples(srcRect, transformedRect)) {
1406 // We could also turn off filtering here (but we already did a cache lookup with
1407 // params).
1408 needsTextureDomain = false;
1409 } else {
1410 needsTextureDomain = may_color_bleed(srcRect, transformedRect, matrix);
1411 }
1412 }
1413 }
1414
1415 SkRect textureDomain = SkRect::MakeEmpty();
1416 SkAutoTUnref<GrEffectRef> effect;
1417 if (needsTextureDomain) {
1418 // Use a constrained texture domain to avoid color bleeding
1419 SkScalar left, top, right, bottom;
1420 if (srcRect.width() > SK_Scalar1) {
1421 SkScalar border = SK_ScalarHalf / texture->width();
1422 left = paintRect.left() + border;
1423 right = paintRect.right() - border;
1424 } else {
1425 left = right = SkScalarHalf(paintRect.left() + paintRect.right());
1426 }
1427 if (srcRect.height() > SK_Scalar1) {
1428 SkScalar border = SK_ScalarHalf / texture->height();
1429 top = paintRect.top() + border;
1430 bottom = paintRect.bottom() - border;
1431 } else {
1432 top = bottom = SkScalarHalf(paintRect.top() + paintRect.bottom());
1433 }
1434 textureDomain.setLTRB(left, top, right, bottom);
1435 effect.reset(GrTextureDomainEffect::Create(texture,
1436 SkMatrix::I(),
1437 textureDomain,
1438 GrTextureDomain::kClamp_Mode,
1439 params.filterMode()));
1440 } else if (bicubic) {
1441 SkASSERT(GrTextureParams::kNone_FilterMode == params.filterMode());
1442 SkShader::TileMode tileModes[2] = { params.getTileModeX(), params.getTileModeY() };
1443 effect.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), tileModes));
1444 } else {
1445 effect.reset(GrSimpleTextureEffect::Create(texture, SkMatrix::I(), params));
1446 }
1447
1448 // Construct a GrPaint by setting the bitmap texture as the first effect and then configuring
1449 // the rest from the SkPaint.
1450 GrPaint grPaint;
1451 grPaint.addColorEffect(effect);
1452 bool alphaOnly = !(SkBitmap::kA8_Config == bitmap.config());
1453 if (!skPaint2GrPaintNoShader(this, paint, alphaOnly, false, &grPaint)) {
1454 return;
1455 }
1456
1457 fContext->drawRectToRect(grPaint, dstRect, paintRect, NULL);
1458 }
1459
filter_texture(SkBaseDevice * device,GrContext * context,GrTexture * texture,SkImageFilter * filter,int w,int h,const SkMatrix & ctm,SkBitmap * result,SkIPoint * offset)1460 static bool filter_texture(SkBaseDevice* device, GrContext* context,
1461 GrTexture* texture, SkImageFilter* filter,
1462 int w, int h, const SkMatrix& ctm, SkBitmap* result,
1463 SkIPoint* offset) {
1464 SkASSERT(filter);
1465 SkDeviceImageFilterProxy proxy(device);
1466
1467 if (filter->canFilterImageGPU()) {
1468 // Save the render target and set it to NULL, so we don't accidentally draw to it in the
1469 // filter. Also set the clip wide open and the matrix to identity.
1470 GrContext::AutoWideOpenIdentityDraw awo(context, NULL);
1471 return filter->filterImageGPU(&proxy, wrap_texture(texture), ctm, result, offset);
1472 } else {
1473 return false;
1474 }
1475 }
1476
drawSprite(const SkDraw & draw,const SkBitmap & bitmap,int left,int top,const SkPaint & paint)1477 void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap,
1478 int left, int top, const SkPaint& paint) {
1479 // drawSprite is defined to be in device coords.
