• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkLineParameters.h"
8 #include "SkPathOpsCubic.h"
9 #include "SkPathOpsLine.h"
10 #include "SkPathOpsQuad.h"
11 #include "SkPathOpsRect.h"
12 
13 const int SkDCubic::gPrecisionUnit = 256;  // FIXME: test different values in test framework
14 
15 // FIXME: cache keep the bounds and/or precision with the caller?
calcPrecision() const16 double SkDCubic::calcPrecision() const {
17     SkDRect dRect;
18     dRect.setBounds(*this);  // OPTIMIZATION: just use setRawBounds ?
19     double width = dRect.fRight - dRect.fLeft;
20     double height = dRect.fBottom - dRect.fTop;
21     return (width > height ? width : height) / gPrecisionUnit;
22 }
23 
clockwise() const24 bool SkDCubic::clockwise() const {
25     double sum = (fPts[0].fX - fPts[3].fX) * (fPts[0].fY + fPts[3].fY);
26     for (int idx = 0; idx < 3; ++idx) {
27         sum += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
28     }
29     return sum <= 0;
30 }
31 
Coefficients(const double * src,double * A,double * B,double * C,double * D)32 void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C, double* D) {
33     *A = src[6];  // d
34     *B = src[4] * 3;  // 3*c
35     *C = src[2] * 3;  // 3*b
36     *D = src[0];  // a
37     *A -= *D - *C + *B;     // A =   -a + 3*b - 3*c + d
38     *B += 3 * *D - 2 * *C;  // B =  3*a - 6*b + 3*c
39     *C -= 3 * *D;           // C = -3*a + 3*b
40 }
41 
controlsContainedByEnds() const42 bool SkDCubic::controlsContainedByEnds() const {
43     SkDVector startTan = fPts[1] - fPts[0];
44     if (startTan.fX == 0 && startTan.fY == 0) {
45         startTan = fPts[2] - fPts[0];
46     }
47     SkDVector endTan = fPts[2] - fPts[3];
48     if (endTan.fX == 0 && endTan.fY == 0) {
49         endTan = fPts[1] - fPts[3];
50     }
51     if (startTan.dot(endTan) >= 0) {
52         return false;
53     }
54     SkDLine startEdge = {{fPts[0], fPts[0]}};
55     startEdge[1].fX -= startTan.fY;
56     startEdge[1].fY += startTan.fX;
57     SkDLine endEdge = {{fPts[3], fPts[3]}};
58     endEdge[1].fX -= endTan.fY;
59     endEdge[1].fY += endTan.fX;
60     double leftStart1 = startEdge.isLeft(fPts[1]);
61     if (leftStart1 * startEdge.isLeft(fPts[2]) < 0) {
62         return false;
63     }
64     double leftEnd1 = endEdge.isLeft(fPts[1]);
65     if (leftEnd1 * endEdge.isLeft(fPts[2]) < 0) {
66         return false;
67     }
68     return leftStart1 * leftEnd1 >= 0;
69 }
70 
endsAreExtremaInXOrY() const71 bool SkDCubic::endsAreExtremaInXOrY() const {
72     return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX)
73             && between(fPts[0].fX, fPts[2].fX, fPts[3].fX))
74             || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
75             && between(fPts[0].fY, fPts[2].fY, fPts[3].fY));
76 }
77 
isLinear(int startIndex,int endIndex) const78 bool SkDCubic::isLinear(int startIndex, int endIndex) const {
79     SkLineParameters lineParameters;
80     lineParameters.cubicEndPoints(*this, startIndex, endIndex);
81     // FIXME: maybe it's possible to avoid this and compare non-normalized
82     lineParameters.normalize();
83     double distance = lineParameters.controlPtDistance(*this, 1);
84     if (!approximately_zero(distance)) {
85         return false;
86     }
87     distance = lineParameters.controlPtDistance(*this, 2);
88     return approximately_zero(distance);
89 }
90 
monotonicInY() const91 bool SkDCubic::monotonicInY() const {
92     return between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
93             && between(fPts[0].fY, fPts[2].fY, fPts[3].fY);
94 }
95 
serpentine() const96 bool SkDCubic::serpentine() const {
97     if (!controlsContainedByEnds()) {
98         return false;
99     }
100     double wiggle = (fPts[0].fX - fPts[2].fX) * (fPts[0].fY + fPts[2].fY);
101     for (int idx = 0; idx < 2; ++idx) {
102         wiggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
103     }
104     double waggle = (fPts[1].fX - fPts[3].fX) * (fPts[1].fY + fPts[3].fY);
105     for (int idx = 1; idx < 3; ++idx) {
106         waggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
107     }
108     return wiggle * waggle < 0;
109 }
110 
