1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "Test.h"
9 #include "TestClassDef.h"
10 #include "SkColorPriv.h"
11 #include "SkEndian.h"
12 #include "SkFloatBits.h"
13 #include "SkFloatingPoint.h"
14 #include "SkMathPriv.h"
15 #include "SkPoint.h"
16 #include "SkRandom.h"
17
test_clz(skiatest::Reporter * reporter)18 static void test_clz(skiatest::Reporter* reporter) {
19 REPORTER_ASSERT(reporter, 32 == SkCLZ(0));
20 REPORTER_ASSERT(reporter, 31 == SkCLZ(1));
21 REPORTER_ASSERT(reporter, 1 == SkCLZ(1 << 30));
22 REPORTER_ASSERT(reporter, 0 == SkCLZ(~0U));
23
24 SkRandom rand;
25 for (int i = 0; i < 1000; ++i) {
26 uint32_t mask = rand.nextU();
27 // need to get some zeros for testing, but in some obscure way so the
28 // compiler won't "see" that, and work-around calling the functions.
29 mask >>= (mask & 31);
30 int intri = SkCLZ(mask);
31 int porta = SkCLZ_portable(mask);
32 REPORTER_ASSERT(reporter, intri == porta);
33 }
34 }
35
36 ///////////////////////////////////////////////////////////////////////////////
37
sk_fsel(float pred,float result_ge,float result_lt)38 static float sk_fsel(float pred, float result_ge, float result_lt) {
39 return pred >= 0 ? result_ge : result_lt;
40 }
41
fast_floor(float x)42 static float fast_floor(float x) {
43 // float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23);
44 float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23));
45 return (float)(x + big) - big;
46 }
47
std_floor(float x)48 static float std_floor(float x) {
49 return sk_float_floor(x);
50 }
51
test_floor_value(skiatest::Reporter * reporter,float value)52 static void test_floor_value(skiatest::Reporter* reporter, float value) {
53 float fast = fast_floor(value);
54 float std = std_floor(value);
55 REPORTER_ASSERT(reporter, std == fast);
56 // SkDebugf("value[%1.9f] std[%g] fast[%g] equal[%d]\n",
57 // value, std, fast, std == fast);
58 }
59
test_floor(skiatest::Reporter * reporter)60 static void test_floor(skiatest::Reporter* reporter) {
61 static const float gVals[] = {
62 0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f
63 };
64
65 for (size_t i = 0; i < SK_ARRAY_COUNT(gVals); ++i) {
66 test_floor_value(reporter, gVals[i]);
67 // test_floor_value(reporter, -gVals[i]);
68 }
69 }
70
71 ///////////////////////////////////////////////////////////////////////////////
72
73 // test that SkMul16ShiftRound and SkMulDiv255Round return the same result
test_muldivround(skiatest::Reporter * reporter)74 static void test_muldivround(skiatest::Reporter* reporter) {
75 #if 0
76 // this "complete" test is too slow, so we test a random sampling of it
77
78 for (int a = 0; a <= 32767; ++a) {
79 for (int b = 0; b <= 32767; ++b) {
80 unsigned prod0 = SkMul16ShiftRound(a, b, 8);
81 unsigned prod1 = SkMulDiv255Round(a, b);
82 SkASSERT(prod0 == prod1);
83 }
84 }
85 #endif
86
87 SkRandom rand;
88 for (int i = 0; i < 10000; ++i) {
89 unsigned a = rand.nextU() & 0x7FFF;
90 unsigned b = rand.nextU() & 0x7FFF;
91
92 unsigned prod0 = SkMul16ShiftRound(a, b, 8);
93 unsigned prod1 = SkMulDiv255Round(a, b);
94
95 REPORTER_ASSERT(reporter, prod0 == prod1);
96 }
97 }
98
float_blend(int src,int dst,float unit)99 static float float_blend(int src, int dst, float unit) {
100 return dst + (src - dst) * unit;
101 }
102
blend31(int src,int dst,int a31)103 static int blend31(int src, int dst, int a31) {
104 return dst + ((src - dst) * a31 * 2114 >> 16);
105 // return dst + ((src - dst) * a31 * 33 >> 10);
106 }
107
blend31_slow(int src,int dst,int a31)108 static int blend31_slow(int src, int dst, int a31) {