1480 CHECK_SHOULD_DRAW(draw, true);
1481
1482 SkAutoLockPixels alp(bitmap, !bitmap.getTexture());
1483 if (!bitmap.getTexture() && !bitmap.readyToDraw()) {
1484 return;
1485 }
1486
1487 int w = bitmap.width();
1488 int h = bitmap.height();
1489
1490 GrTexture* texture;
1491 // draw sprite uses the default texture params
1492 SkAutoCachedTexture act(this, bitmap, NULL, &texture);
1493
1494 SkImageFilter* filter = paint.getImageFilter();
1495 SkIPoint offset = SkIPoint::Make(left, top);
1496 // This bitmap will own the filtered result as a texture.
1497 SkBitmap filteredBitmap;
1498
1499 if (NULL != filter) {
1500 SkMatrix matrix(*draw.fMatrix);
1501 matrix.postTranslate(SkIntToScalar(-left), SkIntToScalar(-top));
1502 if (filter_texture(this, fContext, texture, filter, w, h, matrix, &filteredBitmap,
1503 &offset)) {
1504 texture = (GrTexture*) filteredBitmap.getTexture();
1505 w = filteredBitmap.width();
1506 h = filteredBitmap.height();
1507 } else {
1508 return;
1509 }
1510 }
1511
1512 GrPaint grPaint;
1513 grPaint.addColorTextureEffect(texture, SkMatrix::I());
1514
1515 if(!skPaint2GrPaintNoShader(this, paint, true, false, &grPaint)) {
1516 return;
1517 }
1518
1519 fContext->drawRectToRect(grPaint,
1520 SkRect::MakeXYWH(SkIntToScalar(offset.fX),
1521 SkIntToScalar(offset.fY),
1522 SkIntToScalar(w),
1523 SkIntToScalar(h)),
1524 SkRect::MakeXYWH(0,
1525 0,
1526 SK_Scalar1 * w / texture->width(),
1527 SK_Scalar1 * h / texture->height()));
1528 }
1529
drawBitmapRect(const SkDraw & draw,const SkBitmap & bitmap,const SkRect * src,const SkRect & dst,const SkPaint & paint,SkCanvas::DrawBitmapRectFlags flags)1530 void SkGpuDevice::drawBitmapRect(const SkDraw& draw, const SkBitmap& bitmap,
1531 const SkRect* src, const SkRect& dst,
1532 const SkPaint& paint,
1533 SkCanvas::DrawBitmapRectFlags flags) {
1534 SkMatrix matrix;
1535 SkRect bitmapBounds, tmpSrc;
1536
1537 bitmapBounds.set(0, 0,
1538 SkIntToScalar(bitmap.width()),
1539 SkIntToScalar(bitmap.height()));
1540
1541 // Compute matrix from the two rectangles
1542 if (NULL != src) {
1543 tmpSrc = *src;
1544 } else {
1545 tmpSrc = bitmapBounds;
1546 }
1547 matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit);
1548
1549 // clip the tmpSrc to the bounds of the bitmap. No check needed if src==null.
1550 if (NULL != src) {
1551 if (!bitmapBounds.contains(tmpSrc)) {
1552 if (!tmpSrc.intersect(bitmapBounds)) {
1553 return; // nothing to draw
1554 }
1555 }
1556 }
1557
1558 this->drawBitmapCommon(draw, bitmap, &tmpSrc, matrix, paint, flags);
1559 }
1560
drawDevice(const SkDraw & draw,SkBaseDevice * device,int x,int y,const SkPaint & paint)1561 void SkGpuDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device,
1562 int x, int y, const SkPaint& paint) {
1563 // clear of the source device must occur before CHECK_SHOULD_DRAW
1564 SkGpuDevice* dev = static_cast<SkGpuDevice*>(device);
1565 if (dev->fNeedClear) {
1566 // TODO: could check here whether we really need to draw at all
1567 dev->clear(0x0);
1568 }
1569
1570 // drawDevice is defined to be in device coords.
1571 CHECK_SHOULD_DRAW(draw, true);
1572
1573 GrRenderTarget* devRT = dev->accessRenderTarget();
1574 GrTexture* devTex;
1575 if (NULL == (devTex = devRT->asTexture())) {
1576 return;
1577 }
1578
1579 const SkBitmap& bm = dev->accessBitmap(false);
1580 int w = bm.width();
1581 int h = bm.height();
1582
1583 SkImageFilter* filter = paint.getImageFilter();
1584 // This bitmap will own the filtered result as a texture.
