1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #if defined(V8_TARGET_ARCH_IA32)
31
32 #include "bootstrapper.h"
33 #include "codegen.h"
34 #include "debug.h"
35 #include "runtime.h"
36 #include "serialize.h"
37
38 namespace v8 {
39 namespace internal {
40
41 // -------------------------------------------------------------------------
42 // MacroAssembler implementation.
43
MacroAssembler(Isolate * arg_isolate,void * buffer,int size)44 MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
45 : Assembler(arg_isolate, buffer, size),
46 generating_stub_(false),
47 allow_stub_calls_(true),
48 has_frame_(false) {
49 if (isolate() != NULL) {
50 code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
51 isolate());
52 }
53 }
54
55
InNewSpace(Register object,Register scratch,Condition cc,Label * condition_met,Label::Distance condition_met_distance)56 void MacroAssembler::InNewSpace(
57 Register object,
58 Register scratch,
59 Condition cc,
60 Label* condition_met,
61 Label::Distance condition_met_distance) {
62 ASSERT(cc == equal || cc == not_equal);
63 if (scratch.is(object)) {
64 and_(scratch, Immediate(~Page::kPageAlignmentMask));
65 } else {
66 mov(scratch, Immediate(~Page::kPageAlignmentMask));
67 and_(scratch, object);
68 }
69 // Check that we can use a test_b.
70 ASSERT(MemoryChunk::IN_FROM_SPACE < 8);
71 ASSERT(MemoryChunk::IN_TO_SPACE < 8);
72 int mask = (1 << MemoryChunk::IN_FROM_SPACE)
73 | (1 << MemoryChunk::IN_TO_SPACE);
74 // If non-zero, the page belongs to new-space.
75 test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
76 static_cast<uint8_t>(mask));
77 j(cc, condition_met, condition_met_distance);
78 }
79
80
RememberedSetHelper(Register object,Register addr,Register scratch,SaveFPRegsMode save_fp,MacroAssembler::RememberedSetFinalAction and_then)81 void MacroAssembler::RememberedSetHelper(
82 Register object, // Only used for debug checks.
83 Register addr,
84 Register scratch,
85 SaveFPRegsMode save_fp,
86 MacroAssembler::RememberedSetFinalAction and_then) {
87 Label done;
88 if (FLAG_debug_code) {
89 Label ok;
90 JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
91 int3();
92 bind(&ok);
93 }
94 // Load store buffer top.
95 ExternalReference store_buffer =
96 ExternalReference::store_buffer_top(isolate());
97 mov(scratch, Operand::StaticVariable(store_buffer));
98 // Store pointer to buffer.
99 mov(Operand(scratch, 0), addr);
100 // Increment buffer top.
101 add(scratch, Immediate(kPointerSize));
102 // Write back new top of buffer.
103 mov(Operand::StaticVariable(store_buffer), scratch);
104 // Call stub on end of buffer.
105 // Check for end of buffer.
106 test(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
107 if (and_then == kReturnAtEnd) {
108 Label buffer_overflowed;
109 j(not_equal, &buffer_overflowed, Label::kNear);
110 ret(0);
111 bind(&buffer_overflowed);
112 } else {
113 ASSERT(and_then == kFallThroughAtEnd);
114 j(equal, &done, Label::kNear);
115 }
116 StoreBufferOverflowStub store_buffer_overflow =
117 StoreBufferOverflowStub(save_fp);
118 CallStub(&store_buffer_overflow);
119 if (and_then == kReturnAtEnd) {
120 ret(0);
121 } else {
122 ASSERT(and_then == kFallThroughAtEnd);
123 bind(&done);
124 }
125 }
126
127
ClampDoubleToUint8(XMMRegister input_reg,XMMRegister scratch_reg,Register result_reg)128 void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg,
129 XMMRegister scratch_reg,
130 Register result_reg) {
131 Label done;
132 ExternalReference zero_ref = ExternalReference::address_of_zero();
133 movdbl(scratch_reg, Operand::StaticVariable(zero_ref));
134 Set(result_reg, Immediate(0));
135 ucomisd(input_reg, scratch_reg);
136 j(below, &done, Label::kNear);
137 ExternalReference half_ref = ExternalReference::address_of_one_half();
138 movdbl(scratch_reg, Operand::StaticVariable(half_ref));
139 addsd(scratch_reg, input_reg);
140 cvttsd2si(result_reg, Operand(scratch_reg));
141 test(result_reg, Immediate(0xFFFFFF00));
142 j(zero, &done, Label::kNear);
143 Set(result_reg, Immediate(255));
144 bind(&done);
145 }
146
147
ClampUint8(Register reg)148 void MacroAssembler::ClampUint8(Register reg) {
149 Label done;
150 test(reg, Immediate(0xFFFFFF00));
151 j(zero, &done, Label::kNear);
152 setcc(negative, reg); // 1 if negative, 0 if positive.
153 dec_b(reg); // 0 if negative, 255 if positive.
154 bind(&done);
155 }
156
157
RecordWriteArray(Register object,Register value,Register index,SaveFPRegsMode save_fp,RememberedSetAction remembered_set_action,SmiCheck smi_check)158 void MacroAssembler::RecordWriteArray(Register object,
159 Register value,
160 Register index,
161 SaveFPRegsMode save_fp,
162 RememberedSetAction remembered_set_action,
163 SmiCheck smi_check) {
164 // First, check if a write barrier is even needed. The tests below
165 // catch stores of Smis.
166 Label done;
167
168 // Skip barrier if writing a smi.
169 if (smi_check == INLINE_SMI_CHECK) {
170 ASSERT_EQ(0, kSmiTag);
171 test(value, Immediate(kSmiTagMask));
172 j(zero, &done);
173 }
174
175 // Array access: calculate the destination address in the same manner as
176 // KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset
177 // into an array of words.
178 Register dst = index;
179 lea(dst, Operand(object, index, times_half_pointer_size,
180 FixedArray::kHeaderSize - kHeapObjectTag));
181
182 RecordWrite(
183 object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK);
184
185 bind(&done);
186
187 // Clobber clobbered input registers when running with the debug-code flag
188 // turned on to provoke errors.
189 if (emit_debug_code()) {
190 mov(value, Immediate(BitCast<int32_t>(kZapValue)));
191 mov(index, Immediate(BitCast<int32_t>(kZapValue)));
192 }
193 }
194
195
RecordWriteField(Register object,int offset,Register value,Register dst,SaveFPRegsMode save_fp,RememberedSetAction remembered_set_action,SmiCheck smi_check)196 void MacroAssembler::RecordWriteField(
197 Register object,
198 int offset,
199 Register value,
200 Register dst,
201 SaveFPRegsMode save_fp,
202 RememberedSetAction remembered_set_action,
203 SmiCheck smi_check) {
204 // First, check if a write barrier is even needed. The tests below
205 // catch stores of Smis.
206 Label done;
207
208 // Skip barrier if writing a smi.
209 if (smi_check == INLINE_SMI_CHECK) {
210 JumpIfSmi(value, &done, Label::kNear);
211 }
212
213 // Although the object register is tagged, the offset is relative to the start
214 // of the object, so so offset must be a multiple of kPointerSize.
215 ASSERT(IsAligned(offset, kPointerSize));
216
217 lea(dst, FieldOperand(object, offset));
218 if (emit_debug_code()) {
219 Label ok;
220 test_b(dst, (1 << kPointerSizeLog2) - 1);
221 j(zero, &ok, Label::kNear);
222 int3();
223 bind(&ok);
224 }
225
226 RecordWrite(
227 object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK);
228
229 bind(&done);
230
231 // Clobber clobbered input registers when running with the debug-code flag
232 // turned on to provoke errors.
233 if (emit_debug_code()) {
234 mov(value, Immediate(BitCast<int32_t>(kZapValue)));
235 mov(dst, Immediate(BitCast<int32_t>(kZapValue)));
236 }
237 }
238
239
RecordWrite(Register object,Register address,Register value,SaveFPRegsMode fp_mode,RememberedSetAction remembered_set_action,SmiCheck smi_check)240 void MacroAssembler::RecordWrite(Register object,
241 Register address,
242 Register value,
243 SaveFPRegsMode fp_mode,
244 RememberedSetAction remembered_set_action,
245 SmiCheck smi_check) {
246 ASSERT(!object.is(value));
247 ASSERT(!object.is(address));
248 ASSERT(!value.is(address));
249 if (emit_debug_code()) {
250 AbortIfSmi(object);
251 }
252
253 if (remembered_set_action == OMIT_REMEMBERED_SET &&
254 !FLAG_incremental_marking) {
255 return;
256 }
257
258 if (FLAG_debug_code) {
259 Label ok;
260 cmp(value, Operand(address, 0));
261 j(equal, &ok, Label::kNear);
262 int3();
263 bind(&ok);
264 }
265
266 // First, check if a write barrier is even needed. The tests below
267 // catch stores of Smis and stores into young gen.
268 Label done;
269
270 if (smi_check == INLINE_SMI_CHECK) {
271 // Skip barrier if writing a smi.
272 JumpIfSmi(value, &done, Label::kNear);
273 }
274
275 CheckPageFlag(value,
276 value, // Used as scratch.
277 MemoryChunk::kPointersToHereAreInterestingMask,
278 zero,
279 &done,
280 Label::kNear);
281 CheckPageFlag(object,
282 value, // Used as scratch.
283 MemoryChunk::kPointersFromHereAreInterestingMask,
284 zero,
285 &done,
286 Label::kNear);
287
288 RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode);
289 CallStub(&stub);
290
291 bind(&done);
292
293 // Clobber clobbered registers when running with the debug-code flag
294 // turned on to provoke errors.
295 if (emit_debug_code()) {
296 mov(address, Immediate(BitCast<int32_t>(kZapValue)));
297 mov(value, Immediate(BitCast<int32_t>(kZapValue)));
298 }
299 }
300
301
302 #ifdef ENABLE_DEBUGGER_SUPPORT
DebugBreak()303 void MacroAssembler::DebugBreak() {
304 Set(eax, Immediate(0));
305 mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate())));
306 CEntryStub ces(1);
307 call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
308 }
309 #endif
310
311
Set(Register dst,const Immediate & x)312 void MacroAssembler::Set(Register dst, const Immediate& x) {
313 if (x.is_zero()) {
314 xor_(dst, dst); // Shorter than mov.