111 // cubic roots
112 
113 static const double PI = 3.141592653589793;
114 
115 // from SkGeometry.cpp (and Numeric Solutions, 5.6)
RootsValidT(double A,double B,double C,double D,double t[3])116 int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) {
117     double s[3];
118     int realRoots = RootsReal(A, B, C, D, s);
119     int foundRoots = SkDQuad::AddValidTs(s, realRoots, t);
120     return foundRoots;
121 }
122 
RootsReal(double A,double B,double C,double D,double s[3])123 int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) {
124 #ifdef SK_DEBUG
125     // create a string mathematica understands
126     // GDB set print repe 15 # if repeated digits is a bother
127     //     set print elements 400 # if line doesn't fit
128     char str[1024];
129     sk_bzero(str, sizeof(str));
130     SK_SNPRINTF(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
131             A, B, C, D);
132     SkPathOpsDebug::MathematicaIze(str, sizeof(str));
133 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
134     SkDebugf("%s\n", str);
135 #endif
136 #endif
137     if (approximately_zero(A)
138             && approximately_zero_when_compared_to(A, B)
139             && approximately_zero_when_compared_to(A, C)
140             && approximately_zero_when_compared_to(A, D)) {  // we're just a quadratic
141         return SkDQuad::RootsReal(B, C, D, s);
142     }
143     if (approximately_zero_when_compared_to(D, A)
144             && approximately_zero_when_compared_to(D, B)
145             && approximately_zero_when_compared_to(D, C)) {  // 0 is one root
146         int num = SkDQuad::RootsReal(A, B, C, s);
147         for (int i = 0; i < num; ++i) {
148             if (approximately_zero(s[i])) {
149                 return num;
150             }
151         }
152         s[num++] = 0;
153         return num;
154     }
155     if (approximately_zero(A + B + C + D)) {  // 1 is one root
156         int num = SkDQuad::RootsReal(A, A + B, -D, s);
157         for (int i = 0; i < num; ++i) {
158             if (AlmostDequalUlps(s[i], 1)) {
159                 return num;
160             }
161         }
162         s[num++] = 1;
163         return num;
164     }
165     double a, b, c;
166     {
167         double invA = 1 / A;
168         a = B * invA;
169         b = C * invA;
170         c = D * invA;
171     }
172     double a2 = a * a;
173     double Q = (a2 - b * 3) / 9;
174     double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
175     double R2 = R * R;
176     double Q3 = Q * Q * Q;
177     double R2MinusQ3 = R2 - Q3;
178     double adiv3 = a / 3;
179     double r;
180     double* roots = s;
181     if (R2MinusQ3 < 0) {   // we have 3 real roots
182         double theta = acos(R / sqrt(Q3));
183         double neg2RootQ = -2 * sqrt(Q);
184 
185         r = neg2RootQ * cos(theta / 3) - adiv3;
186         *roots++ = r;
187 
188         r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
189         if (!AlmostDequalUlps(s[0], r)) {
190             *roots++ = r;
191         }
192         r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
193         if (!AlmostDequalUlps(s[0], r) && (roots - s == 1 || !AlmostDequalUlps(s[1], r))) {
194             *roots++ = r;
195         }
196     } else {  // we have 1 real root
197         double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
198         double A = fabs(R) + sqrtR2MinusQ3;
199         A = SkDCubeRoot(A);
200         if (R > 0) {
201             A = -A;
202         }
203         if (A != 0) {
204             A += Q / A;
205         }
206         r = A - adiv3;
207         *roots++ = r;
208         if (AlmostDequalUlps(R2, Q3)) {
209             r = -A / 2 - adiv3;
210             if (!AlmostDequalUlps(s[0], r)) {
211                 *roots++ = r;
212             }
213         }
214     }
215     return static_cast<int>(roots - s);
216 }
217 
218 // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
219 // c(t)  = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
220 // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
221 //       = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
derivative_at_t(const double * src,double t)222 static double derivative_at_t(const double* src, double t) {