1585 SkBitmap filteredBitmap;
1586
1587 if (NULL != filter) {
1588 SkIPoint offset = SkIPoint::Make(0, 0);
1589 SkMatrix matrix(*draw.fMatrix);
1590 matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y));
1591 if (filter_texture(this, fContext, devTex, filter, w, h, matrix, &filteredBitmap,
1592 &offset)) {
1593 devTex = filteredBitmap.getTexture();
1594 w = filteredBitmap.width();
1595 h = filteredBitmap.height();
1596 x += offset.fX;
1597 y += offset.fY;
1598 } else {
1599 return;
1600 }
1601 }
1602
1603 GrPaint grPaint;
1604 grPaint.addColorTextureEffect(devTex, SkMatrix::I());
1605
1606 if (!skPaint2GrPaintNoShader(this, paint, true, false, &grPaint)) {
1607 return;
1608 }
1609
1610 SkRect dstRect = SkRect::MakeXYWH(SkIntToScalar(x),
1611 SkIntToScalar(y),
1612 SkIntToScalar(w),
1613 SkIntToScalar(h));
1614
1615 // The device being drawn may not fill up its texture (e.g. saveLayer uses approximate
1616 // scratch texture).
1617 SkRect srcRect = SkRect::MakeWH(SK_Scalar1 * w / devTex->width(),
1618 SK_Scalar1 * h / devTex->height());
1619
1620 fContext->drawRectToRect(grPaint, dstRect, srcRect);
1621 }
1622
canHandleImageFilter(SkImageFilter * filter)1623 bool SkGpuDevice::canHandleImageFilter(SkImageFilter* filter) {
1624 return filter->canFilterImageGPU();
1625 }
1626
filterImage(SkImageFilter * filter,const SkBitmap & src,const SkMatrix & ctm,SkBitmap * result,SkIPoint * offset)1627 bool SkGpuDevice::filterImage(SkImageFilter* filter, const SkBitmap& src,
1628 const SkMatrix& ctm,
1629 SkBitmap* result, SkIPoint* offset) {
1630 // want explicitly our impl, so guard against a subclass of us overriding it
1631 if (!this->SkGpuDevice::canHandleImageFilter(filter)) {
1632 return false;
1633 }
1634
1635 SkAutoLockPixels alp(src, !src.getTexture());
1636 if (!src.getTexture() && !src.readyToDraw()) {
1637 return false;
1638 }
1639
1640 GrTexture* texture;
1641 // We assume here that the filter will not attempt to tile the src. Otherwise, this cache lookup
1642 // must be pushed upstack.
1643 SkAutoCachedTexture act(this, src, NULL, &texture);
1644
1645 return filter_texture(this, fContext, texture, filter, src.width(), src.height(), ctm, result,
1646 offset);
1647 }
1648
1649 ///////////////////////////////////////////////////////////////////////////////
1650
1651 // must be in SkCanvas::VertexMode order
1652 static const GrPrimitiveType gVertexMode2PrimitiveType[] = {
1653 kTriangles_GrPrimitiveType,
1654 kTriangleStrip_GrPrimitiveType,
1655 kTriangleFan_GrPrimitiveType,
1656 };
1657
drawVertices(const SkDraw & draw,SkCanvas::VertexMode vmode,int vertexCount,const SkPoint vertices[],const SkPoint texs[],const SkColor colors[],SkXfermode * xmode,const uint16_t indices[],int indexCount,const SkPaint & paint)1658 void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode,
1659 int vertexCount, const SkPoint vertices[],
1660 const SkPoint texs[], const SkColor colors[],
1661 SkXfermode* xmode,
1662 const uint16_t indices[], int indexCount,
1663 const SkPaint& paint) {
1664 CHECK_SHOULD_DRAW(draw, false);
1665
1666 GrPaint grPaint;
1667 // we ignore the shader if texs is null.