315 } else {
316 mov(dst, x);
317 }
318 }
319
320
Set(const Operand & dst,const Immediate & x)321 void MacroAssembler::Set(const Operand& dst, const Immediate& x) {
322 mov(dst, x);
323 }
324
325
IsUnsafeImmediate(const Immediate & x)326 bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) {
327 static const int kMaxImmediateBits = 17;
328 if (x.rmode_ != RelocInfo::NONE) return false;
329 return !is_intn(x.x_, kMaxImmediateBits);
330 }
331
332
SafeSet(Register dst,const Immediate & x)333 void MacroAssembler::SafeSet(Register dst, const Immediate& x) {
334 if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
335 Set(dst, Immediate(x.x_ ^ jit_cookie()));
336 xor_(dst, jit_cookie());
337 } else {
338 Set(dst, x);
339 }
340 }
341
342
SafePush(const Immediate & x)343 void MacroAssembler::SafePush(const Immediate& x) {
344 if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
345 push(Immediate(x.x_ ^ jit_cookie()));
346 xor_(Operand(esp, 0), Immediate(jit_cookie()));
347 } else {
348 push(x);
349 }
350 }
351
352
CompareRoot(Register with,Heap::RootListIndex index)353 void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
354 // see ROOT_ACCESSOR macro in factory.h
355 Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
356 cmp(with, value);
357 }
358
359
CompareRoot(const Operand & with,Heap::RootListIndex index)360 void MacroAssembler::CompareRoot(const Operand& with,
361 Heap::RootListIndex index) {
362 // see ROOT_ACCESSOR macro in factory.h
363 Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
364 cmp(with, value);
365 }
366
367
CmpObjectType(Register heap_object,InstanceType type,Register map)368 void MacroAssembler::CmpObjectType(Register heap_object,
369 InstanceType type,
370 Register map) {
371 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
372 CmpInstanceType(map, type);
373 }
374
375
CmpInstanceType(Register map,InstanceType type)376 void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
377 cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
378 static_cast<int8_t>(type));
379 }
380
381
CheckFastElements(Register map,Label * fail,Label::Distance distance)382 void MacroAssembler::CheckFastElements(Register map,
383 Label* fail,
384 Label::Distance distance) {
385 STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
386 STATIC_ASSERT(FAST_ELEMENTS == 1);
387 cmpb(FieldOperand(map, Map::kBitField2Offset),
388 Map::kMaximumBitField2FastElementValue);
389 j(above, fail, distance);
390 }
391
392
CheckFastObjectElements(Register map,Label * fail,Label::Distance distance)393 void MacroAssembler::CheckFastObjectElements(Register map,
394 Label* fail,
395 Label::Distance distance) {
396 STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
397 STATIC_ASSERT(FAST_ELEMENTS == 1);
398 cmpb(FieldOperand(map, Map::kBitField2Offset),
399 Map::kMaximumBitField2FastSmiOnlyElementValue);
400 j(below_equal, fail, distance);
401 cmpb(FieldOperand(map, Map::kBitField2Offset),
402 Map::kMaximumBitField2FastElementValue);
403 j(above, fail, distance);
404 }
405
406
CheckFastSmiOnlyElements(Register map,Label * fail,Label::Distance distance)407 void MacroAssembler::CheckFastSmiOnlyElements(Register map,
408 Label* fail,
409 Label::Distance distance) {
410 STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
411 cmpb(FieldOperand(map, Map::kBitField2Offset),
412 Map::kMaximumBitField2FastSmiOnlyElementValue);
413 j(above, fail, distance);
414 }
415
416
StoreNumberToDoubleElements(Register maybe_number,Register elements,Register key,Register scratch1,XMMRegister scratch2,Label * fail,bool specialize_for_processor)417 void MacroAssembler::StoreNumberToDoubleElements(
418 Register maybe_number,
419 Register elements,
420 Register key,
421 Register scratch1,
422 XMMRegister scratch2,
423 Label* fail,
424 bool specialize_for_processor) {
425 Label smi_value, done, maybe_nan, not_nan, is_nan, have_double_value;
426 JumpIfSmi(maybe_number, &smi_value, Label::kNear);
427
428 CheckMap(maybe_number,
429 isolate()->factory()->heap_number_map(),
430 fail,
431 DONT_DO_SMI_CHECK);
432
433 // Double value, canonicalize NaN.
434 uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
435 cmp(FieldOperand(maybe_number, offset),
436 Immediate(kNaNOrInfinityLowerBoundUpper32));
437 j(greater_equal, &maybe_nan, Label::kNear);
438
439 bind(¬_nan);
440 ExternalReference canonical_nan_reference =
441 ExternalReference::address_of_canonical_non_hole_nan();
442 if (CpuFeatures::IsSupported(SSE2) && specialize_for_processor) {
443 CpuFeatures::Scope use_sse2(SSE2);
444 movdbl(scratch2, FieldOperand(maybe_number, HeapNumber::kValueOffset));
445 bind(&have_double_value);
446 movdbl(FieldOperand(elements, key, times_4, FixedDoubleArray::kHeaderSize),
447 scratch2);
448 } else {
449 fld_d(FieldOperand(maybe_number, HeapNumber::kValueOffset));
450 bind(&have_double_value);
451 fstp_d(FieldOperand(elements, key, times_4, FixedDoubleArray::kHeaderSize));
452 }
453 jmp(&done);
454
455 bind(&maybe_nan);
456 // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
457 // it's an Infinity, and the non-NaN code path applies.
458 j(greater, &is_nan, Label::kNear);
459 cmp(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0));
460 j(zero, ¬_nan);
461 bind(&is_nan);
462 if (CpuFeatures::IsSupported(SSE2) && specialize_for_processor) {
463 CpuFeatures::Scope use_sse2(SSE2);
464 movdbl(scratch2, Operand::StaticVariable(canonical_nan_reference));
465 } else {
466 fld_d(Operand::StaticVariable(canonical_nan_reference));
467 }
468 jmp(&have_double_value, Label::kNear);
469
470 bind(&smi_value);
471 // Value is a smi. Convert to a double and store.
472 // Preserve original value.
473 mov(scratch1, maybe_number);
474 SmiUntag(scratch1);
475 if (CpuFeatures::IsSupported(SSE2) && specialize_for_processor) {
476 CpuFeatures::Scope fscope(SSE2);
477 cvtsi2sd(scratch2, scratch1);
478 movdbl(FieldOperand(elements, key, times_4, FixedDoubleArray::kHeaderSize),
479 scratch2);
480 } else {
481 push(scratch1);
482 fild_s(Operand(esp, 0));
483 pop(scratch1);
484 fstp_d(FieldOperand(elements, key, times_4, FixedDoubleArray::kHeaderSize));
485 }
486 bind(&done);
487 }
488
489
CompareMap(Register obj,Handle<Map> map,Label * early_success,CompareMapMode mode)490 void MacroAssembler::CompareMap(Register obj,
491 Handle<Map> map,
492 Label* early_success,
493 CompareMapMode mode) {
494 cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
495 if (mode == ALLOW_ELEMENT_TRANSITION_MAPS) {
496 Map* transitioned_fast_element_map(
497 map->LookupElementsTransitionMap(FAST_ELEMENTS, NULL));
498 ASSERT(transitioned_fast_element_map == NULL ||
499 map->elements_kind() != FAST_ELEMENTS);
500 if (transitioned_fast_element_map != NULL) {
501 j(equal, early_success, Label::kNear);
502 cmp(FieldOperand(obj, HeapObject::kMapOffset),
503 Handle<Map>(transitioned_fast_element_map));
504 }
505
506 Map* transitioned_double_map(
507 map->LookupElementsTransitionMap(FAST_DOUBLE_ELEMENTS, NULL));
508 ASSERT(transitioned_double_map == NULL ||
509 map->elements_kind() == FAST_SMI_ONLY_ELEMENTS);
510 if (transitioned_double_map != NULL) {
511 j(equal, early_success, Label::kNear);
512 cmp(FieldOperand(obj, HeapObject::kMapOffset),
513 Handle<Map>(transitioned_double_map));
514 }
515 }
516 }
517
518
CheckMap(Register obj,Handle<Map> map,Label * fail,SmiCheckType smi_check_type,CompareMapMode mode)519 void MacroAssembler::CheckMap(Register obj,
520 Handle<Map> map,
521 Label* fail,
522 SmiCheckType smi_check_type,
523 CompareMapMode mode) {
524 if (smi_check_type == DO_SMI_CHECK) {
525 JumpIfSmi(obj, fail);
526 }
527
528 Label success;
529 CompareMap(obj, map, &success, mode);
530 j(not_equal, fail);
531 bind(&success);
532 }
533
534
DispatchMap(Register obj,Handle<Map> map,Handle<Code> success,SmiCheckType smi_check_type)535 void MacroAssembler::DispatchMap(Register obj,
536 Handle<Map> map,
537 Handle<Code> success,
538 SmiCheckType smi_check_type) {
539 Label fail;
540 if (smi_check_type == DO_SMI_CHECK) {
541 JumpIfSmi(obj, &fail);
542 }
543 cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map));
544 j(equal, success);
545
546 bind(&fail);
547 }
548
549
IsObjectStringType(Register heap_object,Register map,Register instance_type)550 Condition MacroAssembler::IsObjectStringType(Register heap_object,
551 Register map,
552 Register instance_type) {
553 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
554 movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
555 STATIC_ASSERT(kNotStringTag != 0);
556 test(instance_type, Immediate(kIsNotStringMask));
557 return zero;
558 }
559
560
IsObjectJSObjectType(Register heap_object,Register map,Register scratch,Label * fail)561 void MacroAssembler::IsObjectJSObjectType(Register heap_object,
562 Register map,
563 Register scratch,
564 Label* fail) {
565 mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
566 IsInstanceJSObjectType(map, scratch, fail);
567 }
568
569
IsInstanceJSObjectType(Register map,Register scratch,Label * fail)570 void MacroAssembler::IsInstanceJSObjectType(Register map,
571 Register scratch,
572 Label* fail) {
573 movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset));
574 sub(scratch, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
575 cmp(scratch,
576 LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
577 j(above, fail);
578 }
579
580
FCmp()581 void MacroAssembler::FCmp() {
582 if (CpuFeatures::IsSupported(CMOV)) {
583 fucomip();
584 fstp(0);
585 } else {
586 fucompp();
587 push(eax);
588 fnstsw_ax();
589 sahf();
590 pop(eax);
591 }
592 }
593
594
AbortIfNotNumber(Register object)595 void MacroAssembler::AbortIfNotNumber(Register object) {
596 Label ok;
597 JumpIfSmi(object, &ok);
598 cmp(FieldOperand(object, HeapObject::kMapOffset),
599 isolate()->factory()->heap_number_map());
600 Assert(equal, "Operand not a number");
601 bind(&ok);
602 }
603
604
AbortIfNotSmi(Register object)605 void MacroAssembler::AbortIfNotSmi(Register object) {
606 test(object, Immediate(kSmiTagMask));
607 Assert(equal, "Operand is not a smi");
608 }
609
610
AbortIfNotString(Register object)611 void MacroAssembler::AbortIfNotString(Register object) {
612 test(object, Immediate(kSmiTagMask));
613 Assert(not_equal, "Operand is not a string");
614 push(object);
615 mov(object, FieldOperand(object, HeapObject::kMapOffset));
616 CmpInstanceType(object, FIRST_NONSTRING_TYPE);
617 pop(object);
618 Assert(below, "Operand is not a string");
619 }
620
621
AbortIfSmi(Register object)622 void MacroAssembler::AbortIfSmi(Register object) {
623 test(object, Immediate(kSmiTagMask));
624 Assert(not_equal, "Operand is a smi");
625 }
626
627
EnterFrame(StackFrame::Type type)628 void MacroAssembler::EnterFrame(StackFrame::Type type) {
629 push(ebp);
630 mov(ebp, esp);
631 push(esi);
632 push(Immediate(Smi::FromInt(type)));
633 push(Immediate(CodeObject()));
634 if (emit_debug_code()) {
635 cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value()));
636 Check(not_equal, "code object not properly patched");
637 }
638 }
639
640
LeaveFrame(StackFrame::Type type)641 void MacroAssembler::LeaveFrame(StackFrame::Type type) {
642 if (emit_debug_code()) {
643 cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset),
644 Immediate(Smi::FromInt(type)));
645 Check(equal, "stack frame types must match");
646 }
647 leave();
648 }
649
650
EnterExitFramePrologue()651 void MacroAssembler::EnterExitFramePrologue() {
652 // Set up the frame structure on the stack.
653 ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
654 ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
655 ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize);
656 push(ebp);
657 mov(ebp, esp);
658
659 // Reserve room for entry stack pointer and push the code object.
660 ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
661 push(Immediate(0)); // Saved entry sp, patched before call.
662 push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot.
663
664 // Save the frame pointer and the context in top.
665 ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
666 isolate());
667 ExternalReference context_address(Isolate::kContextAddress,
668 isolate());
669 mov(Operand::StaticVariable(c_entry_fp_address), ebp);
670 mov(Operand::StaticVariable(context_address), esi);
671 }
672
673
EnterExitFrameEpilogue(int argc,bool save_doubles)674 void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) {
675 // Optionally save all XMM registers.
676 if (save_doubles) {
677 CpuFeatures::Scope scope(SSE2);
678 int space = XMMRegister::kNumRegisters * kDoubleSize + argc * kPointerSize;
679 sub(esp, Immediate(space));
680 const int offset = -2 * kPointerSize;
681 for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
682 XMMRegister reg = XMMRegister::from_code(i);
683 movdbl(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg);
684 }
685 } else {
686 sub(esp, Immediate(argc * kPointerSize));
687 }
688
689 // Get the required frame alignment for the OS.
690 const int kFrameAlignment = OS::ActivationFrameAlignment();
691 if (kFrameAlignment > 0) {
692 ASSERT(IsPowerOf2(kFrameAlignment));
693 and_(esp, -kFrameAlignment);
694 }
695
696 // Patch the saved entry sp.
697 mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
698 }
699
700
EnterExitFrame(bool save_doubles)701 void MacroAssembler::EnterExitFrame(bool save_doubles) {
702 EnterExitFramePrologue();
703
704 // Set up argc and argv in callee-saved registers.
705 int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
706 mov(edi, eax);
707 lea(esi, Operand(ebp, eax, times_4, offset));
708
709 // Reserve space for argc, argv and isolate.