109 int prod = src * a31 + (31 - a31) * dst + 16;
110 prod = (prod + (prod >> 5)) >> 5;
111 return prod;
112 }
113
blend31_round(int src,int dst,int a31)114 static int blend31_round(int src, int dst, int a31) {
115 int prod = (src - dst) * a31 + 16;
116 prod = (prod + (prod >> 5)) >> 5;
117 return dst + prod;
118 }
119
blend31_old(int src,int dst,int a31)120 static int blend31_old(int src, int dst, int a31) {
121 a31 += a31 >> 4;
122 return dst + ((src - dst) * a31 >> 5);
123 }
124
125 // suppress unused code warning
126 static int (*blend_functions[])(int, int, int) = {
127 blend31,
128 blend31_slow,
129 blend31_round,
130 blend31_old
131 };
132
test_blend31()133 static void test_blend31() {
134 int failed = 0;
135 int death = 0;
136 if (false) { // avoid bit rot, suppress warning
137 failed = (*blend_functions[0])(0,0,0);
138 }
139 for (int src = 0; src <= 255; src++) {
140 for (int dst = 0; dst <= 255; dst++) {
141 for (int a = 0; a <= 31; a++) {
142 // int r0 = blend31(src, dst, a);
143 // int r0 = blend31_round(src, dst, a);
144 // int r0 = blend31_old(src, dst, a);
145 int r0 = blend31_slow(src, dst, a);
146
147 float f = float_blend(src, dst, a / 31.f);
148 int r1 = (int)f;
149 int r2 = SkScalarRoundToInt(f);
150
151 if (r0 != r1 && r0 != r2) {
152 SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n",
153 src, dst, a, r0, f);
154 failed += 1;
155 }
156 if (r0 > 255) {
157 death += 1;
158 SkDebugf("death src:%d dst:%d a:%d result:%d float:%g\n",
159 src, dst, a, r0, f);
160 }
161 }
162 }
163 }
164 SkDebugf("---- failed %d death %d\n", failed, death);
165 }
166
test_blend(skiatest::Reporter * reporter)167 static void test_blend(skiatest::Reporter* reporter) {
168 for (int src = 0; src <= 255; src++) {
169 for (int dst = 0; dst <= 255; dst++) {
170 for (int a = 0; a <= 255; a++) {
171 int r0 = SkAlphaBlend255(src, dst, a);
172 float f1 = float_blend(src, dst, a / 255.f);
173 int r1 = SkScalarRoundToInt(f1);
174
175 if (r0 != r1) {
176 float diff = sk_float_abs(f1 - r1);
177 diff = sk_float_abs(diff - 0.5f);
178 if (diff > (1 / 255.f)) {
179 #ifdef SK_DEBUG
180 SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n",
181 src, dst, a, r0, f1);
182 #endif
183 REPORTER_ASSERT(reporter, false);
184 }
185 }
186 }
187 }
188 }
189 }
190
191 #if defined(SkLONGLONG)
symmetric_fixmul(int a,int b)192 static int symmetric_fixmul(int a, int b) {
193 int sa = SkExtractSign(a);
194 int sb = SkExtractSign(b);
195
196 a = SkApplySign(a, sa);
197 b = SkApplySign(b, sb);
198
199 #if 1
200 int c = (int)(((SkLONGLONG)a * b) >> 16);
201
202 return SkApplySign(c, sa ^ sb);
203 #else
204 SkLONGLONG ab = (SkLONGLONG)a * b;
205 if (sa ^ sb) {
206 ab = -ab;
207 }
208 return ab >> 16;
209 #endif
210 }
211 #endif
212
check_length(skiatest::Reporter * reporter,const SkPoint & p,SkScalar targetLen)213 static void check_length(skiatest::Reporter* reporter,
214 const SkPoint& p, SkScalar targetLen) {
215 float x = SkScalarToFloat(p.fX);
216 float y = SkScalarToFloat(p.fY);
217 float len = sk_float_sqrt(x*x + y*y);
218
219 len /= SkScalarToFloat(targetLen);
220
221 REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f);
222 }
223
nextFloat(SkRandom & rand)224 static float nextFloat(SkRandom& rand) {
225 SkFloatIntUnion data;
226 data.fSignBitInt = rand.nextU();
227 return data.fFloat;
228 }
229
230 /* returns true if a == b as resulting from (int)x. Since it is undefined
231 what to do if the float exceeds 2^32-1, we check for that explicitly.