223     double one_t = 1 - t;
224     double a = src[0];
225     double b = src[2];
226     double c = src[4];
227     double d = src[6];
228     return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
229 }
230 
231 // OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
dxdyAtT(double t) const232 SkDVector SkDCubic::dxdyAtT(double t) const {
233     SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) };
234     return result;
235 }
236 
237 // OPTIMIZE? share code with formulate_F1DotF2
findInflections(double tValues[]) const238 int SkDCubic::findInflections(double tValues[]) const {
239     double Ax = fPts[1].fX - fPts[0].fX;
240     double Ay = fPts[1].fY - fPts[0].fY;
241     double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX;
242     double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY;
243     double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX;
244     double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY;
245     return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues);
246 }
247 
formulate_F1DotF2(const double src[],double coeff[4])248 static void formulate_F1DotF2(const double src[], double coeff[4]) {
249     double a = src[2] - src[0];
250     double b = src[4] - 2 * src[2] + src[0];
251     double c = src[6] + 3 * (src[2] - src[4]) - src[0];
252     coeff[0] = c * c;
253     coeff[1] = 3 * b * c;
254     coeff[2] = 2 * b * b + c * a;
255     coeff[3] = a * b;
256 }
257 
258 /** SkDCubic'(t) = At^2 + Bt + C, where
259     A = 3(-a + 3(b - c) + d)
260     B = 6(a - 2b + c)
261     C = 3(b - a)
262     Solve for t, keeping only those that fit between 0 < t < 1
263 */
FindExtrema(double a,double b,double c,double d,double tValues[2])264 int SkDCubic::FindExtrema(double a, double b, double c, double d, double tValues[2]) {
265     // we divide A,B,C by 3 to simplify
266     double A = d - a + 3*(b - c);
267     double B = 2*(a - b - b + c);
268     double C = b - a;
269 
270     return SkDQuad::RootsValidT(A, B, C, tValues);
271 }
272 
273 /*  from SkGeometry.cpp
274     Looking for F' dot F'' == 0
275 
276     A = b - a
277     B = c - 2b + a
278     C = d - 3c + 3b - a
279 
280     F' = 3Ct^2 + 6Bt + 3A
281     F'' = 6Ct + 6B
282 
283     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
284 */
findMaxCurvature(double tValues[]) const285 int SkDCubic::findMaxCurvature(double tValues[]) const {
286     double coeffX[4], coeffY[4];
287     int i;
288     formulate_F1DotF2(&fPts[0].fX, coeffX);
289     formulate_F1DotF2(&fPts[0].fY, coeffY);
290     for (i = 0; i < 4; i++) {
291         coeffX[i] = coeffX[i] + coeffY[i];
292     }
293     return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues);
294 }
295 
top(double startT,double endT) const296 SkDPoint SkDCubic::top(double startT, double endT) const {
297     SkDCubic sub = subDivide(startT, endT);
298     SkDPoint topPt = sub[0];
299     if (topPt.fY > sub[3].fY || (topPt.fY == sub[3].fY && topPt.fX > sub[3].fX)) {
300         topPt = sub[3];
301     }
302     double extremeTs[2];
303     if (!sub.monotonicInY()) {
304         int roots = FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, sub[3].fY, extremeTs);
305         for (int index = 0; index < roots; ++index) {
306             double t = startT + (endT - startT) * extremeTs[index];
307             SkDPoint mid = ptAtT(t);
308             if (topPt.fY > mid.fY || (topPt.fY == mid.fY && topPt.fX > mid.fX)) {
309                 topPt = mid;
310             }
311         }
312     }
313     return topPt;
314 }
315 
ptAtT(double t) const316 SkDPoint SkDCubic::ptAtT(double t) const {
317     if (0 == t) {
318         return fPts[0];
319     }
320     if (1 == t) {
321         return fPts[3];
322     }
323     double one_t = 1 - t;
324     double one_t2 = one_t * one_t;
325     double a = one_t2 * one_t;
326     double b = 3 * one_t2 * t;
327     double t2 = t * t;
328     double c = 3 * one_t * t2;
329     double d = t2 * t;
330     SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX,
331             a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY};
332     return result;