710 EnterExitFrameEpilogue(3, save_doubles);
711 }
712
713
EnterApiExitFrame(int argc)714 void MacroAssembler::EnterApiExitFrame(int argc) {
715 EnterExitFramePrologue();
716 EnterExitFrameEpilogue(argc, false);
717 }
718
719
LeaveExitFrame(bool save_doubles)720 void MacroAssembler::LeaveExitFrame(bool save_doubles) {
721 // Optionally restore all XMM registers.
722 if (save_doubles) {
723 CpuFeatures::Scope scope(SSE2);
724 const int offset = -2 * kPointerSize;
725 for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
726 XMMRegister reg = XMMRegister::from_code(i);
727 movdbl(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize)));
728 }
729 }
730
731 // Get the return address from the stack and restore the frame pointer.
732 mov(ecx, Operand(ebp, 1 * kPointerSize));
733 mov(ebp, Operand(ebp, 0 * kPointerSize));
734
735 // Pop the arguments and the receiver from the caller stack.
736 lea(esp, Operand(esi, 1 * kPointerSize));
737
738 // Push the return address to get ready to return.
739 push(ecx);
740
741 LeaveExitFrameEpilogue();
742 }
743
LeaveExitFrameEpilogue()744 void MacroAssembler::LeaveExitFrameEpilogue() {
745 // Restore current context from top and clear it in debug mode.
746 ExternalReference context_address(Isolate::kContextAddress, isolate());
747 mov(esi, Operand::StaticVariable(context_address));
748 #ifdef DEBUG
749 mov(Operand::StaticVariable(context_address), Immediate(0));
750 #endif
751
752 // Clear the top frame.
753 ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
754 isolate());
755 mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
756 }
757
758
LeaveApiExitFrame()759 void MacroAssembler::LeaveApiExitFrame() {
760 mov(esp, ebp);
761 pop(ebp);
762
763 LeaveExitFrameEpilogue();
764 }
765
766
PushTryHandler(StackHandler::Kind kind,int handler_index)767 void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
768 int handler_index) {
769 // Adjust this code if not the case.
770 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
771 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
772 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
773 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
774 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
775 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
776
777 // We will build up the handler from the bottom by pushing on the stack.
778 // First push the frame pointer and context.
779 if (kind == StackHandler::JS_ENTRY) {
780 // The frame pointer does not point to a JS frame so we save NULL for
781 // ebp. We expect the code throwing an exception to check ebp before
782 // dereferencing it to restore the context.
783 push(Immediate(0)); // NULL frame pointer.
784 push(Immediate(Smi::FromInt(0))); // No context.
785 } else {
786 push(ebp);
787 push(esi);
788 }
789 // Push the state and the code object.
790 unsigned state =
791 StackHandler::IndexField::encode(handler_index) |
792 StackHandler::KindField::encode(kind);
793 push(Immediate(state));
794 Push(CodeObject());
795
796 // Link the current handler as the next handler.
797 ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
798 push(Operand::StaticVariable(handler_address));
799 // Set this new handler as the current one.
800 mov(Operand::StaticVariable(handler_address), esp);
801 }
802
803
PopTryHandler()804 void MacroAssembler::PopTryHandler() {
805 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
806 ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
807 pop(Operand::StaticVariable(handler_address));
808 add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize));
809 }
810
811
JumpToHandlerEntry()812 void MacroAssembler::JumpToHandlerEntry() {
813 // Compute the handler entry address and jump to it. The handler table is
814 // a fixed array of (smi-tagged) code offsets.
815 // eax = exception, edi = code object, edx = state.
816 mov(ebx, FieldOperand(edi, Code::kHandlerTableOffset));
817 shr(edx, StackHandler::kKindWidth);
818 mov(edx, FieldOperand(ebx, edx, times_4, FixedArray::kHeaderSize));
819 SmiUntag(edx);
820 lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
821 jmp(edi);
822 }
823
824
Throw(Register value)825 void MacroAssembler::Throw(Register value) {
826 // Adjust this code if not the case.
827 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
828 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
829 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
830 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
831 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
832 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
833
834 // The exception is expected in eax.
835 if (!value.is(eax)) {
836 mov(eax, value);
837 }
838 // Drop the stack pointer to the top of the top handler.
839 ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
840 mov(esp, Operand::StaticVariable(handler_address));
841 // Restore the next handler.
842 pop(Operand::StaticVariable(handler_address));
843
844 // Remove the code object and state, compute the handler address in edi.
845 pop(edi); // Code object.
846 pop(edx); // Index and state.
847
848 // Restore the context and frame pointer.
849 pop(esi); // Context.
850 pop(ebp); // Frame pointer.
851
852 // If the handler is a JS frame, restore the context to the frame.
853 // (kind == ENTRY) == (ebp == 0) == (esi == 0), so we could test either
854 // ebp or esi.
855 Label skip;
856 test(esi, esi);
857 j(zero, &skip, Label::kNear);
858 mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
859 bind(&skip);
860
861 JumpToHandlerEntry();
862 }
863
864
ThrowUncatchable(Register value)865 void MacroAssembler::ThrowUncatchable(Register value) {
866 // Adjust this code if not the case.
867 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
868 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
869 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
870 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
871 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
872 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
873
874 // The exception is expected in eax.
875 if (!value.is(eax)) {
876 mov(eax, value);
877 }
878 // Drop the stack pointer to the top of the top stack handler.
879 ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
880 mov(esp, Operand::StaticVariable(handler_address));
881
882 // Unwind the handlers until the top ENTRY handler is found.
883 Label fetch_next, check_kind;
884 jmp(&check_kind, Label::kNear);
885 bind(&fetch_next);
886 mov(esp, Operand(esp, StackHandlerConstants::kNextOffset));
887
888 bind(&check_kind);
889 STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
890 test(Operand(esp, StackHandlerConstants::kStateOffset),
891 Immediate(StackHandler::KindField::kMask));
892 j(not_zero, &fetch_next);
893
894 // Set the top handler address to next handler past the top ENTRY handler.
895 pop(Operand::StaticVariable(handler_address));
896
897 // Remove the code object and state, compute the handler address in edi.
898 pop(edi); // Code object.
899 pop(edx); // Index and state.
900
901 // Clear the context pointer and frame pointer (0 was saved in the handler).
902 pop(esi);
903 pop(ebp);
904
905 JumpToHandlerEntry();
906 }
907
908
CheckAccessGlobalProxy(Register holder_reg,Register scratch,Label * miss)909 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
910 Register scratch,
911 Label* miss) {
912 Label same_contexts;
913
914 ASSERT(!holder_reg.is(scratch));
915
916 // Load current lexical context from the stack frame.
917 mov(scratch, Operand(ebp, StandardFrameConstants::kContextOffset));
918
919 // When generating debug code, make sure the lexical context is set.
920 if (emit_debug_code()) {
921 cmp(scratch, Immediate(0));
922 Check(not_equal, "we should not have an empty lexical context");
923 }
924 // Load the global context of the current context.
925 int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
926 mov(scratch, FieldOperand(scratch, offset));
927 mov(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset));
928
929 // Check the context is a global context.
930 if (emit_debug_code()) {
931 push(scratch);
932 // Read the first word and compare to global_context_map.
933 mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
934 cmp(scratch, isolate()->factory()->global_context_map());
935 Check(equal, "JSGlobalObject::global_context should be a global context.");
936 pop(scratch);
937 }
938
939 // Check if both contexts are the same.
940 cmp(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
941 j(equal, &same_contexts);
942
943 // Compare security tokens, save holder_reg on the stack so we can use it
944 // as a temporary register.
945 //
946 // TODO(119): avoid push(holder_reg)/pop(holder_reg)
947 push(holder_reg);
948 // Check that the security token in the calling global object is
949 // compatible with the security token in the receiving global
950 // object.
951 mov(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
952
953 // Check the context is a global context.
954 if (emit_debug_code()) {
955 cmp(holder_reg, isolate()->factory()->null_value());
956 Check(not_equal, "JSGlobalProxy::context() should not be null.");
957
958 push(holder_reg);
959 // Read the first word and compare to global_context_map(),
960 mov(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset));
961 cmp(holder_reg, isolate()->factory()->global_context_map());
962 Check(equal, "JSGlobalObject::global_context should be a global context.");
963 pop(holder_reg);
964 }
965
966 int token_offset = Context::kHeaderSize +
967 Context::SECURITY_TOKEN_INDEX * kPointerSize;
968 mov(scratch, FieldOperand(scratch, token_offset));
969 cmp(scratch, FieldOperand(holder_reg, token_offset));
970 pop(holder_reg);
971 j(not_equal, miss);
972
973 bind(&same_contexts);
974 }
975
976
977 // Compute the hash code from the untagged key. This must be kept in sync
978 // with ComputeIntegerHash in utils.h.
979 //
980 // Note: r0 will contain hash code
GetNumberHash(Register r0,Register scratch)981 void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
982 // Xor original key with a seed.
983 if (Serializer::enabled()) {
984 ExternalReference roots_array_start =
985 ExternalReference::roots_array_start(isolate());
986 mov(scratch, Immediate(Heap::kHashSeedRootIndex));
987 mov(scratch,
988 Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
989 SmiUntag(scratch);
990 xor_(r0, scratch);
991 } else {
992 int32_t seed = isolate()->heap()->HashSeed();
993 xor_(r0, Immediate(seed));
994 }
995
996 // hash = ~hash + (hash << 15);
997 mov(scratch, r0);
998 not_(r0);
999 shl(scratch, 15);
1000 add(r0, scratch);
1001 // hash = hash ^ (hash >> 12);
1002 mov(scratch, r0);
1003 shr(scratch, 12);
1004 xor_(r0, scratch);
1005 // hash = hash + (hash << 2);
1006 lea(r0, Operand(r0, r0, times_4, 0));
1007 // hash = hash ^ (hash >> 4);
1008 mov(scratch, r0);
1009 shr(scratch, 4);
1010 xor_(r0, scratch);
1011 // hash = hash * 2057;
1012 imul(r0, r0, 2057);
1013 // hash = hash ^ (hash >> 16);
1014 mov(scratch, r0);
1015 shr(scratch, 16);
1016 xor_(r0, scratch);
1017 }
1018
1019
1020
LoadFromNumberDictionary(Label * miss,Register elements,Register key,Register r0,Register r1,Register r2,Register result)1021 void MacroAssembler::LoadFromNumberDictionary(Label* miss,
1022 Register elements,
1023 Register key,
1024 Register r0,
1025 Register r1,
1026 Register r2,
1027 Register result) {
1028 // Register use:
1029 //
1030 // elements - holds the slow-case elements of the receiver and is unchanged.
1031 //
1032 // key - holds the smi key on entry and is unchanged.
1033 //
1034 // Scratch registers:
1035 //
1036 // r0 - holds the untagged key on entry and holds the hash once computed.
1037 //
1038 // r1 - used to hold the capacity mask of the dictionary
1039 //
1040 // r2 - used for the index into the dictionary.
1041 //
1042 // result - holds the result on exit if the load succeeds and we fall through.
1043
1044 Label done;
1045
1046 GetNumberHash(r0, r1);
1047
1048 // Compute capacity mask.
1049 mov(r1, FieldOperand(elements, SeededNumberDictionary::kCapacityOffset));
1050 shr(r1, kSmiTagSize); // convert smi to int
1051 dec(r1);
1052
1053 // Generate an unrolled loop that performs a few probes before giving up.
1054 const int kProbes = 4;
1055 for (int i = 0; i < kProbes; i++) {
1056 // Use r2 for index calculations and keep the hash intact in r0.
1057 mov(r2, r0);
1058 // Compute the masked index: (hash + i + i * i) & mask.
1059 if (i > 0) {
1060 add(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
1061 }
1062 and_(r2, r1);
1063
1064 // Scale the index by multiplying by the entry size.
1065 ASSERT(SeededNumberDictionary::kEntrySize == 3);
1066 lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3
1067
1068 // Check if the key matches.
1069 cmp(key, FieldOperand(elements,
1070 r2,
1071 times_pointer_size,
1072 SeededNumberDictionary::kElementsStartOffset));
1073 if (i != (kProbes - 1)) {
1074 j(equal, &done);
1075 } else {
1076 j(not_equal, miss);
1077 }
1078 }
1079
1080 bind(&done);
1081 // Check that the value is a normal propety.
