• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkIntersections.h"
8 #include "SkLineParameters.h"
9 #include "SkPathOpsCubic.h"
10 #include "SkPathOpsQuad.h"
11 #include "SkPathOpsTriangle.h"
12 
13 // from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html
14 // (currently only used by testing)
nearestT(const SkDPoint & pt) const15 double SkDQuad::nearestT(const SkDPoint& pt) const {
16     SkDVector pos = fPts[0] - pt;
17     // search points P of bezier curve with PM.(dP / dt) = 0
18     // a calculus leads to a 3d degree equation :
19     SkDVector A = fPts[1] - fPts[0];
20     SkDVector B = fPts[2] - fPts[1];
21     B -= A;
22     double a = B.dot(B);
23     double b = 3 * A.dot(B);
24     double c = 2 * A.dot(A) + pos.dot(B);
25     double d = pos.dot(A);
26     double ts[3];
27     int roots = SkDCubic::RootsValidT(a, b, c, d, ts);
28     double d0 = pt.distanceSquared(fPts[0]);
29     double d2 = pt.distanceSquared(fPts[2]);
30     double distMin = SkTMin(d0, d2);
31     int bestIndex = -1;
32     for (int index = 0; index < roots; ++index) {
33         SkDPoint onQuad = ptAtT(ts[index]);
34         double dist = pt.distanceSquared(onQuad);
35         if (distMin > dist) {
36             distMin = dist;
37             bestIndex = index;
38         }
39     }
40     if (bestIndex >= 0) {
41         return ts[bestIndex];
42     }
43     return d0 < d2 ? 0 : 1;
44 }
45 
pointInHull(const SkDPoint & pt) const46 bool SkDQuad::pointInHull(const SkDPoint& pt) const {
47     return ((const SkDTriangle&) fPts).contains(pt);
48 }
49 
top(double startT,double endT) const50 SkDPoint SkDQuad::top(double startT, double endT) const {
51     SkDQuad sub = subDivide(startT, endT);
52     SkDPoint topPt = sub[0];
53     if (topPt.fY > sub[2].fY || (topPt.fY == sub[2].fY && topPt.fX > sub[2].fX)) {
54         topPt = sub[2];
55     }
56     if (!between(sub[0].fY, sub[1].fY, sub[2].fY)) {
57         double extremeT;
58         if (FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, &extremeT)) {
59             extremeT = startT + (endT - startT) * extremeT;
60             SkDPoint test = ptAtT(extremeT);
61             if (topPt.fY > test.fY || (topPt.fY == test.fY && topPt.fX > test.fX)) {
62                 topPt = test;
63             }
64         }
65     }
66     return topPt;
67 }
68 
AddValidTs(double s[],int realRoots,double * t)69 int SkDQuad::AddValidTs(double s[], int realRoots, double* t) {
70     int foundRoots = 0;
71     for (int index = 0; index < realRoots; ++index) {
72         double tValue = s[index];
73         if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) {
74             if (approximately_less_than_zero(tValue)) {
75                 tValue = 0;
76             } else if (approximately_greater_than_one(tValue)) {
77                 tValue = 1;
78             }
79             for (int idx2 = 0; idx2 < foundRoots; ++idx2) {
80                 if (approximately_equal(t[idx2], tValue)) {
81                     goto nextRoot;
82                 }
83             }
84             t[foundRoots++] = tValue;
85         }
86 nextRoot:
87         {}
88     }
89     return foundRoots;
90 }
91 
92 // note: caller expects multiple results to be sorted smaller first
93 // note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting
94 //  analysis of the quadratic equation, suggesting why the following looks at
95 //  the sign of B -- and further suggesting that the greatest loss of precision
96 //  is in b squared less two a c
RootsValidT(double A,double B,double C,double t[2])97 int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) {
98     double s[2];
99     int realRoots = RootsReal(A, B, C, s);
100     int foundRoots = AddValidTs(s, realRoots, t);
101     return foundRoots;
102 }
103 
104 /*
105 Numeric Solutions (5.6) suggests to solve the quadratic by computing
106        Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C))
107 and using the roots
108       t1 = Q / A
109       t2 = C / Q
110 */
111 // this does not discard real roots <= 0 or >= 1
RootsReal(const double A,const double B,const double C,double s[2])112 int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) {