333 }
334 
335 /*
336  Given a cubic c, t1, and t2, find a small cubic segment.
337 
338  The new cubic is defined as points A, B, C, and D, where
339  s1 = 1 - t1
340  s2 = 1 - t2
341  A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1
342  D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2
343 
344  We don't have B or C. So We define two equations to isolate them.
345  First, compute two reference T values 1/3 and 2/3 from t1 to t2:
346 
347  c(at (2*t1 + t2)/3) == E
348  c(at (t1 + 2*t2)/3) == F
349 
350  Next, compute where those values must be if we know the values of B and C:
351 
352  _12   =  A*2/3 + B*1/3
353  12_   =  A*1/3 + B*2/3
354  _23   =  B*2/3 + C*1/3
355  23_   =  B*1/3 + C*2/3
356  _34   =  C*2/3 + D*1/3
357  34_   =  C*1/3 + D*2/3
358  _123  = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9
359  123_  = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9
360  _234  = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9
361  234_  = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9
362  _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3
363        =  A*8/27 + B*12/27 + C*6/27 + D*1/27
364        =  E
365  1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3
366        =  A*1/27 + B*6/27 + C*12/27 + D*8/27
367        =  F
368  E*27  =  A*8    + B*12   + C*6     + D
369  F*27  =  A      + B*6    + C*12    + D*8
370 
371 Group the known values on one side:
372 
373  M       = E*27 - A*8 - D     = B*12 + C* 6
374  N       = F*27 - A   - D*8   = B* 6 + C*12
375  M*2 - N = B*18
376  N*2 - M = C*18
377  B       = (M*2 - N)/18
378  C       = (N*2 - M)/18
379  */
380 
interp_cubic_coords(const double * src,double t)381 static double interp_cubic_coords(const double* src, double t) {
382     double ab = SkDInterp(src[0], src[2], t);
383     double bc = SkDInterp(src[2], src[4], t);
384     double cd = SkDInterp(src[4], src[6], t);
385     double abc = SkDInterp(ab, bc, t);
386     double bcd = SkDInterp(bc, cd, t);
387     double abcd = SkDInterp(abc, bcd, t);
388     return abcd;
389 }
390 
subDivide(double t1,double t2) const391 SkDCubic SkDCubic::subDivide(double t1, double t2) const {
392     if (t1 == 0 || t2 == 1) {
393         if (t1 == 0 && t2 == 1) {
394             return *this;
395         }
396         SkDCubicPair pair = chopAt(t1 == 0 ? t2 : t1);
397         SkDCubic dst = t1 == 0 ? pair.first() : pair.second();
398         return dst;
399     }
400     SkDCubic dst;
401     double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1);
402     double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1);
403     double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3);
404     double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3);
405     double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3);
406     double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3);
407     double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2);
408     double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2);
409     double mx = ex * 27 - ax * 8 - dx;
410     double my = ey * 27 - ay * 8 - dy;
411     double nx = fx * 27 - ax - dx * 8;
412     double ny = fy * 27 - ay - dy * 8;
413     /* bx = */ dst[1].fX = (mx * 2 - nx) / 18;
414     /* by = */ dst[1].fY = (my * 2 - ny) / 18;
415     /* cx = */ dst[2].fX = (nx * 2 - mx) / 18;
416     /* cy = */ dst[2].fY = (ny * 2 - my) / 18;
417     // FIXME: call align() ?
