• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkIntersections.h"
8 #include "SkPathOpsCubic.h"
9 #include "SkPathOpsLine.h"
10 
11 /*
12 Find the interection of a line and cubic by solving for valid t values.
13 
14 Analogous to line-quadratic intersection, solve line-cubic intersection by
15 representing the cubic as:
16   x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
17   y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
18 and the line as:
19   y = i*x + j  (if the line is more horizontal)
20 or:
21   x = i*y + j  (if the line is more vertical)
22 
23 Then using Mathematica, solve for the values of t where the cubic intersects the
24 line:
25 
26   (in) Resultant[
27         a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
28         e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
29   (out) -e     +   j     +
30        3 e t   - 3 f t   -
31        3 e t^2 + 6 f t^2 - 3 g t^2 +
32          e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
33      i ( a     -
34        3 a t + 3 b t +
35        3 a t^2 - 6 b t^2 + 3 c t^2 -
36          a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
37 
38 if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
39 
40   (in) Resultant[
41         a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
42         e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y,       y]
43   (out)  a     -   j     -
44        3 a t   + 3 b t   +
45        3 a t^2 - 6 b t^2 + 3 c t^2 -
46          a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
47      i ( e     -
48        3 e t   + 3 f t   +
49        3 e t^2 - 6 f t^2 + 3 g t^2 -
50          e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
51 
52 Solving this with Mathematica produces an expression with hundreds of terms;
53 instead, use Numeric Solutions recipe to solve the cubic.
54 
55 The near-horizontal case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
56     A =   (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d)     )
57     B = 3*(-( e - 2*f +   g    ) + i*( a - 2*b +   c    )     )
58     C = 3*(-(-e +   f          ) + i*(-a +   b          )     )
59     D =   (-( e                ) + i*( a                ) + j )
60 
61 The near-vertical case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
62     A =   ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h)     )
63     B = 3*( ( a - 2*b +   c    ) - i*( e - 2*f +   g    )     )
64     C = 3*( (-a +   b          ) - i*(-e +   f          )     )
65     D =   ( ( a                ) - i*( e                ) - j )
66 
67 For horizontal lines:
68 (in) Resultant[
69       a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
70       e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
71 (out)  e     -   j     -
72      3 e t   + 3 f t   +
73      3 e t^2 - 6 f t^2 + 3 g t^2 -
74        e t^3 + 3 f t^3 - 3 g t^3 + h t^3
75  */
76 
77 class LineCubicIntersections {
78 public:
79     enum PinTPoint {
80         kPointUninitialized,
81         kPointInitialized
82     };
83 
LineCubicIntersections(const SkDCubic & c,const SkDLine & l,SkIntersections * i)84     LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i)
85         : fCubic(c)
86         , fLine(l)
87         , fIntersections(i)
88         , fAllowNear(true) {
89         i->setMax(3);
90     }
91 
allowNear(bool allow)92     void allowNear(bool allow) {
93         fAllowNear = allow;
94     }
95 
96     // see parallel routine in line quadratic intersections
intersectRay(double roots[3])97     int intersectRay(double roots[3]) {
98         double adj = fLine[1].fX - fLine[0].fX;
99         double opp = fLine[1].fY - fLine[0].fY;
100         SkDCubic r;
101         for (int n = 0; n < 4; ++n) {
102             r[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp;
103         }
104         double A, B, C, D;
105         SkDCubic::Coefficients(&r[0].fX, &A, &B, &C, &D);
106         return SkDCubic::RootsValidT(A, B, C, D, roots);
107     }
108 
intersect()109     int intersect() {
110         addExactEndPoints();
111         if (fAllowNear) {
112             addNearEndPoints();
113         }
114         double rootVals[3];
115         int roots = intersectRay(rootVals);
116         for (int index = 0; index < roots; ++index) {
117             double cubicT = rootVals[index];
118             double lineT = findLineT(cubicT);
119             SkDPoint pt;