113     const double p = B / (2 * A);
114     const double q = C / A;
115     if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) {
116         if (approximately_zero(B)) {
117             s[0] = 0;
118             return C == 0;
119         }
120         s[0] = -C / B;
121         return 1;
122     }
123     /* normal form: x^2 + px + q = 0 */
124     const double p2 = p * p;
125     if (!AlmostDequalUlps(p2, q) && p2 < q) {
126         return 0;
127     }
128     double sqrt_D = 0;
129     if (p2 > q) {
130         sqrt_D = sqrt(p2 - q);
131     }
132     s[0] = sqrt_D - p;
133     s[1] = -sqrt_D - p;
134     return 1 + !AlmostDequalUlps(s[0], s[1]);
135 }
136 
isLinear(int startIndex,int endIndex) const137 bool SkDQuad::isLinear(int startIndex, int endIndex) const {
138     SkLineParameters lineParameters;
139     lineParameters.quadEndPoints(*this, startIndex, endIndex);
140     // FIXME: maybe it's possible to avoid this and compare non-normalized
141     lineParameters.normalize();
142     double distance = lineParameters.controlPtDistance(*this);
143     return approximately_zero(distance);
144 }
145 
toCubic() const146 SkDCubic SkDQuad::toCubic() const {
147     SkDCubic cubic;
148     cubic[0] = fPts[0];
149     cubic[2] = fPts[1];
150     cubic[3] = fPts[2];
151     cubic[1].fX = (cubic[0].fX + cubic[2].fX * 2) / 3;
152     cubic[1].fY = (cubic[0].fY + cubic[2].fY * 2) / 3;
153     cubic[2].fX = (cubic[3].fX + cubic[2].fX * 2) / 3;
154     cubic[2].fY = (cubic[3].fY + cubic[2].fY * 2) / 3;
155     return cubic;
156 }
157 
dxdyAtT(double t) const158 SkDVector SkDQuad::dxdyAtT(double t) const {
159     double a = t - 1;
160     double b = 1 - 2 * t;
161     double c = t;
162     SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX,
163             a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY };
164     return result;
165 }
166 
167 // OPTIMIZE: assert if caller passes in t == 0 / t == 1 ?
ptAtT(double t) const168 SkDPoint SkDQuad::ptAtT(double t) const {
169     if (0 == t) {
170         return fPts[0];
171     }
172     if (1 == t) {
173         return fPts[2];
174     }
175     double one_t = 1 - t;
176     double a = one_t * one_t;
177     double b = 2 * one_t * t;
178     double c = t * t;
179     SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX,
180             a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY };
181     return result;
182 }
183 
184 /*
185 Given a quadratic q, t1, and t2, find a small quadratic segment.
186 
187 The new quadratic is defined by A, B, and C, where
188  A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1
189  C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1
190 
191 To find B, compute the point halfway between t1 and t2:
192 
193 q(at (t1 + t2)/2) == D
194 
195 Next, compute where D must be if we know the value of B:
196 
197 _12 = A/2 + B/2
198 12_ = B/2 + C/2
199 123 = A/4 + B/2 + C/4
200     = D
201 
202 Group the known values on one side:
203 
204 B   = D*2 - A/2 - C/2
205 */
206 
interp_quad_coords(const double * src,double t)207 static double interp_quad_coords(const double* src, double t) {
208     double ab = SkDInterp(src[0], src[2], t);
209     double bc = SkDInterp(src[2], src[4], t);
210     double abc = SkDInterp(ab, bc, t);
211     return abc;
212 }
213 
monotonicInY() const214 bool SkDQuad::monotonicInY() const {
215     return between(fPts[0].fY, fPts[1].fY, fPts[2].fY);
216 }
217 
subDivide(double t1,double t2) const218 SkDQuad SkDQuad::subDivide(double t1, double t2) const {
219     SkDQuad dst;
220     double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1);
221     double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1);
222     double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2);
223     double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2);
224     double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2);
225     double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2);
226     /* bx = */ dst[1].fX = 2*dx - (ax + cx)/2;
227     /* by = */ dst[1].fY = 2*dy - (ay + cy)/2;
228     return dst;
229 }
230 