232 */
equal_float_native_skia(float x,uint32_t ni,uint32_t si)233 static bool equal_float_native_skia(float x, uint32_t ni, uint32_t si) {
234 if (!(x == x)) { // NAN
235 return ((int32_t)si) == SK_MaxS32 || ((int32_t)si) == SK_MinS32;
236 }
237 // for out of range, C is undefined, but skia always should return NaN32
238 if (x > SK_MaxS32) {
239 return ((int32_t)si) == SK_MaxS32;
240 }
241 if (x < -SK_MaxS32) {
242 return ((int32_t)si) == SK_MinS32;
243 }
244 return si == ni;
245 }
246
assert_float_equal(skiatest::Reporter * reporter,const char op[],float x,uint32_t ni,uint32_t si)247 static void assert_float_equal(skiatest::Reporter* reporter, const char op[],
248 float x, uint32_t ni, uint32_t si) {
249 if (!equal_float_native_skia(x, ni, si)) {
250 SkString desc;
251 uint32_t xi = SkFloat2Bits(x);
252 desc.printf("%s float %g bits %x native %x skia %x\n", op, x, xi, ni, si);
253 reporter->reportFailed(desc);
254 }
255 }
256
test_float_cast(skiatest::Reporter * reporter,float x)257 static void test_float_cast(skiatest::Reporter* reporter, float x) {
258 int ix = (int)x;
259 int iix = SkFloatToIntCast(x);
260 assert_float_equal(reporter, "cast", x, ix, iix);
261 }
262
test_float_floor(skiatest::Reporter * reporter,float x)263 static void test_float_floor(skiatest::Reporter* reporter, float x) {
264 int ix = (int)floor(x);
265 int iix = SkFloatToIntFloor(x);
266 assert_float_equal(reporter, "floor", x, ix, iix);
267 }
268
test_float_round(skiatest::Reporter * reporter,float x)269 static void test_float_round(skiatest::Reporter* reporter, float x) {
270 double xx = x + 0.5; // need intermediate double to avoid temp loss
271 int ix = (int)floor(xx);
272 int iix = SkFloatToIntRound(x);
273 assert_float_equal(reporter, "round", x, ix, iix);
274 }
275
test_float_ceil(skiatest::Reporter * reporter,float x)276 static void test_float_ceil(skiatest::Reporter* reporter, float x) {
277 int ix = (int)ceil(x);
278 int iix = SkFloatToIntCeil(x);
279 assert_float_equal(reporter, "ceil", x, ix, iix);
280 }
281
test_float_conversions(skiatest::Reporter * reporter,float x)282 static void test_float_conversions(skiatest::Reporter* reporter, float x) {
283 test_float_cast(reporter, x);
284 test_float_floor(reporter, x);
285 test_float_round(reporter, x);
286 test_float_ceil(reporter, x);
287 }
288
test_int2float(skiatest::Reporter * reporter,int ival)289 static void test_int2float(skiatest::Reporter* reporter, int ival) {
290 float x0 = (float)ival;
291 float x1 = SkIntToFloatCast(ival);
292 float x2 = SkIntToFloatCast_NoOverflowCheck(ival);
293 REPORTER_ASSERT(reporter, x0 == x1);
294 REPORTER_ASSERT(reporter, x0 == x2);
295 }
296
unittest_fastfloat(skiatest::Reporter * reporter)297 static void unittest_fastfloat(skiatest::Reporter* reporter) {
298 SkRandom rand;
299 size_t i;
300
301 static const float gFloats[] = {
302 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
303 0.000000001f, 1000000000.f, // doesn't overflow
304 0.0000000001f, 10000000000.f // does overflow
305 };
306 for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) {
307 test_float_conversions(reporter, gFloats[i]);
308 test_float_conversions(reporter, -gFloats[i]);
309 }
310
311 for (int outer = 0; outer < 100; outer++) {
312 rand.setSeed(outer);
313 for (i = 0; i < 100000; i++) {
314 float x = nextFloat(rand);
315 test_float_conversions(reporter, x);
316 }
317
318 test_int2float(reporter, 0);
319 test_int2float(reporter, 1);
320 test_int2float(reporter, -1);
321 for (i = 0; i < 100000; i++) {
322 // for now only test ints that are 24bits or less, since we don't
323 // round (down) large ints the same as IEEE...