1668 if (NULL == texs) {
1669 if (!skPaint2GrPaintNoShader(this, paint, false, NULL == colors, &grPaint)) {
1670 return;
1671 }
1672 } else {
1673 if (!skPaint2GrPaintShader(this, paint, NULL == colors, &grPaint)) {
1674 return;
1675 }
1676 }
1677
1678 if (NULL != xmode && NULL != texs && NULL != colors) {
1679 if (!SkXfermode::IsMode(xmode, SkXfermode::kModulate_Mode)) {
1680 SkDebugf("Unsupported vertex-color/texture xfer mode.\n");
1681 #if 0
1682 return
1683 #endif
1684 }
1685 }
1686
1687 SkAutoSTMalloc<128, GrColor> convertedColors(0);
1688 if (NULL != colors) {
1689 // need to convert byte order and from non-PM to PM
1690 convertedColors.reset(vertexCount);
1691 for (int i = 0; i < vertexCount; ++i) {
1692 convertedColors[i] = SkColor2GrColor(colors[i]);
1693 }
1694 colors = convertedColors.get();
1695 }
1696 fContext->drawVertices(grPaint,
1697 gVertexMode2PrimitiveType[vmode],
1698 vertexCount,
1699 (GrPoint*) vertices,
1700 (GrPoint*) texs,
1701 colors,
1702 indices,
1703 indexCount);
1704 }
1705
1706 ///////////////////////////////////////////////////////////////////////////////
1707
GlyphCacheAuxProc(void * data)1708 static void GlyphCacheAuxProc(void* data) {
1709 GrFontScaler* scaler = (GrFontScaler*)data;
1710 SkSafeUnref(scaler);
1711 }
1712
get_gr_font_scaler(SkGlyphCache * cache)1713 static GrFontScaler* get_gr_font_scaler(SkGlyphCache* cache) {
1714 void* auxData;
1715 GrFontScaler* scaler = NULL;
1716 if (cache->getAuxProcData(GlyphCacheAuxProc, &auxData)) {
1717 scaler = (GrFontScaler*)auxData;
1718 }
1719 if (NULL == scaler) {
1720 scaler = SkNEW_ARGS(SkGrFontScaler, (cache));
1721 cache->setAuxProc(GlyphCacheAuxProc, scaler);
1722 }
1723 return scaler;
1724 }
1725
SkGPU_Draw1Glyph(const SkDraw1Glyph & state,SkFixed fx,SkFixed fy,const SkGlyph & glyph)1726 static void SkGPU_Draw1Glyph(const SkDraw1Glyph& state,
1727 SkFixed fx, SkFixed fy,
1728 const SkGlyph& glyph) {
1729 SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0);
1730
1731 GrSkDrawProcs* procs = static_cast<GrSkDrawProcs*>(state.fDraw->fProcs);
1732
1733 if (NULL == procs->fFontScaler) {
1734 procs->fFontScaler = get_gr_font_scaler(state.fCache);
1735 }
1736
1737 procs->fTextContext->drawPackedGlyph(GrGlyph::Pack(glyph.getGlyphID(),
1738 glyph.getSubXFixed(),
1739 glyph.getSubYFixed()),
1740 SkFixedFloorToFixed(fx),
1741 SkFixedFloorToFixed(fy),
1742 procs->fFontScaler);
1743 }
1744
initDrawForText(GrTextContext * context)1745 SkDrawProcs* SkGpuDevice::initDrawForText(GrTextContext* context) {
1746
1747 // deferred allocation
1748 if (NULL == fDrawProcs) {
1749 fDrawProcs = SkNEW(GrSkDrawProcs);
1750 fDrawProcs->fD1GProc = SkGPU_Draw1Glyph;
1751 fDrawProcs->fContext = fContext;
1752 #if SK_DISTANCEFIELD_FONTS
1753 fDrawProcs->fFlags = 0;
1754 #endif
1755 }
1756
1757 // init our (and GL's) state
1758 fDrawProcs->fTextContext = context;
1759 fDrawProcs->fFontScaler = NULL;
1760 return fDrawProcs;
1761 }
1762
drawText(const SkDraw & draw,const void * text,size_t byteLength,SkScalar x,SkScalar y,const SkPaint & paint)1763 void SkGpuDevice::drawText(const SkDraw& draw, const void* text,