align(int endIndex,SkDPoint * dstPt) const231 void SkDQuad::align(int endIndex, SkDPoint* dstPt) const {
232     if (fPts[endIndex].fX == fPts[1].fX) {
233         dstPt->fX = fPts[endIndex].fX;
234     }
235     if (fPts[endIndex].fY == fPts[1].fY) {
236         dstPt->fY = fPts[endIndex].fY;
237     }
238 }
239 
subDivide(const SkDPoint & a,const SkDPoint & c,double t1,double t2) const240 SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const {
241     SkASSERT(t1 != t2);
242     SkDPoint b;
243 #if 0
244     // this approach assumes that the control point computed directly is accurate enough
245     double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2);
246     double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2);
247     b.fX = 2 * dx - (a.fX + c.fX) / 2;
248     b.fY = 2 * dy - (a.fY + c.fY) / 2;
249 #else
250     SkDQuad sub = subDivide(t1, t2);
251     SkDLine b0 = {{a, sub[1] + (a - sub[0])}};
252     SkDLine b1 = {{c, sub[1] + (c - sub[2])}};
253     SkIntersections i;
254     i.intersectRay(b0, b1);
255     if (i.used() == 1) {
256         b = i.pt(0);
257     } else {
258         SkASSERT(i.used() == 2 || i.used() == 0);
259         b = SkDPoint::Mid(b0[1], b1[1]);
260     }
261 #endif
262     if (t1 == 0 || t2 == 0) {
263         align(0, &b);
264     }
265     if (t1 == 1 || t2 == 1) {
266         align(2, &b);
267     }
268     if (precisely_subdivide_equal(b.fX, a.fX)) {
269         b.fX = a.fX;
270     } else if (precisely_subdivide_equal(b.fX, c.fX)) {
271         b.fX = c.fX;
272     }
273     if (precisely_subdivide_equal(b.fY, a.fY)) {
274         b.fY = a.fY;
275     } else if (precisely_subdivide_equal(b.fY, c.fY)) {
276         b.fY = c.fY;
277     }
278     return b;
279 }
280 
281 /* classic one t subdivision */
interp_quad_coords(const double * src,double * dst,double t)282 static void interp_quad_coords(const double* src, double* dst, double t) {
283     double ab = SkDInterp(src[0], src[2], t);
284     double bc = SkDInterp(src[2], src[4], t);
285     dst[0] = src[0];
286     dst[2] = ab;
287     dst[4] = SkDInterp(ab, bc, t);
288     dst[6] = bc;
289     dst[8] = src[4];
290 }
291 
chopAt(double t) const292 SkDQuadPair SkDQuad::chopAt(double t) const
293 {
294     SkDQuadPair dst;
295     interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t);
296     interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t);
297     return dst;
298 }
299 
valid_unit_divide(double numer,double denom,double * ratio)300 static int valid_unit_divide(double numer, double denom, double* ratio)
301 {
302     if (numer < 0) {
303         numer = -numer;
304         denom = -denom;
305     }
306     if (denom == 0 || numer == 0 || numer >= denom) {
307         return 0;
308     }
309     double r = numer / denom;
310     if (r == 0) {  // catch underflow if numer <<<< denom
311         return 0;
312     }
313     *ratio = r;
314     return 1;
315 }
316 
317 /** Quad'(t) = At + B, where
318     A = 2(a - 2b + c)
319     B = 2(b - a)
320     Solve for t, only if it fits between 0 < t < 1
321 */
FindExtrema(double a,double b,double c,double tValue[1])322 int SkDQuad::FindExtrema(double a, double b, double c, double tValue[1]) {
323     /*  At + B == 0
324         t = -B / A
325     */
326     return valid_unit_divide(a - b, a - b - b + c, tValue);
327 }
328 
329 /* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t)
330  *
331  * a = A - 2*B +   C
332  * b =     2*B - 2*C
333  * c =             C
334  */
SetABC(const double * quad,double * a,double * b,double * c)335 void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) {
336     *a = quad[0];      // a = A
337     *b = 2 * quad[2];  // b =     2*B
338     *c = quad[4];      // c =             C
339     *b -= *c;          // b =     2*B -   C
340     *a -= *b;          // a = A - 2*B +   C
341     *b -= *c;          // b =     2*B - 2*C
342 }
343 
344 #ifdef SK_DEBUG
dump()345 void SkDQuad::dump() {
346     SkDebugf("{{");
347     int index = 0;
348     do {
349         fPts[index].dump();
350         SkDebugf(", ");
351     } while (++index < 2);
352     fPts[index].dump();
353     SkDebugf("}}\n");
354 }
355 #endif
356