324 int ival = rand.nextU() & 0xFFFFFF;
325 test_int2float(reporter, ival);
326 test_int2float(reporter, -ival);
327 }
328 }
329 }
330
331 #ifdef SK_SCALAR_IS_FLOAT
make_zero()332 static float make_zero() {
333 return sk_float_sin(0);
334 }
335 #endif
336
unittest_isfinite(skiatest::Reporter * reporter)337 static void unittest_isfinite(skiatest::Reporter* reporter) {
338 #ifdef SK_SCALAR_IS_FLOAT
339 float nan = sk_float_asin(2);
340 float inf = 1.0f / make_zero();
341 float big = 3.40282e+038f;
342
343 REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf));
344 REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf));
345 REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf));
346 REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf));
347 #else
348 SkFixed nan = SK_FixedNaN;
349 SkFixed big = SK_FixedMax;
350 #endif
351
352 REPORTER_ASSERT(reporter, SkScalarIsNaN(nan));
353 REPORTER_ASSERT(reporter, !SkScalarIsNaN(big));
354 REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big));
355 REPORTER_ASSERT(reporter, !SkScalarIsNaN(0));
356
357 REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan));
358 REPORTER_ASSERT(reporter, SkScalarIsFinite(big));
359 REPORTER_ASSERT(reporter, SkScalarIsFinite(-big));
360 REPORTER_ASSERT(reporter, SkScalarIsFinite(0));
361 }
362
test_muldiv255(skiatest::Reporter * reporter)363 static void test_muldiv255(skiatest::Reporter* reporter) {
364 for (int a = 0; a <= 255; a++) {
365 for (int b = 0; b <= 255; b++) {
366 int ab = a * b;
367 float s = ab / 255.0f;
368 int round = (int)floorf(s + 0.5f);
369 int trunc = (int)floorf(s);
370
371 int iround = SkMulDiv255Round(a, b);
372 int itrunc = SkMulDiv255Trunc(a, b);
373
374 REPORTER_ASSERT(reporter, iround == round);
375 REPORTER_ASSERT(reporter, itrunc == trunc);
376
377 REPORTER_ASSERT(reporter, itrunc <= iround);
378 REPORTER_ASSERT(reporter, iround <= a);
379 REPORTER_ASSERT(reporter, iround <= b);
380 }
381 }
382 }
383
test_muldiv255ceiling(skiatest::Reporter * reporter)384 static void test_muldiv255ceiling(skiatest::Reporter* reporter) {
385 for (int c = 0; c <= 255; c++) {
386 for (int a = 0; a <= 255; a++) {
387 int product = (c * a + 255);
388 int expected_ceiling = (product + (product >> 8)) >> 8;
389 int webkit_ceiling = (c * a + 254) / 255;
390 REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling);
391 int skia_ceiling = SkMulDiv255Ceiling(c, a);
392 REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling);
393 }
394 }
395 }
396
test_copysign(skiatest::Reporter * reporter)397 static void test_copysign(skiatest::Reporter* reporter) {
398 static const int32_t gTriples[] = {
399 // x, y, expected result
400 0, 0, 0,
401 0, 1, 0,
402 0, -1, 0,
403 1, 0, 1,
404 1, 1, 1,
405 1, -1, -1,
406 -1, 0, 1,
407 -1, 1, 1,
408 -1, -1, -1,
409 };
410 for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) {
411 REPORTER_ASSERT(reporter,
412 SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]);
413 float x = (float)gTriples[i];
414 float y = (float)gTriples[i+1];
415 float expected = (float)gTriples[i+2];
416 REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected);
417 }
418
419 SkRandom rand;