1764 size_t byteLength, SkScalar x, SkScalar y,
1765 const SkPaint& paint) {
1766 CHECK_SHOULD_DRAW(draw, false);
1767
1768 if (fContext->getMatrix().hasPerspective()) {
1769 // this guy will just call our drawPath()
1770 draw.drawText((const char*)text, byteLength, x, y, paint);
1771 } else {
1772 SkDraw myDraw(draw);
1773
1774 GrPaint grPaint;
1775 if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) {
1776 return;
1777 }
1778 #if SK_DISTANCEFIELD_FONTS
1779 if (paint.getRasterizer()) {
1780 #endif
1781 GrBitmapTextContext context(fContext, grPaint, paint.getColor());
1782 myDraw.fProcs = this->initDrawForText(&context);
1783 this->INHERITED::drawText(myDraw, text, byteLength, x, y, paint);
1784 #if SK_DISTANCEFIELD_FONTS
1785 } else {
1786 GrDistanceFieldTextContext context(fContext, grPaint, paint.getColor(),
1787 paint.getTextSize()/SkDrawProcs::kBaseDFFontSize);
1788 myDraw.fProcs = this->initDrawForText(&context);
1789 fDrawProcs->fFlags |= SkDrawProcs::kSkipBakedGlyphTransform_Flag;
1790 fDrawProcs->fFlags |= SkDrawProcs::kUseScaledGlyphs_Flag;
1791 this->INHERITED::drawText(myDraw, text, byteLength, x, y, paint);
1792 fDrawProcs->fFlags = 0;
1793 }
1794 #endif
1795 }
1796 }
1797
drawPosText(const SkDraw & draw,const void * text,size_t byteLength,const SkScalar pos[],SkScalar constY,int scalarsPerPos,const SkPaint & paint)1798 void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text,
1799 size_t byteLength, const SkScalar pos[],
1800 SkScalar constY, int scalarsPerPos,
1801 const SkPaint& paint) {
1802 CHECK_SHOULD_DRAW(draw, false);
1803
1804 if (fContext->getMatrix().hasPerspective()) {
1805 // this guy will just call our drawPath()
1806 draw.drawPosText((const char*)text, byteLength, pos, constY,
1807 scalarsPerPos, paint);
1808 } else {
1809 SkDraw myDraw(draw);
1810
1811 GrPaint grPaint;
1812 if (!skPaint2GrPaintShader(this, paint, true, &grPaint)) {
1813 return;
1814 }
1815 #if SK_DISTANCEFIELD_FONTS
1816 if (paint.getRasterizer()) {
1817 #endif
1818 GrBitmapTextContext context(fContext, grPaint, paint.getColor());
1819 myDraw.fProcs = this->initDrawForText(&context);
1820 this->INHERITED::drawPosText(myDraw, text, byteLength, pos, constY,
1821 scalarsPerPos, paint);
1822 #if SK_DISTANCEFIELD_FONTS
1823 } else {
1824 GrDistanceFieldTextContext context(fContext, grPaint, paint.getColor(),
1825 paint.getTextSize()/SkDrawProcs::kBaseDFFontSize);
1826 myDraw.fProcs = this->initDrawForText(&context);
1827 fDrawProcs->fFlags |= SkDrawProcs::kSkipBakedGlyphTransform_Flag;
1828 fDrawProcs->fFlags |= SkDrawProcs::kUseScaledGlyphs_Flag;
1829 this->INHERITED::drawPosText(myDraw, text, byteLength, pos, constY,
1830 scalarsPerPos, paint);
1831 fDrawProcs->fFlags = 0;
1832 }
1833 #endif
1834 }
1835 }
1836
drawTextOnPath(const SkDraw & draw,const void * text,size_t len,const SkPath & path,const SkMatrix * m,const SkPaint & paint)1837 void SkGpuDevice::drawTextOnPath(const SkDraw& draw, const void* text,
1838 size_t len, const SkPath& path,
1839 const SkMatrix* m, const SkPaint& paint) {
1840 CHECK_SHOULD_DRAW(draw, false);
1841
