• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2013 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "Test.h"
9 #include "TestClassDef.h"
10 #include "SkRandom.h"
11 #include "SkTSort.h"
12 
anderson_darling_test(double p[32])13 static bool anderson_darling_test(double p[32]) {
14     // Min and max Anderson-Darling values allowable for k=32
15     const double kADMin32 = 0.202;        // p-value of ~0.1
16     const double kADMax32 = 3.89;         // p-value of ~0.99
17 
18     // sort p values
19     SkTQSort<double>(p, p + 31);
20 
21     // and compute Anderson-Darling statistic to ensure these are uniform
22     double s = 0.0;
23     for(int k = 0; k < 32; k++) {
24         double v = p[k]*(1.0 - p[31-k]);
25         if (v < 1.0e-30) {
26            v = 1.0e-30;
27         }
28         s += (2.0*(k+1)-1.0)*log(v);
29     }
30     double a2 = -32.0 - 0.03125*s;
31 
32     return (kADMin32 < a2 && a2 < kADMax32);
33 }
34 
chi_square_test(int bins[256],int e)35 static bool chi_square_test(int bins[256], int e) {
36     // Min and max chisquare values allowable
37     const double kChiSqMin256 = 206.3179;        // probability of chance = 0.99 with k=256
38     const double kChiSqMax256 = 311.5603;        // probability of chance = 0.01 with k=256
39 
40     // compute chi-square
41     double chi2 = 0.0;
42     for (int j = 0; j < 256; ++j) {
43         double delta = bins[j] - e;
44         chi2 += delta*delta/e;
45     }
46 
47     return (kChiSqMin256 < chi2 && chi2 < kChiSqMax256);
48 }
49 
50 // Approximation to the normal distribution CDF
51 // From Waissi and Rossin, 1996
normal_cdf(double z)52 static double normal_cdf(double z) {
53     double t = ((-0.0004406*z*z* + 0.0418198)*z*z + 0.9)*z;
54     t *= -1.77245385091;  // -sqrt(PI)
55     double p = 1.0/(1.0 + exp(t));
56 
57     return p;
58 }
59 
test_random_byte(skiatest::Reporter * reporter,int shift)60 static void test_random_byte(skiatest::Reporter* reporter, int shift) {
61     int bins[256];
62     memset(bins, 0, sizeof(int)*256);
63 
64     SkRandom rand;
65     for (int i = 0; i < 256*10000; ++i) {
66         bins[(rand.nextU() >> shift) & 0xff]++;
67     }
68 
69     REPORTER_ASSERT(reporter, chi_square_test(bins, 10000));
70 }
71 
test_random_float(skiatest::Reporter * reporter)72 static void test_random_float(skiatest::Reporter* reporter) {
73     int bins[256];
74     memset(bins, 0, sizeof(int)*256);
75 
76     SkRandom rand;
77     for (int i = 0; i < 256*10000; ++i) {
78         float f = rand.nextF();
79         REPORTER_ASSERT(reporter, 0.0f <= f && f < 1.0f);
80         bins[(int)(f*256.f)]++;
81     }
82     REPORTER_ASSERT(reporter, chi_square_test(bins, 10000));
83 
84     double p[32];
85     for (int j = 0; j < 32; ++j) {
86         float f = rand.nextF();
87         REPORTER_ASSERT(reporter, 0.0f <= f && f < 1.0f);
88         p[j] = f;
89     }
90     REPORTER_ASSERT(reporter, anderson_darling_test(p));
91 }
92 
93 // This is a test taken from tuftests by Marsaglia and Tsang. The idea here is that
94 // we are using the random bit generated from a single shift position to generate
95 // "strings" of 16 bits in length, shifting the string and adding a new bit with each
96 // iteration. We track the numbers generated. The ones that we don't generate will
97 // have a normal distribution with mean ~24108 and standard deviation ~127. By
98 // creating a z-score (# of deviations from the mean) for one iteration of this step
99 // we can determine its probability.
100 //
101 // The original test used 26 bit strings, but is somewhat slow. This version uses 16
102 // bits which is less rigorous but much faster to generate.
test_single_gorilla(skiatest::Reporter * reporter,int shift)103 static double test_single_gorilla(skiatest::Reporter* reporter, int shift) {
104     const int kWordWidth = 16;
105     const double kMean = 24108.0;
106     const double kStandardDeviation = 127.0;
107     const int kN = (1 << kWordWidth);
108     const int kNumEntries = kN >> 5;  // dividing by 32
109     unsigned int entries[kNumEntries];
110 
111     SkRandom rand;
112     memset(entries, 0, sizeof(unsigned int)*kNumEntries);
113     // pre-seed our string value
114     int value = 0;
115     for (int i = 0; i < kWordWidth-1; ++i) {
116         value <<= 1;
117         unsigned int rnd = rand.nextU();
118         value |= ((rnd >> shift) & 0x1);
119     }
120 
121     // now make some strings and track them
122     for (int i = 0; i < kN; ++i) {
123         value <<= 1;
124         unsigned int rnd = rand.nextU();
125         value |= ((rnd >> shift) & 0x1);
126 
127         int index = value & (kNumEntries-1);
128         SkASSERT(index < kNumEntries);
129         int entry_shift = (value >> (kWordWidth-5)) & 0x1f;
130         entries[index] |= (0x1 << entry_shift);
131     }
132 
133     // count entries
134     int total = 0;
135     for (int i = 0; i < kNumEntries; ++i) {
136         unsigned int entry = entries[i];
137         while (entry) {
138             total += (entry & 0x1);
139             entry >>= 1;
140         }
141     }
142 
143     // convert counts to normal distribution z-score
144     double z = ((kN-total)-kMean)/kStandardDeviation;
145 
146     // compute probability from normal distibution CDF
147     double p = normal_cdf(z);
148 
149     REPORTER_ASSERT(reporter, 0.01 < p && p < 0.99);
150     return p;
151 }
152 
test_gorilla(skiatest::Reporter * reporter)153 static void test_gorilla(skiatest::Reporter* reporter) {
154 
155     double p[32];
156     for (int bit_position = 0; bit_position < 32; ++bit_position) {
157         p[bit_position] = test_single_gorilla(reporter, bit_position);
158     }
159 
160     REPORTER_ASSERT(reporter, anderson_darling_test(p));
161 }
162 
test_range(skiatest::Reporter * reporter)163 static void test_range(skiatest::Reporter* reporter) {
164     SkRandom rand;
165 
166     // just to make sure we don't crash in this case
167     (void) rand.nextRangeU(0, 0xffffffff);
168 
169     // check a case to see if it's uniform
170     int bins[256];
171     memset(bins, 0, sizeof(int)*256);
172     for (int i = 0; i < 256*10000; ++i) {
173         unsigned int u = rand.nextRangeU(17, 17+255);
174         REPORTER_ASSERT(reporter, 17 <= u && u <= 17+255);
175         bins[u - 17]++;
176     }
177 
178     REPORTER_ASSERT(reporter, chi_square_test(bins, 10000));
179 }
180 
DEF_TEST(Random,reporter)181 DEF_TEST(Random, reporter) {
182     // check uniform distributions of each byte in 32-bit word
183     test_random_byte(reporter, 0);
184     test_random_byte(reporter, 8);
185     test_random_byte(reporter, 16);
186     test_random_byte(reporter, 24);
187 
188     test_random_float(reporter);
189 
190     test_gorilla(reporter);
191 
192     test_range(reporter);
193 }
194