420 for (int j = 0; j < 1000; j++) {
421 int ix = rand.nextS();
422 REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix);
423 REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix);
424 REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix);
425 REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix);
426
427 SkScalar sx = rand.nextSScalar1();
428 REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx);
429 REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx);
430 REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx);
431 REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx);
432 }
433 }
434
DEF_TEST(Math,reporter)435 DEF_TEST(Math, reporter) {
436 int i;
437 int32_t x;
438 SkRandom rand;
439
440 // these should assert
441 #if 0
442 SkToS8(128);
443 SkToS8(-129);
444 SkToU8(256);
445 SkToU8(-5);
446
447 SkToS16(32768);
448 SkToS16(-32769);
449 SkToU16(65536);
450 SkToU16(-5);
451
452 if (sizeof(size_t) > 4) {
453 SkToS32(4*1024*1024);
454 SkToS32(-4*1024*1024);
455 SkToU32(5*1024*1024);
456 SkToU32(-5);
457 }
458 #endif
459
460 test_muldiv255(reporter);
461 test_muldiv255ceiling(reporter);
462 test_copysign(reporter);
463
464 {
465 SkScalar x = SK_ScalarNaN;
466 REPORTER_ASSERT(reporter, SkScalarIsNaN(x));
467 }
468
469 for (i = 1; i <= 10; i++) {
470 x = SkCubeRootBits(i*i*i, 11);
471 REPORTER_ASSERT(reporter, x == i);
472 }
473
474 x = SkFixedSqrt(SK_Fixed1);
475 REPORTER_ASSERT(reporter, x == SK_Fixed1);
476 x = SkFixedSqrt(SK_Fixed1/4);
477 REPORTER_ASSERT(reporter, x == SK_Fixed1/2);
478 x = SkFixedSqrt(SK_Fixed1*4);
479 REPORTER_ASSERT(reporter, x == SK_Fixed1*2);
480
481 x = SkFractSqrt(SK_Fract1);
482 REPORTER_ASSERT(reporter, x == SK_Fract1);
483 x = SkFractSqrt(SK_Fract1/4);
484 REPORTER_ASSERT(reporter, x == SK_Fract1/2);
485 x = SkFractSqrt(SK_Fract1/16);
486 REPORTER_ASSERT(reporter, x == SK_Fract1/4);
487
488 for (i = 1; i < 100; i++) {
489 x = SkFixedSqrt(SK_Fixed1 * i * i);
490 REPORTER_ASSERT(reporter, x == SK_Fixed1 * i);
491 }
492
493 for (i = 0; i < 1000; i++) {
494 int value = rand.nextS16();
495 int max = rand.nextU16();
496
497 int clamp = SkClampMax(value, max);
498 int clamp2 = value < 0 ? 0 : (value > max ? max : value);
499 REPORTER_ASSERT(reporter, clamp == clamp2);
500 }
501
502 for (i = 0; i < 10000; i++) {
503 SkPoint p;
504
505 // These random values are being treated as 32-bit-patterns, not as
506 // ints; calling SkIntToScalar() here produces crashes.
507 p.setLength((SkScalar) rand.nextS(),
508 (SkScalar) rand.nextS(),
509 SK_Scalar1);
510 check_length(reporter, p, SK_Scalar1);
511 p.setLength((SkScalar) (rand.nextS() >> 13),
512 (SkScalar) (rand.nextS() >> 13),
513 SK_Scalar1);
514 check_length(reporter, p, SK_Scalar1);
515 }
516
517 {
518 SkFixed result = SkFixedDiv(100, 100);
519 REPORTER_ASSERT(reporter, result == SK_Fixed1);
520 result = SkFixedDiv(1, SK_Fixed1);
521 REPORTER_ASSERT(reporter, result == 1);
522 }
523
524 unittest_fastfloat(reporter);
525 unittest_isfinite(reporter);
526
527 #ifdef SkLONGLONG
528 for (i = 0; i < 10000; i++) {
529 SkFixed numer = rand.nextS();
530 SkFixed denom = rand.nextS();
531 SkFixed result = SkFixedDiv(numer, denom);