120             if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized)) {
121     #if ONE_OFF_DEBUG
122                 SkDPoint cPt = fCubic.ptAtT(cubicT);
123                 SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
124                         cPt.fX, cPt.fY);
125     #endif
126                 for (int inner = 0; inner < fIntersections->used(); ++inner) {
127                     if (fIntersections->pt(inner) != pt) {
128                         continue;
129                     }
130                     double existingCubicT = (*fIntersections)[0][inner];
131                     if (cubicT == existingCubicT) {
132                         goto skipInsert;
133                     }
134                     // check if midway on cubic is also same point. If so, discard this
135                     double cubicMidT = (existingCubicT + cubicT) / 2;
136                     SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT);
137                     if (cubicMidPt.approximatelyEqual(pt)) {
138                         goto skipInsert;
139                     }
140                 }
141                 fIntersections->insert(cubicT, lineT, pt);
142         skipInsert:
143                 ;
144             }
145         }
146         return fIntersections->used();
147     }
148 
horizontalIntersect(double axisIntercept,double roots[3])149     int horizontalIntersect(double axisIntercept, double roots[3]) {
150         double A, B, C, D;
151         SkDCubic::Coefficients(&fCubic[0].fY, &A, &B, &C, &D);
152         D -= axisIntercept;
153         return SkDCubic::RootsValidT(A, B, C, D, roots);
154     }
155 
horizontalIntersect(double axisIntercept,double left,double right,bool flipped)156     int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
157         addExactHorizontalEndPoints(left, right, axisIntercept);
158         if (fAllowNear) {
159             addNearHorizontalEndPoints(left, right, axisIntercept);
160         }
161         double rootVals[3];
162         int roots = horizontalIntersect(axisIntercept, rootVals);
163         for (int index = 0; index < roots; ++index) {
164             double cubicT = rootVals[index];
165             SkDPoint pt = fCubic.ptAtT(cubicT);
166             double lineT = (pt.fX - left) / (right - left);
167             if (pinTs(&cubicT, &lineT, &pt, kPointInitialized)) {
168                 fIntersections->insert(cubicT, lineT, pt);
169             }
170         }
171         if (flipped) {
172             fIntersections->flip();
173         }
174         return fIntersections->used();
175     }
176 
verticalIntersect(double axisIntercept,double roots[3])177     int verticalIntersect(double axisIntercept, double roots[3]) {
178         double A, B, C, D;
179         SkDCubic::Coefficients(&fCubic[0].fX, &A, &B, &C, &D);
180         D -= axisIntercept;
181         return SkDCubic::RootsValidT(A, B, C, D, roots);
182     }
183 
verticalIntersect(double axisIntercept,double top,double bottom,bool flipped)184     int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
185         addExactVerticalEndPoints(top, bottom, axisIntercept);
186         if (fAllowNear) {
187             addNearVerticalEndPoints(top, bottom, axisIntercept);
188         }
189         double rootVals[3];
190         int roots = verticalIntersect(axisIntercept, rootVals);
191         for (int index = 0; index < roots; ++index) {
192             double cubicT = rootVals[index];
193             SkDPoint pt = fCubic.ptAtT(cubicT);
194             double lineT = (pt.fY - top) / (bottom - top);
195             if (pinTs(&cubicT, &lineT, &pt, kPointInitialized)) {
196                 fIntersections->insert(cubicT, lineT, pt);
197             }
198         }
199         if (flipped) {
200             fIntersections->flip();
201         }
202         return fIntersections->used();
203     }
204 
205     protected:
206 
addExactEndPoints()207     void addExactEndPoints() {
208         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
209             double lineT = fLine.exactPoint(fCubic[cIndex]);
210             if (lineT < 0) {
211                 continue;
212             }
213             double cubicT = (double) (cIndex >> 1);
214             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
215         }
216     }
217 
218     /* Note that this does not look for endpoints of the line that are near the cubic.