1082 const int kDetailsOffset =
1083 SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
1084 ASSERT_EQ(NORMAL, 0);
1085 test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
1086 Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
1087 j(not_zero, miss);
1088
1089 // Get the value at the masked, scaled index.
1090 const int kValueOffset =
1091 SeededNumberDictionary::kElementsStartOffset + kPointerSize;
1092 mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
1093 }
1094
1095
LoadAllocationTopHelper(Register result,Register scratch,AllocationFlags flags)1096 void MacroAssembler::LoadAllocationTopHelper(Register result,
1097 Register scratch,
1098 AllocationFlags flags) {
1099 ExternalReference new_space_allocation_top =
1100 ExternalReference::new_space_allocation_top_address(isolate());
1101
1102 // Just return if allocation top is already known.
1103 if ((flags & RESULT_CONTAINS_TOP) != 0) {
1104 // No use of scratch if allocation top is provided.
1105 ASSERT(scratch.is(no_reg));
1106 #ifdef DEBUG
1107 // Assert that result actually contains top on entry.
1108 cmp(result, Operand::StaticVariable(new_space_allocation_top));
1109 Check(equal, "Unexpected allocation top");
1110 #endif
1111 return;
1112 }
1113
1114 // Move address of new object to result. Use scratch register if available.
1115 if (scratch.is(no_reg)) {
1116 mov(result, Operand::StaticVariable(new_space_allocation_top));
1117 } else {
1118 mov(scratch, Immediate(new_space_allocation_top));
1119 mov(result, Operand(scratch, 0));
1120 }
1121 }
1122
1123
UpdateAllocationTopHelper(Register result_end,Register scratch)1124 void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
1125 Register scratch) {
1126 if (emit_debug_code()) {
1127 test(result_end, Immediate(kObjectAlignmentMask));
1128 Check(zero, "Unaligned allocation in new space");
1129 }
1130
1131 ExternalReference new_space_allocation_top =
1132 ExternalReference::new_space_allocation_top_address(isolate());
1133
1134 // Update new top. Use scratch if available.
1135 if (scratch.is(no_reg)) {
1136 mov(Operand::StaticVariable(new_space_allocation_top), result_end);
1137 } else {
1138 mov(Operand(scratch, 0), result_end);
1139 }
1140 }
1141
1142
AllocateInNewSpace(int object_size,Register result,Register result_end,Register scratch,Label * gc_required,AllocationFlags flags)1143 void MacroAssembler::AllocateInNewSpace(int object_size,
1144 Register result,
1145 Register result_end,
1146 Register scratch,
1147 Label* gc_required,
1148 AllocationFlags flags) {
1149 if (!FLAG_inline_new) {
1150 if (emit_debug_code()) {
1151 // Trash the registers to simulate an allocation failure.
1152 mov(result, Immediate(0x7091));
1153 if (result_end.is_valid()) {
1154 mov(result_end, Immediate(0x7191));
1155 }
1156 if (scratch.is_valid()) {
1157 mov(scratch, Immediate(0x7291));
1158 }
1159 }
1160 jmp(gc_required);
1161 return;
1162 }
1163 ASSERT(!result.is(result_end));
1164
1165 // Load address of new object into result.
1166 LoadAllocationTopHelper(result, scratch, flags);
1167
1168 Register top_reg = result_end.is_valid() ? result_end : result;
1169
1170 // Calculate new top and bail out if new space is exhausted.
1171 ExternalReference new_space_allocation_limit =
1172 ExternalReference::new_space_allocation_limit_address(isolate());
1173
1174 if (!top_reg.is(result)) {
1175 mov(top_reg, result);
1176 }
1177 add(top_reg, Immediate(object_size));
1178 j(carry, gc_required);
1179 cmp(top_reg, Operand::StaticVariable(new_space_allocation_limit));
1180 j(above, gc_required);
1181
1182 // Update allocation top.
1183 UpdateAllocationTopHelper(top_reg, scratch);
1184
1185 // Tag result if requested.
1186 if (top_reg.is(result)) {
1187 if ((flags & TAG_OBJECT) != 0) {
1188 sub(result, Immediate(object_size - kHeapObjectTag));
1189 } else {
1190 sub(result, Immediate(object_size));
1191 }
1192 } else if ((flags & TAG_OBJECT) != 0) {
1193 add(result, Immediate(kHeapObjectTag));
1194 }
1195 }
1196
1197
AllocateInNewSpace(int header_size,ScaleFactor element_size,Register element_count,Register result,Register result_end,Register scratch,Label * gc_required,AllocationFlags flags)1198 void MacroAssembler::AllocateInNewSpace(int header_size,
1199 ScaleFactor element_size,
1200 Register element_count,
1201 Register result,
1202 Register result_end,
1203 Register scratch,
1204 Label* gc_required,
1205 AllocationFlags flags) {
1206 if (!FLAG_inline_new) {
1207 if (emit_debug_code()) {
1208 // Trash the registers to simulate an allocation failure.
1209 mov(result, Immediate(0x7091));
1210 mov(result_end, Immediate(0x7191));
1211 if (scratch.is_valid()) {
1212 mov(scratch, Immediate(0x7291));
1213 }
1214 // Register element_count is not modified by the function.
1215 }
1216 jmp(gc_required);
1217 return;
1218 }
1219 ASSERT(!result.is(result_end));
1220
1221 // Load address of new object into result.
1222 LoadAllocationTopHelper(result, scratch, flags);
1223
1224 // Calculate new top and bail out if new space is exhausted.
1225 ExternalReference new_space_allocation_limit =
1226 ExternalReference::new_space_allocation_limit_address(isolate());
1227
1228 // We assume that element_count*element_size + header_size does not
1229 // overflow.
1230 lea(result_end, Operand(element_count, element_size, header_size));
1231 add(result_end, result);
1232 j(carry, gc_required);
1233 cmp(result_end, Operand::StaticVariable(new_space_allocation_limit));
1234 j(above, gc_required);
1235
1236 // Tag result if requested.
1237 if ((flags & TAG_OBJECT) != 0) {
1238 lea(result, Operand(result, kHeapObjectTag));
1239 }
1240
1241 // Update allocation top.
1242 UpdateAllocationTopHelper(result_end, scratch);
1243 }
1244
1245
AllocateInNewSpace(Register object_size,Register result,Register result_end,Register scratch,Label * gc_required,AllocationFlags flags)1246 void MacroAssembler::AllocateInNewSpace(Register object_size,
1247 Register result,
1248 Register result_end,
1249 Register scratch,
1250 Label* gc_required,
1251 AllocationFlags flags) {
1252 if (!FLAG_inline_new) {
1253 if (emit_debug_code()) {
1254 // Trash the registers to simulate an allocation failure.
1255 mov(result, Immediate(0x7091));
1256 mov(result_end, Immediate(0x7191));
1257 if (scratch.is_valid()) {
1258 mov(scratch, Immediate(0x7291));
1259 }
1260 // object_size is left unchanged by this function.
1261 }
1262 jmp(gc_required);
1263 return;
1264 }
1265 ASSERT(!result.is(result_end));
1266
1267 // Load address of new object into result.
1268 LoadAllocationTopHelper(result, scratch, flags);
1269
1270 // Calculate new top and bail out if new space is exhausted.
1271 ExternalReference new_space_allocation_limit =
1272 ExternalReference::new_space_allocation_limit_address(isolate());
1273 if (!object_size.is(result_end)) {
1274 mov(result_end, object_size);
1275 }
1276 add(result_end, result);
1277 j(carry, gc_required);
1278 cmp(result_end, Operand::StaticVariable(new_space_allocation_limit));
1279 j(above, gc_required);
1280
1281 // Tag result if requested.
1282 if ((flags & TAG_OBJECT) != 0) {
1283 lea(result, Operand(result, kHeapObjectTag));
1284 }
1285
1286 // Update allocation top.
1287 UpdateAllocationTopHelper(result_end, scratch);
1288 }
1289
1290
UndoAllocationInNewSpace(Register object)1291 void MacroAssembler::UndoAllocationInNewSpace(Register object) {
1292 ExternalReference new_space_allocation_top =
1293 ExternalReference::new_space_allocation_top_address(isolate());
1294
1295 // Make sure the object has no tag before resetting top.
1296 and_(object, Immediate(~kHeapObjectTagMask));
1297 #ifdef DEBUG
1298 cmp(object, Operand::StaticVariable(new_space_allocation_top));
1299 Check(below, "Undo allocation of non allocated memory");
1300 #endif
1301 mov(Operand::StaticVariable(new_space_allocation_top), object);
1302 }
1303
1304
AllocateHeapNumber(Register result,Register scratch1,Register scratch2,Label * gc_required)1305 void MacroAssembler::AllocateHeapNumber(Register result,
1306 Register scratch1,
1307 Register scratch2,
1308 Label* gc_required) {
1309 // Allocate heap number in new space.
1310 AllocateInNewSpace(HeapNumber::kSize,
1311 result,
1312 scratch1,
1313 scratch2,
1314 gc_required,
1315 TAG_OBJECT);
1316
1317 // Set the map.
1318 mov(FieldOperand(result, HeapObject::kMapOffset),
1319 Immediate(isolate()->factory()->heap_number_map()));
1320 }
1321
1322
AllocateTwoByteString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)1323 void MacroAssembler::AllocateTwoByteString(Register result,
1324 Register length,
1325 Register scratch1,
1326 Register scratch2,
1327 Register scratch3,
1328 Label* gc_required) {
1329 // Calculate the number of bytes needed for the characters in the string while
1330 // observing object alignment.
1331 ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1332 ASSERT(kShortSize == 2);
1333 // scratch1 = length * 2 + kObjectAlignmentMask.
1334 lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
1335 and_(scratch1, Immediate(~kObjectAlignmentMask));
1336
1337 // Allocate two byte string in new space.
1338 AllocateInNewSpace(SeqTwoByteString::kHeaderSize,
1339 times_1,
1340 scratch1,
1341 result,
1342 scratch2,
1343 scratch3,
1344 gc_required,
1345 TAG_OBJECT);
1346
1347 // Set the map, length and hash field.
1348 mov(FieldOperand(result, HeapObject::kMapOffset),
1349 Immediate(isolate()->factory()->string_map()));
1350 mov(scratch1, length);
1351 SmiTag(scratch1);
1352 mov(FieldOperand(result, String::kLengthOffset), scratch1);
1353 mov(FieldOperand(result, String::kHashFieldOffset),
1354 Immediate(String::kEmptyHashField));
1355 }
1356
1357
AllocateAsciiString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)1358 void MacroAssembler::AllocateAsciiString(Register result,
1359 Register length,
1360 Register scratch1,
1361 Register scratch2,
1362 Register scratch3,
1363 Label* gc_required) {
1364 // Calculate the number of bytes needed for the characters in the string while
1365 // observing object alignment.
1366 ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
1367 mov(scratch1, length);
1368 ASSERT(kCharSize == 1);
1369 add(scratch1, Immediate(kObjectAlignmentMask));
1370 and_(scratch1, Immediate(~kObjectAlignmentMask));
1371
1372 // Allocate ASCII string in new space.
1373 AllocateInNewSpace(SeqAsciiString::kHeaderSize,
1374 times_1,
1375 scratch1,
1376 result,
1377 scratch2,
1378 scratch3,
1379 gc_required,
1380 TAG_OBJECT);
1381
1382 // Set the map, length and hash field.
1383 mov(FieldOperand(result, HeapObject::kMapOffset),
1384 Immediate(isolate()->factory()->ascii_string_map()));
1385 mov(scratch1, length);
1386 SmiTag(scratch1);
1387 mov(FieldOperand(result, String::kLengthOffset), scratch1);
1388 mov(FieldOperand(result, String::kHashFieldOffset),
1389 Immediate(String::kEmptyHashField));
1390 }
1391
1392
AllocateAsciiString(Register result,int length,Register scratch1,Register scratch2,Label * gc_required)1393 void MacroAssembler::AllocateAsciiString(Register result,
1394 int length,
1395 Register scratch1,
1396 Register scratch2,
1397 Label* gc_required) {
1398 ASSERT(length > 0);
1399
1400 // Allocate ASCII string in new space.
1401 AllocateInNewSpace(SeqAsciiString::SizeFor(length),
1402 result,
1403 scratch1,
1404 scratch2,
1405 gc_required,
1406 TAG_OBJECT);
1407
1408 // Set the map, length and hash field.