1842 SkASSERT(draw.fDevice == this);
1843 draw.drawTextOnPath((const char*)text, len, path, m, paint);
1844 }
1845
1846 ///////////////////////////////////////////////////////////////////////////////
1847
filterTextFlags(const SkPaint & paint,TextFlags * flags)1848 bool SkGpuDevice::filterTextFlags(const SkPaint& paint, TextFlags* flags) {
1849 if (!paint.isLCDRenderText()) {
1850 // we're cool with the paint as is
1851 return false;
1852 }
1853
1854 if (paint.getShader() ||
1855 paint.getXfermode() || // unless its srcover
1856 paint.getMaskFilter() ||
1857 paint.getRasterizer() ||
1858 paint.getColorFilter() ||
1859 paint.getPathEffect() ||
1860 paint.isFakeBoldText() ||
1861 paint.getStyle() != SkPaint::kFill_Style) {
1862 // turn off lcd
1863 flags->fFlags = paint.getFlags() & ~SkPaint::kLCDRenderText_Flag;
1864 flags->fHinting = paint.getHinting();
1865 return true;
1866 }
1867 // we're cool with the paint as is
1868 return false;
1869 }
1870
flush()1871 void SkGpuDevice::flush() {
1872 DO_DEFERRED_CLEAR();
1873 fContext->resolveRenderTarget(fRenderTarget);
1874 }
1875
1876 ///////////////////////////////////////////////////////////////////////////////
1877
onCreateCompatibleDevice(SkBitmap::Config config,int width,int height,bool isOpaque,Usage usage)1878 SkBaseDevice* SkGpuDevice::onCreateCompatibleDevice(SkBitmap::Config config,
1879 int width, int height,
1880 bool isOpaque,
1881 Usage usage) {
1882 GrTextureDesc desc;
1883 desc.fConfig = fRenderTarget->config();
1884 desc.fFlags = kRenderTarget_GrTextureFlagBit;
1885 desc.fWidth = width;
1886 desc.fHeight = height;
1887 desc.fSampleCnt = fRenderTarget->numSamples();
1888
1889 SkAutoTUnref<GrTexture> texture;
1890 // Skia's convention is to only clear a device if it is non-opaque.
1891 bool needClear = !isOpaque;
1892
1893 #if CACHE_COMPATIBLE_DEVICE_TEXTURES
1894 // layers are never draw in repeat modes, so we can request an approx
1895 // match and ignore any padding.
1896 const GrContext::ScratchTexMatch match = (kSaveLayer_Usage == usage) ?
1897 GrContext::kApprox_ScratchTexMatch :
1898 GrContext::kExact_ScratchTexMatch;
1899 texture.reset(fContext->lockAndRefScratchTexture(desc, match));
1900 #else
1901 texture.reset(fContext->createUncachedTexture(desc, NULL, 0));
1902 #endif
1903 if (NULL != texture.get()) {
1904 return SkNEW_ARGS(SkGpuDevice,(fContext, texture, needClear));
1905 } else {
1906 GrPrintf("---- failed to create compatible device texture [%d %d]\n", width, height);
1907 return NULL;
1908 }
1909 }
1910
SkGpuDevice(GrContext * context,GrTexture * texture,bool needClear)1911 SkGpuDevice::SkGpuDevice(GrContext* context,
1912 GrTexture* texture,
1913 bool needClear)
1914 : SkBitmapDevice(make_bitmap(context, texture->asRenderTarget())) {
1915
1916 SkASSERT(texture && texture->asRenderTarget());
1917 // This constructor is called from onCreateCompatibleDevice. It has locked the RT in the texture
1918 // cache. We pass true for the third argument so that it will get unlocked.
1919 this->initFromRenderTarget(context, texture->asRenderTarget(), true);
1920 fNeedClear = needClear;
1921 }
1922