532 SkLONGLONG check = ((SkLONGLONG)numer << 16) / denom;
533
534 (void)SkCLZ(numer);
535 (void)SkCLZ(denom);
536
537 REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32);
538 if (check > SK_MaxS32) {
539 check = SK_MaxS32;
540 } else if (check < -SK_MaxS32) {
541 check = SK_MinS32;
542 }
543 REPORTER_ASSERT(reporter, result == (int32_t)check);
544
545 result = SkFractDiv(numer, denom);
546 check = ((SkLONGLONG)numer << 30) / denom;
547
548 REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32);
549 if (check > SK_MaxS32) {
550 check = SK_MaxS32;
551 } else if (check < -SK_MaxS32) {
552 check = SK_MinS32;
553 }
554 REPORTER_ASSERT(reporter, result == (int32_t)check);
555
556 // make them <= 2^24, so we don't overflow in fixmul
557 numer = numer << 8 >> 8;
558 denom = denom << 8 >> 8;
559
560 result = SkFixedMul(numer, denom);
561 SkFixed r2 = symmetric_fixmul(numer, denom);
562 // SkASSERT(result == r2);
563
564 result = SkFixedMul(numer, numer);
565 r2 = SkFixedSquare(numer);
566 REPORTER_ASSERT(reporter, result == r2);
567
568 if (numer >= 0 && denom >= 0) {
569 SkFixed mean = SkFixedMean(numer, denom);
570 float prod = SkFixedToFloat(numer) * SkFixedToFloat(denom);
571 float fm = sk_float_sqrt(sk_float_abs(prod));
572 SkFixed mean2 = SkFloatToFixed(fm);
573 int diff = SkAbs32(mean - mean2);
574 REPORTER_ASSERT(reporter, diff <= 1);
575 }
576
577 {
578 SkFixed mod = SkFixedMod(numer, denom);
579 float n = SkFixedToFloat(numer);
580 float d = SkFixedToFloat(denom);
581 float m = sk_float_mod(n, d);
582 // ensure the same sign
583 REPORTER_ASSERT(reporter, mod == 0 || (mod < 0) == (m < 0));
584 int diff = SkAbs32(mod - SkFloatToFixed(m));
585 REPORTER_ASSERT(reporter, (diff >> 7) == 0);
586 }
587 }
588 #endif
589
590 for (i = 0; i < 10000; i++) {
591 SkFract x = rand.nextU() >> 1;
592 double xx = (double)x / SK_Fract1;
593 SkFract xr = SkFractSqrt(x);
594 SkFract check = SkFloatToFract(sqrt(xx));
595 REPORTER_ASSERT(reporter, xr == check ||
596 xr == check-1 ||
597 xr == check+1);
598
599 xr = SkFixedSqrt(x);
600 xx = (double)x / SK_Fixed1;
601 check = SkFloatToFixed(sqrt(xx));
602 REPORTER_ASSERT(reporter, xr == check || xr == check-1);
603
604 xr = SkSqrt32(x);
605 xx = (double)x;
606 check = (int32_t)sqrt(xx);
607 REPORTER_ASSERT(reporter, xr == check || xr == check-1);
608 }
609
610 #if !defined(SK_SCALAR_IS_FLOAT)
611 {
612 SkFixed s, c;
613 s = SkFixedSinCos(0, &c);
614 REPORTER_ASSERT(reporter, s == 0);
615 REPORTER_ASSERT(reporter, c == SK_Fixed1);
616 }
617
618 int maxDiff = 0;
619 for (i = 0; i < 1000; i++) {
620 SkFixed rads = rand.nextS() >> 10;
621 double frads = SkFixedToFloat(rads);
622
623 SkFixed s, c;
624 s = SkScalarSinCos(rads, &c);
625
626 double fs = sin(frads);
627 double fc = cos(frads);
628
629 SkFixed is = SkFloatToFixed(fs);
630 SkFixed ic = SkFloatToFixed(fc);
631
632 maxDiff = SkMax32(maxDiff, SkAbs32(is - s));
633 maxDiff = SkMax32(maxDiff, SkAbs32(ic - c));
634 }
635 SkDebugf("SinCos: maximum error = %d\n", maxDiff);
636 #endif
637
638 #ifdef SK_SCALAR_IS_FLOAT
639 test_blend(reporter);
640 #endif
641
642 if (false) test_floor(reporter);
643
644 // disable for now