1409 mov(FieldOperand(result, HeapObject::kMapOffset),
1410 Immediate(isolate()->factory()->ascii_string_map()));
1411 mov(FieldOperand(result, String::kLengthOffset),
1412 Immediate(Smi::FromInt(length)));
1413 mov(FieldOperand(result, String::kHashFieldOffset),
1414 Immediate(String::kEmptyHashField));
1415 }
1416
1417
AllocateTwoByteConsString(Register result,Register scratch1,Register scratch2,Label * gc_required)1418 void MacroAssembler::AllocateTwoByteConsString(Register result,
1419 Register scratch1,
1420 Register scratch2,
1421 Label* gc_required) {
1422 // Allocate heap number in new space.
1423 AllocateInNewSpace(ConsString::kSize,
1424 result,
1425 scratch1,
1426 scratch2,
1427 gc_required,
1428 TAG_OBJECT);
1429
1430 // Set the map. The other fields are left uninitialized.
1431 mov(FieldOperand(result, HeapObject::kMapOffset),
1432 Immediate(isolate()->factory()->cons_string_map()));
1433 }
1434
1435
AllocateAsciiConsString(Register result,Register scratch1,Register scratch2,Label * gc_required)1436 void MacroAssembler::AllocateAsciiConsString(Register result,
1437 Register scratch1,
1438 Register scratch2,
1439 Label* gc_required) {
1440 // Allocate heap number in new space.
1441 AllocateInNewSpace(ConsString::kSize,
1442 result,
1443 scratch1,
1444 scratch2,
1445 gc_required,
1446 TAG_OBJECT);
1447
1448 // Set the map. The other fields are left uninitialized.
1449 mov(FieldOperand(result, HeapObject::kMapOffset),
1450 Immediate(isolate()->factory()->cons_ascii_string_map()));
1451 }
1452
1453
AllocateTwoByteSlicedString(Register result,Register scratch1,Register scratch2,Label * gc_required)1454 void MacroAssembler::AllocateTwoByteSlicedString(Register result,
1455 Register scratch1,
1456 Register scratch2,
1457 Label* gc_required) {
1458 // Allocate heap number in new space.
1459 AllocateInNewSpace(SlicedString::kSize,
1460 result,
1461 scratch1,
1462 scratch2,
1463 gc_required,
1464 TAG_OBJECT);
1465
1466 // Set the map. The other fields are left uninitialized.
1467 mov(FieldOperand(result, HeapObject::kMapOffset),
1468 Immediate(isolate()->factory()->sliced_string_map()));
1469 }
1470
1471
AllocateAsciiSlicedString(Register result,Register scratch1,Register scratch2,Label * gc_required)1472 void MacroAssembler::AllocateAsciiSlicedString(Register result,
1473 Register scratch1,
1474 Register scratch2,
1475 Label* gc_required) {
1476 // Allocate heap number in new space.
1477 AllocateInNewSpace(SlicedString::kSize,
1478 result,
1479 scratch1,
1480 scratch2,
1481 gc_required,
1482 TAG_OBJECT);
1483
1484 // Set the map. The other fields are left uninitialized.
1485 mov(FieldOperand(result, HeapObject::kMapOffset),
1486 Immediate(isolate()->factory()->sliced_ascii_string_map()));
1487 }
1488
1489
1490 // Copy memory, byte-by-byte, from source to destination. Not optimized for
1491 // long or aligned copies. The contents of scratch and length are destroyed.
1492 // Source and destination are incremented by length.
1493 // Many variants of movsb, loop unrolling, word moves, and indexed operands
1494 // have been tried here already, and this is fastest.
1495 // A simpler loop is faster on small copies, but 30% slower on large ones.
1496 // The cld() instruction must have been emitted, to set the direction flag(),
1497 // before calling this function.
CopyBytes(Register source,Register destination,Register length,Register scratch)1498 void MacroAssembler::CopyBytes(Register source,
1499 Register destination,
1500 Register length,
1501 Register scratch) {
1502 Label loop, done, short_string, short_loop;
1503 // Experimentation shows that the short string loop is faster if length < 10.
1504 cmp(length, Immediate(10));
1505 j(less_equal, &short_string);
1506
1507 ASSERT(source.is(esi));
1508 ASSERT(destination.is(edi));
1509 ASSERT(length.is(ecx));
1510
1511 // Because source is 4-byte aligned in our uses of this function,
1512 // we keep source aligned for the rep_movs call by copying the odd bytes
1513 // at the end of the ranges.
1514 mov(scratch, Operand(source, length, times_1, -4));
1515 mov(Operand(destination, length, times_1, -4), scratch);
1516 mov(scratch, ecx);
1517 shr(ecx, 2);
1518 rep_movs();
1519 and_(scratch, Immediate(0x3));
1520 add(destination, scratch);
1521 jmp(&done);
1522
1523 bind(&short_string);
1524 test(length, length);
1525 j(zero, &done);
1526
1527 bind(&short_loop);
1528 mov_b(scratch, Operand(source, 0));
1529 mov_b(Operand(destination, 0), scratch);
1530 inc(source);
1531 inc(destination);
1532 dec(length);
1533 j(not_zero, &short_loop);
1534
1535 bind(&done);
1536 }
1537
1538
InitializeFieldsWithFiller(Register start_offset,Register end_offset,Register filler)1539 void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
1540 Register end_offset,
1541 Register filler) {
1542 Label loop, entry;
1543 jmp(&entry);
1544 bind(&loop);
1545 mov(Operand(start_offset, 0), filler);
1546 add(start_offset, Immediate(kPointerSize));
1547 bind(&entry);
1548 cmp(start_offset, end_offset);
1549 j(less, &loop);
1550 }
1551
1552
BooleanBitTest(Register object,int field_offset,int bit_index)1553 void MacroAssembler::BooleanBitTest(Register object,
1554 int field_offset,
1555 int bit_index) {
1556 bit_index += kSmiTagSize + kSmiShiftSize;
1557 ASSERT(IsPowerOf2(kBitsPerByte));
1558 int byte_index = bit_index / kBitsPerByte;
1559 int byte_bit_index = bit_index & (kBitsPerByte - 1);
1560 test_b(FieldOperand(object, field_offset + byte_index),
1561 static_cast<byte>(1 << byte_bit_index));
1562 }
1563
1564
1565
NegativeZeroTest(Register result,Register op,Label * then_label)1566 void MacroAssembler::NegativeZeroTest(Register result,
1567 Register op,
1568 Label* then_label) {
1569 Label ok;
1570 test(result, result);
1571 j(not_zero, &ok);
1572 test(op, op);
1573 j(sign, then_label);
1574 bind(&ok);
1575 }
1576
1577
NegativeZeroTest(Register result,Register op1,Register op2,Register scratch,Label * then_label)1578 void MacroAssembler::NegativeZeroTest(Register result,
1579 Register op1,
1580 Register op2,
1581 Register scratch,
1582 Label* then_label) {
1583 Label ok;
1584 test(result, result);
1585 j(not_zero, &ok);
1586 mov(scratch, op1);
1587 or_(scratch, op2);
1588 j(sign, then_label);
1589 bind(&ok);
1590 }
1591
1592
TryGetFunctionPrototype(Register function,Register result,Register scratch,Label * miss,bool miss_on_bound_function)1593 void MacroAssembler::TryGetFunctionPrototype(Register function,
1594 Register result,
1595 Register scratch,
1596 Label* miss,
1597 bool miss_on_bound_function) {
1598 // Check that the receiver isn't a smi.
1599 JumpIfSmi(function, miss);
1600
1601 // Check that the function really is a function.
1602 CmpObjectType(function, JS_FUNCTION_TYPE, result);
1603 j(not_equal, miss);
1604
1605 if (miss_on_bound_function) {
1606 // If a bound function, go to miss label.
1607 mov(scratch,
1608 FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
1609 BooleanBitTest(scratch, SharedFunctionInfo::kCompilerHintsOffset,
1610 SharedFunctionInfo::kBoundFunction);
1611 j(not_zero, miss);
1612 }
1613
1614 // Make sure that the function has an instance prototype.
1615 Label non_instance;
1616 movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset));
1617 test(scratch, Immediate(1 << Map::kHasNonInstancePrototype));
1618 j(not_zero, &non_instance);
1619
1620 // Get the prototype or initial map from the function.
1621 mov(result,
1622 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1623
1624 // If the prototype or initial map is the hole, don't return it and
1625 // simply miss the cache instead. This will allow us to allocate a
1626 // prototype object on-demand in the runtime system.
1627 cmp(result, Immediate(isolate()->factory()->the_hole_value()));
1628 j(equal, miss);
1629
1630 // If the function does not have an initial map, we're done.
1631 Label done;
1632 CmpObjectType(result, MAP_TYPE, scratch);
1633 j(not_equal, &done);
1634
1635 // Get the prototype from the initial map.
1636 mov(result, FieldOperand(result, Map::kPrototypeOffset));
1637 jmp(&done);
1638
1639 // Non-instance prototype: Fetch prototype from constructor field
1640 // in initial map.
1641 bind(&non_instance);
1642 mov(result, FieldOperand(result, Map::kConstructorOffset));
1643
1644 // All done.
1645 bind(&done);
1646 }
1647
1648
CallStub(CodeStub * stub,unsigned ast_id)1649 void MacroAssembler::CallStub(CodeStub* stub, unsigned ast_id) {
1650 ASSERT(AllowThisStubCall(stub)); // Calls are not allowed in some stubs.
1651 call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
1652 }
1653
1654
TailCallStub(CodeStub * stub)1655 void MacroAssembler::TailCallStub(CodeStub* stub) {
1656 ASSERT(allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe());
1657 jmp(stub->GetCode(), RelocInfo::CODE_TARGET);
1658 }
1659
1660
StubReturn(int argc)1661 void MacroAssembler::StubReturn(int argc) {
1662 ASSERT(argc >= 1 && generating_stub());
1663 ret((argc - 1) * kPointerSize);
1664 }
1665
1666
AllowThisStubCall(CodeStub * stub)1667 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
1668 if (!has_frame_ && stub->SometimesSetsUpAFrame()) return false;
1669 return allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe();
1670 }
1671
1672
IllegalOperation(int num_arguments)1673 void MacroAssembler::IllegalOperation(int num_arguments) {
1674 if (num_arguments > 0) {
1675 add(esp, Immediate(num_arguments * kPointerSize));
1676 }
1677 mov(eax, Immediate(isolate()->factory()->undefined_value()));
1678 }
1679
1680
IndexFromHash(Register hash,Register index)1681 void MacroAssembler::IndexFromHash(Register hash, Register index) {
1682 // The assert checks that the constants for the maximum number of digits
1683 // for an array index cached in the hash field and the number of bits
1684 // reserved for it does not conflict.
1685 ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
1686 (1 << String::kArrayIndexValueBits));
1687 // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in
1688 // the low kHashShift bits.
1689 and_(hash, String::kArrayIndexValueMask);
1690 STATIC_ASSERT(String::kHashShift >= kSmiTagSize && kSmiTag == 0);
1691 if (String::kHashShift > kSmiTagSize) {
1692 shr(hash, String::kHashShift - kSmiTagSize);
1693 }
1694 if (!index.is(hash)) {
1695 mov(index, hash);
1696 }
1697 }
1698
1699
CallRuntime(Runtime::FunctionId id,int num_arguments)1700 void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) {
1701 CallRuntime(Runtime::FunctionForId(id), num_arguments);
1702 }
1703
1704
CallRuntimeSaveDoubles(Runtime::FunctionId id)1705 void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1706 const Runtime::Function* function = Runtime::FunctionForId(id);
1707 Set(eax, Immediate(function->nargs));
1708 mov(ebx, Immediate(ExternalReference(function, isolate())));
1709 CEntryStub ces(1, kSaveFPRegs);
1710 CallStub(&ces);
1711 }
1712
1713
CallRuntime(const Runtime::Function * f,int num_arguments)1714 void MacroAssembler::CallRuntime(const Runtime::Function* f,
1715 int num_arguments) {
1716 // If the expected number of arguments of the runtime function is
1717 // constant, we check that the actual number of arguments match the
1718 // expectation.
1719 if (f->nargs >= 0 && f->nargs != num_arguments) {
1720 IllegalOperation(num_arguments);
1721 return;
1722 }
1723
1724 // TODO(1236192): Most runtime routines don't need the number of
1725 // arguments passed in because it is constant. At some point we
1726 // should remove this need and make the runtime routine entry code
1727 // smarter.