418     return dst;
419 }
420 
align(int endIndex,int ctrlIndex,SkDPoint * dstPt) const421 void SkDCubic::align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const {
422     if (fPts[endIndex].fX == fPts[ctrlIndex].fX) {
423         dstPt->fX = fPts[endIndex].fX;
424     }
425     if (fPts[endIndex].fY == fPts[ctrlIndex].fY) {
426         dstPt->fY = fPts[endIndex].fY;
427     }
428 }
429 
subDivide(const SkDPoint & a,const SkDPoint & d,double t1,double t2,SkDPoint dst[2]) const430 void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d,
431                          double t1, double t2, SkDPoint dst[2]) const {
432     SkASSERT(t1 != t2);
433 #if 0
434     double ex = interp_cubic_coords(&fPts[0].fX, (t1 * 2 + t2) / 3);
435     double ey = interp_cubic_coords(&fPts[0].fY, (t1 * 2 + t2) / 3);
436     double fx = interp_cubic_coords(&fPts[0].fX, (t1 + t2 * 2) / 3);
437     double fy = interp_cubic_coords(&fPts[0].fY, (t1 + t2 * 2) / 3);
438     double mx = ex * 27 - a.fX * 8 - d.fX;
439     double my = ey * 27 - a.fY * 8 - d.fY;
440     double nx = fx * 27 - a.fX - d.fX * 8;
441     double ny = fy * 27 - a.fY - d.fY * 8;
442     /* bx = */ dst[0].fX = (mx * 2 - nx) / 18;
443     /* by = */ dst[0].fY = (my * 2 - ny) / 18;
444     /* cx = */ dst[1].fX = (nx * 2 - mx) / 18;
445     /* cy = */ dst[1].fY = (ny * 2 - my) / 18;
446 #else
447     // this approach assumes that the control points computed directly are accurate enough
448     SkDCubic sub = subDivide(t1, t2);
449     dst[0] = sub[1] + (a - sub[0]);
450     dst[1] = sub[2] + (d - sub[3]);
451 #endif
452     if (t1 == 0 || t2 == 0) {
453         align(0, 1, t1 == 0 ? &dst[0] : &dst[1]);
454     }
455     if (t1 == 1 || t2 == 1) {
456         align(3, 2, t1 == 1 ? &dst[0] : &dst[1]);
457     }
458     if (precisely_subdivide_equal(dst[0].fX, a.fX)) {
459         dst[0].fX = a.fX;
460     }
461     if (precisely_subdivide_equal(dst[0].fY, a.fY)) {
462         dst[0].fY = a.fY;
463     }
464     if (precisely_subdivide_equal(dst[1].fX, d.fX)) {
465         dst[1].fX = d.fX;
466     }
467     if (precisely_subdivide_equal(dst[1].fY, d.fY)) {
468         dst[1].fY = d.fY;
469     }
470 }
471 
472 /* classic one t subdivision */
interp_cubic_coords(const double * src,double * dst,double t)473 static void interp_cubic_coords(const double* src, double* dst, double t) {
474     double ab = SkDInterp(src[0], src[2], t);
475     double bc = SkDInterp(src[2], src[4], t);
476     double cd = SkDInterp(src[4], src[6], t);
477     double abc = SkDInterp(ab, bc, t);
478     double bcd = SkDInterp(bc, cd, t);
479     double abcd = SkDInterp(abc, bcd, t);
480 
481     dst[0] = src[0];
482     dst[2] = ab;
483     dst[4] = abc;
484     dst[6] = abcd;
485     dst[8] = bcd;
486     dst[10] = cd;
487     dst[12] = src[6];
488 }
489 
chopAt(double t) const490 SkDCubicPair SkDCubic::chopAt(double t) const {
491     SkDCubicPair dst;
492     if (t == 0.5) {
493         dst.pts[0] = fPts[0];
494         dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2;
495         dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2;
496         dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4;
497         dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4;
498         dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8;
499         dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8;
500         dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4;
501         dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4;
502         dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2;
503         dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2;
504         dst.pts[6] = fPts[3];
505         return dst;
506     }
507     interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t);
508     interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t);
509     return dst;
510 }
511 
512 #ifdef SK_DEBUG
dump()513 void SkDCubic::dump() {
514     SkDebugf("{{");
515     int index = 0;
516     do {
517         fPts[index].dump();
518         SkDebugf(", ");
519     } while (++index < 3);
520     fPts[index].dump();
521     SkDebugf("}}\n");
522 }
523 #endif
524