645 if (false) test_blend31(); // avoid bit rot, suppress warning
646
647 test_muldivround(reporter);
648 test_clz(reporter);
649 }
650
651 template <typename T> struct PairRec {
652 T fYin;
653 T fYang;
654 };
655
DEF_TEST(TestEndian,reporter)656 DEF_TEST(TestEndian, reporter) {
657 static const PairRec<uint16_t> g16[] = {
658 { 0x0, 0x0 },
659 { 0xFFFF, 0xFFFF },
660 { 0x1122, 0x2211 },
661 };
662 static const PairRec<uint32_t> g32[] = {
663 { 0x0, 0x0 },
664 { 0xFFFFFFFF, 0xFFFFFFFF },
665 { 0x11223344, 0x44332211 },
666 };
667 static const PairRec<uint64_t> g64[] = {
668 { 0x0, 0x0 },
669 { 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL },
670 { 0x1122334455667788ULL, 0x8877665544332211ULL },
671 };
672
673 REPORTER_ASSERT(reporter, 0x1122 == SkTEndianSwap16<0x2211>::value);
674 REPORTER_ASSERT(reporter, 0x11223344 == SkTEndianSwap32<0x44332211>::value);
675 REPORTER_ASSERT(reporter, 0x1122334455667788ULL == SkTEndianSwap64<0x8877665544332211ULL>::value);
676
677 for (size_t i = 0; i < SK_ARRAY_COUNT(g16); ++i) {
678 REPORTER_ASSERT(reporter, g16[i].fYang == SkEndianSwap16(g16[i].fYin));
679 }
680 for (size_t i = 0; i < SK_ARRAY_COUNT(g32); ++i) {
681 REPORTER_ASSERT(reporter, g32[i].fYang == SkEndianSwap32(g32[i].fYin));
682 }
683 for (size_t i = 0; i < SK_ARRAY_COUNT(g64); ++i) {
684 REPORTER_ASSERT(reporter, g64[i].fYang == SkEndianSwap64(g64[i].fYin));
685 }
686 }
687
688 template <typename T>
test_divmod(skiatest::Reporter * r)689 static void test_divmod(skiatest::Reporter* r) {
690 const struct {
691 T numer;
692 T denom;
693 } kEdgeCases[] = {
694 {(T)17, (T)17},
695 {(T)17, (T)4},
696 {(T)0, (T)17},
697 // For unsigned T these negatives are just some large numbers. Doesn't hurt to test them.
698 {(T)-17, (T)-17},
699 {(T)-17, (T)4},
700 {(T)17, (T)-4},
701 {(T)-17, (T)-4},
702 };
703
704 for (size_t i = 0; i < SK_ARRAY_COUNT(kEdgeCases); i++) {
705 const T numer = kEdgeCases[i].numer;
706 const T denom = kEdgeCases[i].denom;
707 T div, mod;
708 SkTDivMod(numer, denom, &div, &mod);
709 REPORTER_ASSERT(r, numer/denom == div);
710 REPORTER_ASSERT(r, numer%denom == mod);
711 }
712
713 SkRandom rand;
714 for (size_t i = 0; i < 10000; i++) {
715 const T numer = (T)rand.nextS();
716 T denom = 0;
717 while (0 == denom) {
718 denom = (T)rand.nextS();
719 }
720 T div, mod;
721 SkTDivMod(numer, denom, &div, &mod);
722 REPORTER_ASSERT(r, numer/denom == div);
723 REPORTER_ASSERT(r, numer%denom == mod);
724 }
725 }
726
DEF_TEST(divmod_u8,r)727 DEF_TEST(divmod_u8, r) {
728 test_divmod<uint8_t>(r);
729 }
730
DEF_TEST(divmod_u16,r)731 DEF_TEST(divmod_u16, r) {
732 test_divmod<uint16_t>(r);
733 }
734
DEF_TEST(divmod_u32,r)735 DEF_TEST(divmod_u32, r) {
736 test_divmod<uint32_t>(r);
737 }
738
DEF_TEST(divmod_u64,r)739 DEF_TEST(divmod_u64, r) {
740 test_divmod<uint64_t>(r);
741 }
742
DEF_TEST(divmod_s8,r)743 DEF_TEST(divmod_s8, r) {
744 test_divmod<int8_t>(r);
745 }
746
DEF_TEST(divmod_s16,r)747 DEF_TEST(divmod_s16, r) {
748 test_divmod<int16_t>(r);
749 }
750
DEF_TEST(divmod_s32,r)751 DEF_TEST(divmod_s32, r) {
752 test_divmod<int32_t>(r);
753 }
754
DEF_TEST(divmod_s64,r)755 DEF_TEST(divmod_s64, r) {
756 test_divmod<int64_t>(r);
757 }
758