1728 Set(eax, Immediate(num_arguments));
1729 mov(ebx, Immediate(ExternalReference(f, isolate())));
1730 CEntryStub ces(1);
1731 CallStub(&ces);
1732 }
1733
1734
CallExternalReference(ExternalReference ref,int num_arguments)1735 void MacroAssembler::CallExternalReference(ExternalReference ref,
1736 int num_arguments) {
1737 mov(eax, Immediate(num_arguments));
1738 mov(ebx, Immediate(ref));
1739
1740 CEntryStub stub(1);
1741 CallStub(&stub);
1742 }
1743
1744
TailCallExternalReference(const ExternalReference & ext,int num_arguments,int result_size)1745 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
1746 int num_arguments,
1747 int result_size) {
1748 // TODO(1236192): Most runtime routines don't need the number of
1749 // arguments passed in because it is constant. At some point we
1750 // should remove this need and make the runtime routine entry code
1751 // smarter.
1752 Set(eax, Immediate(num_arguments));
1753 JumpToExternalReference(ext);
1754 }
1755
1756
TailCallRuntime(Runtime::FunctionId fid,int num_arguments,int result_size)1757 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
1758 int num_arguments,
1759 int result_size) {
1760 TailCallExternalReference(ExternalReference(fid, isolate()),
1761 num_arguments,
1762 result_size);
1763 }
1764
1765
1766 // If true, a Handle<T> returned by value from a function with cdecl calling
1767 // convention will be returned directly as a value of location_ field in a
1768 // register eax.
1769 // If false, it is returned as a pointer to a preallocated by caller memory
1770 // region. Pointer to this region should be passed to a function as an
1771 // implicit first argument.
1772 #if defined(USING_BSD_ABI) || defined(__MINGW32__) || defined(__CYGWIN__)
1773 static const bool kReturnHandlesDirectly = true;
1774 #else
1775 static const bool kReturnHandlesDirectly = false;
1776 #endif
1777
1778
ApiParameterOperand(int index)1779 Operand ApiParameterOperand(int index) {
1780 return Operand(
1781 esp, (index + (kReturnHandlesDirectly ? 0 : 1)) * kPointerSize);
1782 }
1783
1784
PrepareCallApiFunction(int argc)1785 void MacroAssembler::PrepareCallApiFunction(int argc) {
1786 if (kReturnHandlesDirectly) {
1787 EnterApiExitFrame(argc);
1788 // When handles are returned directly we don't have to allocate extra
1789 // space for and pass an out parameter.
1790 if (emit_debug_code()) {
1791 mov(esi, Immediate(BitCast<int32_t>(kZapValue)));
1792 }
1793 } else {
1794 // We allocate two additional slots: return value and pointer to it.
1795 EnterApiExitFrame(argc + 2);
1796
1797 // The argument slots are filled as follows:
1798 //
1799 // n + 1: output slot
1800 // n: arg n
1801 // ...
1802 // 1: arg1
1803 // 0: pointer to the output slot
1804
1805 lea(esi, Operand(esp, (argc + 1) * kPointerSize));
1806 mov(Operand(esp, 0 * kPointerSize), esi);
1807 if (emit_debug_code()) {
1808 mov(Operand(esi, 0), Immediate(0));
1809 }
1810 }
1811 }
1812
1813
CallApiFunctionAndReturn(Address function_address,int stack_space)1814 void MacroAssembler::CallApiFunctionAndReturn(Address function_address,
1815 int stack_space) {
1816 ExternalReference next_address =
1817 ExternalReference::handle_scope_next_address();
1818 ExternalReference limit_address =
1819 ExternalReference::handle_scope_limit_address();
1820 ExternalReference level_address =
1821 ExternalReference::handle_scope_level_address();
1822
1823 // Allocate HandleScope in callee-save registers.
1824 mov(ebx, Operand::StaticVariable(next_address));
1825 mov(edi, Operand::StaticVariable(limit_address));
1826 add(Operand::StaticVariable(level_address), Immediate(1));
1827
1828 // Call the api function.
1829 call(function_address, RelocInfo::RUNTIME_ENTRY);
1830
1831 if (!kReturnHandlesDirectly) {
1832 // PrepareCallApiFunction saved pointer to the output slot into
1833 // callee-save register esi.
1834 mov(eax, Operand(esi, 0));
1835 }
1836
1837 Label empty_handle;
1838 Label prologue;
1839 Label promote_scheduled_exception;
1840 Label delete_allocated_handles;
1841 Label leave_exit_frame;
1842
1843 // Check if the result handle holds 0.
1844 test(eax, eax);
1845 j(zero, &empty_handle);
1846 // It was non-zero. Dereference to get the result value.
1847 mov(eax, Operand(eax, 0));
1848 bind(&prologue);
1849 // No more valid handles (the result handle was the last one). Restore
1850 // previous handle scope.
1851 mov(Operand::StaticVariable(next_address), ebx);
1852 sub(Operand::StaticVariable(level_address), Immediate(1));
1853 Assert(above_equal, "Invalid HandleScope level");
1854 cmp(edi, Operand::StaticVariable(limit_address));
1855 j(not_equal, &delete_allocated_handles);
1856 bind(&leave_exit_frame);
1857
1858 // Check if the function scheduled an exception.
1859 ExternalReference scheduled_exception_address =
1860 ExternalReference::scheduled_exception_address(isolate());
1861 cmp(Operand::StaticVariable(scheduled_exception_address),
1862 Immediate(isolate()->factory()->the_hole_value()));
1863 j(not_equal, &promote_scheduled_exception);
1864 LeaveApiExitFrame();
1865 ret(stack_space * kPointerSize);
1866 bind(&promote_scheduled_exception);
1867 TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
1868
1869 bind(&empty_handle);
1870 // It was zero; the result is undefined.
1871 mov(eax, isolate()->factory()->undefined_value());
1872 jmp(&prologue);
1873
1874 // HandleScope limit has changed. Delete allocated extensions.
1875 ExternalReference delete_extensions =
1876 ExternalReference::delete_handle_scope_extensions(isolate());
1877 bind(&delete_allocated_handles);
1878 mov(Operand::StaticVariable(limit_address), edi);
1879 mov(edi, eax);
1880 mov(Operand(esp, 0), Immediate(ExternalReference::isolate_address()));
1881 mov(eax, Immediate(delete_extensions));
1882 call(eax);
1883 mov(eax, edi);
1884 jmp(&leave_exit_frame);
1885 }
1886
1887
JumpToExternalReference(const ExternalReference & ext)1888 void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) {
1889 // Set the entry point and jump to the C entry runtime stub.
1890 mov(ebx, Immediate(ext));
1891 CEntryStub ces(1);
1892 jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
1893 }
1894
1895
SetCallKind(Register dst,CallKind call_kind)1896 void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) {
1897 // This macro takes the dst register to make the code more readable
1898 // at the call sites. However, the dst register has to be ecx to
1899 // follow the calling convention which requires the call type to be
1900 // in ecx.
1901 ASSERT(dst.is(ecx));
1902 if (call_kind == CALL_AS_FUNCTION) {
1903 // Set to some non-zero smi by updating the least significant
1904 // byte.
1905 mov_b(dst, 1 << kSmiTagSize);
1906 } else {
1907 // Set to smi zero by clearing the register.
1908 xor_(dst, dst);
1909 }
1910 }
1911
1912
InvokePrologue(const ParameterCount & expected,const ParameterCount & actual,Handle<Code> code_constant,const Operand & code_operand,Label * done,bool * definitely_mismatches,InvokeFlag flag,Label::Distance done_near,const CallWrapper & call_wrapper,CallKind call_kind)1913 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
1914 const ParameterCount& actual,
1915 Handle<Code> code_constant,
1916 const Operand& code_operand,
1917 Label* done,
1918 bool* definitely_mismatches,
1919 InvokeFlag flag,
1920 Label::Distance done_near,
1921 const CallWrapper& call_wrapper,
1922 CallKind call_kind) {
1923 bool definitely_matches = false;
1924 *definitely_mismatches = false;
1925 Label invoke;
1926 if (expected.is_immediate()) {
1927 ASSERT(actual.is_immediate());
1928 if (expected.immediate() == actual.immediate()) {
1929 definitely_matches = true;
1930 } else {
1931 mov(eax, actual.immediate());
1932 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
1933 if (expected.immediate() == sentinel) {
1934 // Don't worry about adapting arguments for builtins that
1935 // don't want that done. Skip adaption code by making it look
1936 // like we have a match between expected and actual number of
1937 // arguments.
1938 definitely_matches = true;
1939 } else {
1940 *definitely_mismatches = true;
1941 mov(ebx, expected.immediate());
1942 }
1943 }
1944 } else {
1945 if (actual.is_immediate()) {
1946 // Expected is in register, actual is immediate. This is the
1947 // case when we invoke function values without going through the
1948 // IC mechanism.
1949 cmp(expected.reg(), actual.immediate());
1950 j(equal, &invoke);
1951 ASSERT(expected.reg().is(ebx));
1952 mov(eax, actual.immediate());
1953 } else if (!expected.reg().is(actual.reg())) {
1954 // Both expected and actual are in (different) registers. This
1955 // is the case when we invoke functions using call and apply.
1956 cmp(expected.reg(), actual.reg());
1957 j(equal, &invoke);
1958 ASSERT(actual.reg().is(eax));
1959 ASSERT(expected.reg().is(ebx));
1960 }
1961 }
1962
1963 if (!definitely_matches) {
1964 Handle<Code> adaptor =
1965 isolate()->builtins()->ArgumentsAdaptorTrampoline();
1966 if (!code_constant.is_null()) {
1967 mov(edx, Immediate(code_constant));
1968 add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1969 } else if (!code_operand.is_reg(edx)) {
1970 mov(edx, code_operand);
1971 }
1972
1973 if (flag == CALL_FUNCTION) {
1974 call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
1975 SetCallKind(ecx, call_kind);
1976 call(adaptor, RelocInfo::CODE_TARGET);
1977 call_wrapper.AfterCall();
1978 if (!*definitely_mismatches) {
1979 jmp(done, done_near);
1980 }
1981 } else {
1982 SetCallKind(ecx, call_kind);
1983 jmp(adaptor, RelocInfo::CODE_TARGET);
1984 }
1985 bind(&invoke);
1986 }
1987 }
1988
1989
InvokeCode(const Operand & code,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper,CallKind call_kind)1990 void MacroAssembler::InvokeCode(const Operand& code,
1991 const ParameterCount& expected,
1992 const ParameterCount& actual,
1993 InvokeFlag flag,
1994 const CallWrapper& call_wrapper,
1995 CallKind call_kind) {
1996 // You can't call a function without a valid frame.
1997 ASSERT(flag == JUMP_FUNCTION || has_frame());
1998
1999 Label done;
2000 bool definitely_mismatches = false;
2001 InvokePrologue(expected, actual, Handle<Code>::null(), code,
2002 &done, &definitely_mismatches, flag, Label::kNear,
2003 call_wrapper, call_kind);
2004 if (!definitely_mismatches) {
2005 if (flag == CALL_FUNCTION) {
2006 call_wrapper.BeforeCall(CallSize(code));
2007 SetCallKind(ecx, call_kind);
2008 call(code);
2009 call_wrapper.AfterCall();
2010 } else {
2011 ASSERT(flag == JUMP_FUNCTION);
2012 SetCallKind(ecx, call_kind);
2013 jmp(code);
2014 }
2015 bind(&done);
2016 }
2017 }
2018
2019
InvokeCode(Handle<Code> code,const ParameterCount & expected,const ParameterCount & actual,RelocInfo::Mode rmode,InvokeFlag flag,const CallWrapper & call_wrapper,CallKind call_kind)2020 void MacroAssembler::InvokeCode(Handle<Code> code,
2021 const ParameterCount& expected,
2022 const ParameterCount& actual,
2023 RelocInfo::Mode rmode,
2024 InvokeFlag flag,
2025 const CallWrapper& call_wrapper,
2026 CallKind call_kind) {
2027 // You can't call a function without a valid frame.