219        These points are found later when check ends looks for missing points */
addNearEndPoints()220     void addNearEndPoints() {
221         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
222             double cubicT = (double) (cIndex >> 1);
223             if (fIntersections->hasT(cubicT)) {
224                 continue;
225             }
226             double lineT = fLine.nearPoint(fCubic[cIndex]);
227             if (lineT < 0) {
228                 continue;
229             }
230             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
231         }
232     }
233 
addExactHorizontalEndPoints(double left,double right,double y)234     void addExactHorizontalEndPoints(double left, double right, double y) {
235         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
236             double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y);
237             if (lineT < 0) {
238                 continue;
239             }
240             double cubicT = (double) (cIndex >> 1);
241             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
242         }
243     }
244 
addNearHorizontalEndPoints(double left,double right,double y)245     void addNearHorizontalEndPoints(double left, double right, double y) {
246         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
247             double cubicT = (double) (cIndex >> 1);
248             if (fIntersections->hasT(cubicT)) {
249                 continue;
250             }
251             double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y);
252             if (lineT < 0) {
253                 continue;
254             }
255             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
256         }
257         // FIXME: see if line end is nearly on cubic
258     }
259 
addExactVerticalEndPoints(double top,double bottom,double x)260     void addExactVerticalEndPoints(double top, double bottom, double x) {
261         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
262             double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x);
263             if (lineT < 0) {
264                 continue;
265             }
266             double cubicT = (double) (cIndex >> 1);
267             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
268         }
269     }
270 
addNearVerticalEndPoints(double top,double bottom,double x)271     void addNearVerticalEndPoints(double top, double bottom, double x) {
272         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
273             double cubicT = (double) (cIndex >> 1);
274             if (fIntersections->hasT(cubicT)) {
275                 continue;
276             }
277             double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x);
278             if (lineT < 0) {
279                 continue;
280             }
281             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
282         }
283         // FIXME: see if line end is nearly on cubic
284     }
285 
findLineT(double t)286     double findLineT(double t) {
287         SkDPoint xy = fCubic.ptAtT(t);
288         double dx = fLine[1].fX - fLine[0].fX;
289         double dy = fLine[1].fY - fLine[0].fY;
290         if (fabs(dx) > fabs(dy)) {
291             return (xy.fX - fLine[0].fX) / dx;
292         }
293         return (xy.fY - fLine[0].fY) / dy;
294     }
295 
pinTs(double * cubicT,double * lineT,SkDPoint * pt,PinTPoint ptSet)296     bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
297         if (!approximately_one_or_less(*lineT)) {
298             return false;
299         }
300         if (!approximately_zero_or_more(*lineT)) {
301             return false;
302         }
303         double cT = *cubicT = SkPinT(*cubicT);
304         double lT = *lineT = SkPinT(*lineT);
305         if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) {
306             *pt = fLine.ptAtT(lT);
307         } else if (ptSet == kPointUninitialized) {
308             *pt = fCubic.ptAtT(cT);
309         }
310         SkPoint gridPt = pt->asSkPoint();
311         if (gridPt == fLine[0].asSkPoint()) {
312             *lineT = 0;
313         } else if (gridPt == fLine[1].asSkPoint()) {
314             *lineT = 1;
315         }
316         if (gridPt == fCubic[0].asSkPoint() && approximately_equal(*cubicT, 0)) {
317             *cubicT = 0;
318         } else if (gridPt == fCubic[3].asSkPoint() && approximately_equal(*cubicT, 1)) {
319             *cubicT = 1;
320         }
321         return true;
322     }
323 
324 private:
325     const SkDCubic& fCubic;
326     const SkDLine& fLine;
327     SkIntersections* fIntersections;
328     bool fAllowNear;
329 };
330 
horizontal(const SkDCubic & cubic,double left,double right,double y,bool flipped)331 int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y,
332         bool flipped) {
333     SkDLine line = {{{ left, y }, { right, y }}};
334     LineCubicIntersections c(cubic, line, this);
335     return c.horizontalIntersect(y, left, right, flipped);
336 }
337 
vertical(const SkDCubic & cubic,double top,double bottom,double x,bool flipped)338 int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x,
339         bool flipped) {
340     SkDLine line = {{{ x, top }, { x, bottom }}};
341     LineCubicIntersections c(cubic, line, this);
342     return c.verticalIntersect(x, top, bottom, flipped);
343 }
344 
intersect(const SkDCubic & cubic,const SkDLine & line)345 int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) {
346     LineCubicIntersections c(cubic, line, this);
347     c.allowNear(fAllowNear);
348     return c.intersect();
349 }
350 
intersectRay(const SkDCubic & cubic,const SkDLine & line)351 int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) {
352     LineCubicIntersections c(cubic, line, this);
353     fUsed = c.intersectRay(fT[0]);
354     for (int index = 0; index < fUsed; ++index) {
355         fPt[index] = cubic.ptAtT(fT[0][index]);
356     }
357     return fUsed;
358 }
359