2028 ASSERT(flag == JUMP_FUNCTION || has_frame());
2029
2030 Label done;
2031 Operand dummy(eax, 0);
2032 bool definitely_mismatches = false;
2033 InvokePrologue(expected, actual, code, dummy, &done, &definitely_mismatches,
2034 flag, Label::kNear, call_wrapper, call_kind);
2035 if (!definitely_mismatches) {
2036 if (flag == CALL_FUNCTION) {
2037 call_wrapper.BeforeCall(CallSize(code, rmode));
2038 SetCallKind(ecx, call_kind);
2039 call(code, rmode);
2040 call_wrapper.AfterCall();
2041 } else {
2042 ASSERT(flag == JUMP_FUNCTION);
2043 SetCallKind(ecx, call_kind);
2044 jmp(code, rmode);
2045 }
2046 bind(&done);
2047 }
2048 }
2049
2050
InvokeFunction(Register fun,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper,CallKind call_kind)2051 void MacroAssembler::InvokeFunction(Register fun,
2052 const ParameterCount& actual,
2053 InvokeFlag flag,
2054 const CallWrapper& call_wrapper,
2055 CallKind call_kind) {
2056 // You can't call a function without a valid frame.
2057 ASSERT(flag == JUMP_FUNCTION || has_frame());
2058
2059 ASSERT(fun.is(edi));
2060 mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2061 mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2062 mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
2063 SmiUntag(ebx);
2064
2065 ParameterCount expected(ebx);
2066 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2067 expected, actual, flag, call_wrapper, call_kind);
2068 }
2069
2070
InvokeFunction(Handle<JSFunction> function,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper,CallKind call_kind)2071 void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2072 const ParameterCount& actual,
2073 InvokeFlag flag,
2074 const CallWrapper& call_wrapper,
2075 CallKind call_kind) {
2076 // You can't call a function without a valid frame.
2077 ASSERT(flag == JUMP_FUNCTION || has_frame());
2078
2079 // Get the function and setup the context.
2080 LoadHeapObject(edi, function);
2081 mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2082
2083 ParameterCount expected(function->shared()->formal_parameter_count());
2084 // We call indirectly through the code field in the function to
2085 // allow recompilation to take effect without changing any of the
2086 // call sites.
2087 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2088 expected, actual, flag, call_wrapper, call_kind);
2089 }
2090
2091
InvokeBuiltin(Builtins::JavaScript id,InvokeFlag flag,const CallWrapper & call_wrapper)2092 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
2093 InvokeFlag flag,
2094 const CallWrapper& call_wrapper) {
2095 // You can't call a builtin without a valid frame.
2096 ASSERT(flag == JUMP_FUNCTION || has_frame());
2097
2098 // Rely on the assertion to check that the number of provided
2099 // arguments match the expected number of arguments. Fake a
2100 // parameter count to avoid emitting code to do the check.
2101 ParameterCount expected(0);
2102 GetBuiltinFunction(edi, id);
2103 InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2104 expected, expected, flag, call_wrapper, CALL_AS_METHOD);
2105 }
2106
2107
GetBuiltinFunction(Register target,Builtins::JavaScript id)2108 void MacroAssembler::GetBuiltinFunction(Register target,
2109 Builtins::JavaScript id) {
2110 // Load the JavaScript builtin function from the builtins object.
2111 mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
2112 mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
2113 mov(target, FieldOperand(target,
2114 JSBuiltinsObject::OffsetOfFunctionWithId(id)));
2115 }
2116
2117
GetBuiltinEntry(Register target,Builtins::JavaScript id)2118 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
2119 ASSERT(!target.is(edi));
2120 // Load the JavaScript builtin function from the builtins object.
2121 GetBuiltinFunction(edi, id);
2122 // Load the code entry point from the function into the target register.
2123 mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset));
2124 }
2125
2126
LoadContext(Register dst,int context_chain_length)2127 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2128 if (context_chain_length > 0) {
2129 // Move up the chain of contexts to the context containing the slot.
2130 mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2131 for (int i = 1; i < context_chain_length; i++) {
2132 mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2133 }
2134 } else {
2135 // Slot is in the current function context. Move it into the
2136 // destination register in case we store into it (the write barrier
2137 // cannot be allowed to destroy the context in esi).
2138 mov(dst, esi);
2139 }
2140
2141 // We should not have found a with context by walking the context chain
2142 // (i.e., the static scope chain and runtime context chain do not agree).
2143 // A variable occurring in such a scope should have slot type LOOKUP and
2144 // not CONTEXT.
2145 if (emit_debug_code()) {
2146 cmp(FieldOperand(dst, HeapObject::kMapOffset),
2147 isolate()->factory()->with_context_map());
2148 Check(not_equal, "Variable resolved to with context.");
2149 }
2150 }
2151
2152
LoadTransitionedArrayMapConditional(ElementsKind expected_kind,ElementsKind transitioned_kind,Register map_in_out,Register scratch,Label * no_map_match)2153 void MacroAssembler::LoadTransitionedArrayMapConditional(
2154 ElementsKind expected_kind,
2155 ElementsKind transitioned_kind,
2156 Register map_in_out,
2157 Register scratch,
2158 Label* no_map_match) {
2159 // Load the global or builtins object from the current context.
2160 mov(scratch, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
2161 mov(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset));
2162
2163 // Check that the function's map is the same as the expected cached map.
2164 int expected_index =
2165 Context::GetContextMapIndexFromElementsKind(expected_kind);
2166 cmp(map_in_out, Operand(scratch, Context::SlotOffset(expected_index)));
2167 j(not_equal, no_map_match);
2168
2169 // Use the transitioned cached map.
2170 int trans_index =
2171 Context::GetContextMapIndexFromElementsKind(transitioned_kind);
2172 mov(map_in_out, Operand(scratch, Context::SlotOffset(trans_index)));
2173 }
2174
2175
LoadInitialArrayMap(Register function_in,Register scratch,Register map_out)2176 void MacroAssembler::LoadInitialArrayMap(
2177 Register function_in, Register scratch, Register map_out) {
2178 ASSERT(!function_in.is(map_out));
2179 Label done;
2180 mov(map_out, FieldOperand(function_in,
2181 JSFunction::kPrototypeOrInitialMapOffset));
2182 if (!FLAG_smi_only_arrays) {
2183 LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS,
2184 FAST_ELEMENTS,
2185 map_out,
2186 scratch,
2187 &done);
2188 }
2189 bind(&done);
2190 }
2191
2192
LoadGlobalFunction(int index,Register function)2193 void MacroAssembler::LoadGlobalFunction(int index, Register function) {
2194 // Load the global or builtins object from the current context.
2195 mov(function, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
2196 // Load the global context from the global or builtins object.
2197 mov(function, FieldOperand(function, GlobalObject::kGlobalContextOffset));
2198 // Load the function from the global context.
2199 mov(function, Operand(function, Context::SlotOffset(index)));
2200 }
2201
2202
LoadGlobalFunctionInitialMap(Register function,Register map)2203 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
2204 Register map) {
2205 // Load the initial map. The global functions all have initial maps.
2206 mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2207 if (emit_debug_code()) {
2208 Label ok, fail;
2209 CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
2210 jmp(&ok);
2211 bind(&fail);
2212 Abort("Global functions must have initial map");
2213 bind(&ok);
2214 }
2215 }
2216
2217
2218 // Store the value in register src in the safepoint register stack
2219 // slot for register dst.
StoreToSafepointRegisterSlot(Register dst,Register src)2220 void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
2221 mov(SafepointRegisterSlot(dst), src);
2222 }
2223
2224
StoreToSafepointRegisterSlot(Register dst,Immediate src)2225 void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) {
2226 mov(SafepointRegisterSlot(dst), src);
2227 }
2228
2229
LoadFromSafepointRegisterSlot(Register dst,Register src)2230 void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
2231 mov(dst, SafepointRegisterSlot(src));
2232 }
2233
2234
SafepointRegisterSlot(Register reg)2235 Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
2236 return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
2237 }
2238
2239
SafepointRegisterStackIndex(int reg_code)2240 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
2241 // The registers are pushed starting with the lowest encoding,
2242 // which means that lowest encodings are furthest away from
2243 // the stack pointer.
2244 ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters);
2245 return kNumSafepointRegisters - reg_code - 1;
2246 }
2247
2248
LoadHeapObject(Register result,Handle<HeapObject> object)2249 void MacroAssembler::LoadHeapObject(Register result,
2250 Handle<HeapObject> object) {
2251 if (isolate()->heap()->InNewSpace(*object)) {
2252 Handle<JSGlobalPropertyCell> cell =
2253 isolate()->factory()->NewJSGlobalPropertyCell(object);
2254 mov(result, Operand::Cell(cell));
2255 } else {
2256 mov(result, object);
2257 }
2258 }
2259
2260
PushHeapObject(Handle<HeapObject> object)2261 void MacroAssembler::PushHeapObject(Handle<HeapObject> object) {
2262 if (isolate()->heap()->InNewSpace(*object)) {
2263 Handle<JSGlobalPropertyCell> cell =
2264 isolate()->factory()->NewJSGlobalPropertyCell(object);
2265 push(Operand::Cell(cell));
2266 } else {
2267 Push(object);
2268 }
2269 }
2270
2271
Ret()2272 void MacroAssembler::Ret() {
2273 ret(0);
2274 }
2275
2276
Ret(int bytes_dropped,Register scratch)2277 void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
2278 if (is_uint16(bytes_dropped)) {
2279 ret(bytes_dropped);
2280 } else {
2281 pop(scratch);
2282 add(esp, Immediate(bytes_dropped));
2283 push(scratch);
2284 ret(0);
2285 }
2286 }
2287
2288
Drop(int stack_elements)2289 void MacroAssembler::Drop(int stack_elements) {
2290 if (stack_elements > 0) {
2291 add(esp, Immediate(stack_elements * kPointerSize));
2292 }
2293 }
2294
2295
Move(Register dst,Register src)2296 void MacroAssembler::Move(Register dst, Register src) {
2297 if (!dst.is(src)) {
2298 mov(dst, src);
2299 }
2300 }
2301
2302
SetCounter(StatsCounter * counter,int value)2303 void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
2304 if (FLAG_native_code_counters && counter->Enabled()) {
2305 mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
2306 }
2307 }
2308
2309
IncrementCounter(StatsCounter * counter,int value)2310 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
2311 ASSERT(value > 0);
2312 if (FLAG_native_code_counters && counter->Enabled()) {
2313 Operand operand = Operand::StaticVariable(ExternalReference(counter));
2314 if (value == 1) {
2315 inc(operand);
2316 } else {
2317 add(operand, Immediate(value));
2318 }
2319 }
2320 }
2321
2322
DecrementCounter(StatsCounter * counter,int value)2323 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
2324 ASSERT(value > 0);
2325 if (FLAG_native_code_counters && counter->Enabled()) {
2326 Operand operand = Operand::StaticVariable(ExternalReference(counter));
2327 if (value == 1) {
2328 dec(operand);
2329 } else {
2330 sub(operand, Immediate(value));
2331 }
2332 }
2333 }
2334
2335
IncrementCounter(Condition cc,StatsCounter * counter,int value)2336 void MacroAssembler::IncrementCounter(Condition cc,
2337 StatsCounter* counter,
2338 int value) {
2339 ASSERT(value > 0);
2340 if (FLAG_native_code_counters && counter->Enabled()) {
2341 Label skip;
2342 j(NegateCondition(cc), &skip);
2343 pushfd();
2344 IncrementCounter(counter, value);
2345 popfd();
2346 bind(&skip);
2347 }
2348 }
2349
2350
DecrementCounter(Condition cc,StatsCounter * counter,int value)2351 void MacroAssembler::DecrementCounter(Condition cc,
2352 StatsCounter* counter,
2353 int value) {
2354 ASSERT(value > 0);
2355 if (FLAG_native_code_counters && counter->Enabled()) {
2356 Label skip;
2357 j(NegateCondition(cc), &skip);
2358 pushfd();
2359 DecrementCounter(counter, value);
2360 popfd();
2361 bind(&skip);
2362 }
2363 }
2364
2365
Assert(Condition cc,const char * msg)2366 void MacroAssembler::Assert(Condition cc, const char* msg) {
2367 if (emit_debug_code()) Check(cc, msg);
2368 }
2369
2370
AssertFastElements(Register elements)2371 void MacroAssembler::AssertFastElements(Register elements) {
2372 if (emit_debug_code()) {
2373 Factory* factory = isolate()->factory();
2374 Label ok;
2375 cmp(FieldOperand(elements, HeapObject::kMapOffset),
2376 Immediate(factory->fixed_array_map()));
2377 j(equal, &ok);
2378 cmp(FieldOperand(elements, HeapObject::kMapOffset),
2379 Immediate(factory->fixed_double_array_map()));
2380 j(equal, &ok);
2381 cmp(FieldOperand(elements, HeapObject::kMapOffset),
2382 Immediate(factory->fixed_cow_array_map()));
2383 j(equal, &ok);
2384 Abort("JSObject with fast elements map has slow elements");
2385 bind(&ok);
2386 }
2387 }
2388
2389
Check(Condition cc,const char * msg)2390 void MacroAssembler::Check(Condition cc, const char* msg) {
2391 Label L;
2392 j(cc, &L);
2393 Abort(msg);
2394 // will not return here
2395 bind(&L);
2396 }
2397
2398
CheckStackAlignment()2399 void MacroAssembler::CheckStackAlignment() {
2400 int frame_alignment = OS::ActivationFrameAlignment();
2401 int frame_alignment_mask = frame_alignment - 1;
2402 if (frame_alignment > kPointerSize) {
2403 ASSERT(IsPowerOf2(frame_alignment));
2404 Label alignment_as_expected;
2405 test(esp, Immediate(frame_alignment_mask));
2406 j(zero, &alignment_as_expected);
2407 // Abort if stack is not aligned.
2408 int3();
2409 bind(&alignment_as_expected);
2410 }
2411 }
2412
2413
Abort(const char * msg)2414 void MacroAssembler::Abort(const char* msg) {
2415 // We want to pass the msg string like a smi to avoid GC
2416 // problems, however msg is not guaranteed to be aligned
2417 // properly. Instead, we pass an aligned pointer that is
2418 // a proper v8 smi, but also pass the alignment difference
2419 // from the real pointer as a smi.
2420 intptr_t p1 = reinterpret_cast<intptr_t>(msg);
2421 intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
2422 ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
2423 #ifdef DEBUG
2424 if (msg != NULL) {
2425 RecordComment("Abort message: ");
2426 RecordComment(msg);
2427 }
2428 #endif
2429
2430 push(eax);
2431 push(Immediate(p0));
2432 push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(p1 - p0))));
2433 // Disable stub call restrictions to always allow calls to abort.
2434 if (!has_frame_) {
2435 // We don't actually want to generate a pile of code for this, so just
2436 // claim there is a stack frame, without generating one.
2437 FrameScope scope(this, StackFrame::NONE);
2438 CallRuntime(Runtime::kAbort, 2);
2439 } else {
2440 CallRuntime(Runtime::kAbort, 2);
2441 }
2442 // will not return here
2443 int3();
2444 }
2445
2446
LoadInstanceDescriptors(Register map,Register descriptors)2447 void MacroAssembler::LoadInstanceDescriptors(Register map,
2448 Register descriptors) {
2449 mov(descriptors,
2450 FieldOperand(map, Map::kInstanceDescriptorsOrBitField3Offset));
2451 Label not_smi;
2452 JumpIfNotSmi(descriptors, ¬_smi);
2453 mov(descriptors, isolate()->factory()->empty_descriptor_array());
2454 bind(¬_smi);
2455 }
2456
2457
LoadPowerOf2(XMMRegister dst,Register scratch,int power)2458 void MacroAssembler::LoadPowerOf2(XMMRegister dst,
2459 Register scratch,
2460 int power) {
2461 ASSERT(is_uintn(power + HeapNumber::kExponentBias,
2462 HeapNumber::kExponentBits));
2463 mov(scratch, Immediate(power + HeapNumber::kExponentBias));
2464 movd(dst, scratch);
2465 psllq(dst, HeapNumber::kMantissaBits);
2466 }
2467
2468
JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type,Register scratch,Label * failure)2469 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
2470 Register instance_type,
2471 Register scratch,
2472 Label* failure) {
2473 if (!scratch.is(instance_type)) {
2474 mov(scratch, instance_type);
2475 }
2476 and_(scratch,
2477 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
2478 cmp(scratch, kStringTag | kSeqStringTag | kAsciiStringTag);
2479 j(not_equal, failure);
2480 }
2481
2482
JumpIfNotBothSequentialAsciiStrings(Register object1,Register object2,Register scratch1,Register scratch2,Label * failure)2483 void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register object1,
2484 Register object2,
2485 Register scratch1,
2486 Register scratch2,
2487 Label* failure) {
2488 // Check that both objects are not smis.
2489 STATIC_ASSERT(kSmiTag == 0);
2490 mov(scratch1, object1);
2491 and_(scratch1, object2);
2492 JumpIfSmi(scratch1, failure);
2493
2494 // Load instance type for both strings.
2495 mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
2496 mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
2497 movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
2498 movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
2499
2500 // Check that both are flat ASCII strings.
2501 const int kFlatAsciiStringMask =
2502 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
2503 const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
2504 // Interleave bits from both instance types and compare them in one check.
2505 ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
2506 and_(scratch1, kFlatAsciiStringMask);
2507 and_(scratch2, kFlatAsciiStringMask);
2508 lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
2509 cmp(scratch1, kFlatAsciiStringTag | (kFlatAsciiStringTag << 3));
2510 j(not_equal, failure);
2511 }
2512
2513
PrepareCallCFunction(int num_arguments,Register scratch)2514 void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
2515 int frame_alignment = OS::ActivationFrameAlignment();
2516 if (frame_alignment != 0) {
2517 // Make stack end at alignment and make room for num_arguments words
2518 // and the original value of esp.
2519 mov(scratch, esp);
2520 sub(esp, Immediate((num_arguments + 1) * kPointerSize));
2521 ASSERT(IsPowerOf2(frame_alignment));
2522 and_(esp, -frame_alignment);
2523 mov(Operand(esp, num_arguments * kPointerSize), scratch);
2524 } else {
2525 sub(esp, Immediate(num_arguments * kPointerSize));
2526 }
2527 }
2528
2529
CallCFunction(ExternalReference function,int num_arguments)2530 void MacroAssembler::CallCFunction(ExternalReference function,
2531 int num_arguments) {
2532 // Trashing eax is ok as it will be the return value.
2533 mov(eax, Immediate(function));
2534 CallCFunction(eax, num_arguments);
2535 }
2536
2537
CallCFunction(Register function,int num_arguments)2538 void MacroAssembler::CallCFunction(Register function,
2539 int num_arguments) {
2540 ASSERT(has_frame());
2541 // Check stack alignment.
2542 if (emit_debug_code()) {
2543 CheckStackAlignment();
2544 }
2545
2546 call(function);
2547 if (OS::ActivationFrameAlignment() != 0) {
2548 mov(esp, Operand(esp, num_arguments * kPointerSize));
2549 } else {
2550 add(esp, Immediate(num_arguments * kPointerSize));
2551 }
2552 }
2553
2554
AreAliased(Register r1,Register r2,Register r3,Register r4)2555 bool AreAliased(Register r1, Register r2, Register r3, Register r4) {
2556 if (r1.is(r2)) return true;
2557 if (r1.is(r3)) return true;
2558 if (r1.is(r4)) return true;
2559 if (r2.is(r3)) return true;
2560 if (r2.is(r4)) return true;
2561 if (r3.is(r4)) return true;
2562 return false;
2563 }
2564
2565
CodePatcher(byte * address,int size)2566 CodePatcher::CodePatcher(byte* address, int size)
2567 : address_(address),
2568 size_(size),
2569 masm_(Isolate::Current(), address, size + Assembler::kGap) {
2570 // Create a new macro assembler pointing to the address of the code to patch.
2571 // The size is adjusted with kGap on order for the assembler to generate size
2572 // bytes of instructions without failing with buffer size constraints.
2573 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
2574 }
2575
2576
~CodePatcher()2577 CodePatcher::~CodePatcher() {
2578 // Indicate that code has changed.
2579 CPU::FlushICache(address_, size_);
2580
2581 // Check that the code was patched as expected.
2582 ASSERT(masm_.pc_ == address_ + size_);
2583 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
2584 }
2585
2586
CheckPageFlag(Register object,Register scratch,int mask,Condition cc,Label * condition_met,Label::Distance condition_met_distance)2587 void MacroAssembler::CheckPageFlag(
2588 Register object,
2589 Register scratch,
2590 int mask,
2591 Condition cc,
2592 Label* condition_met,
2593 Label::Distance condition_met_distance) {
2594 ASSERT(cc == zero || cc == not_zero);
2595 if (scratch.is(object)) {
2596 and_(scratch, Immediate(~Page::kPageAlignmentMask));
2597 } else {
2598 mov(scratch, Immediate(~Page::kPageAlignmentMask));
2599 and_(scratch, object);
2600 }
2601 if (mask < (1 << kBitsPerByte)) {
2602 test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
2603 static_cast<uint8_t>(mask));
2604 } else {
2605 test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
2606 }
2607 j(cc, condition_met, condition_met_distance);
2608 }
2609
2610
JumpIfBlack(Register object,Register scratch0,Register scratch1,Label * on_black,Label::Distance on_black_near)2611 void MacroAssembler::JumpIfBlack(Register object,
2612 Register scratch0,
2613 Register scratch1,
2614 Label* on_black,
2615 Label::Distance on_black_near) {
2616 HasColor(object, scratch0, scratch1,
2617 on_black, on_black_near,
2618 1, 0); // kBlackBitPattern.
2619 ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
2620 }
2621
2622
HasColor(Register object,Register bitmap_scratch,Register mask_scratch,Label * has_color,Label::Distance has_color_distance,int first_bit,int second_bit)2623 void MacroAssembler::HasColor(Register object,
2624 Register bitmap_scratch,
2625 Register mask_scratch,
2626 Label* has_color,
2627 Label::Distance has_color_distance,
2628 int first_bit,
2629 int second_bit) {
2630 ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, ecx));
2631
2632 GetMarkBits(object, bitmap_scratch, mask_scratch);
2633
2634 Label other_color, word_boundary;
2635 test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
2636 j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear);
2637 add(mask_scratch, mask_scratch); // Shift left 1 by adding.
2638 j(zero, &word_boundary, Label::kNear);
2639 test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
2640 j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
2641 jmp(&other_color, Label::kNear);
2642
2643 bind(&word_boundary);
2644 test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize), 1);
2645
2646 j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
2647 bind(&other_color);
2648 }
2649
2650
GetMarkBits(Register addr_reg,Register bitmap_reg,Register mask_reg)2651 void MacroAssembler::GetMarkBits(Register addr_reg,
2652 Register bitmap_reg,
2653 Register mask_reg) {
2654 ASSERT(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx));
2655 mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
2656 and_(bitmap_reg, addr_reg);
2657 mov(ecx, addr_reg);
2658 int shift =
2659 Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
2660 shr(ecx, shift);
2661 and_(ecx,
2662 (Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1));
2663
2664 add(bitmap_reg, ecx);
2665 mov(ecx, addr_reg);
2666 shr(ecx, kPointerSizeLog2);
2667 and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1);
2668 mov(mask_reg, Immediate(1));
2669 shl_cl(mask_reg);
2670 }
2671
2672
EnsureNotWhite(Register value,Register bitmap_scratch,Register mask_scratch,Label * value_is_white_and_not_data,Label::Distance distance)2673 void MacroAssembler::EnsureNotWhite(
2674 Register value,
2675 Register bitmap_scratch,
2676 Register mask_scratch,
2677 Label* value_is_white_and_not_data,
2678 Label::Distance distance) {
2679 ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, ecx));
2680 GetMarkBits(value, bitmap_scratch, mask_scratch);
2681
2682 // If the value is black or grey we don't need to do anything.
2683 ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
2684 ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
2685 ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
2686 ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
2687
2688 Label done;
2689
2690 // Since both black and grey have a 1 in the first position and white does
2691 // not have a 1 there we only need to check one bit.
2692 test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
2693 j(not_zero, &done, Label::kNear);
2694
2695 if (FLAG_debug_code) {
2696 // Check for impossible bit pattern.
2697 Label ok;
2698 push(mask_scratch);
2699 // shl. May overflow making the check conservative.
2700 add(mask_scratch, mask_scratch);
2701 test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
2702 j(zero, &ok, Label::kNear);
2703 int3();
2704 bind(&ok);
2705 pop(mask_scratch);
2706 }
2707
2708 // Value is white. We check whether it is data that doesn't need scanning.
2709 // Currently only checks for HeapNumber and non-cons strings.
2710 Register map = ecx; // Holds map while checking type.
2711 Register length = ecx; // Holds length of object after checking type.
2712 Label not_heap_number;
2713 Label is_data_object;
2714
2715 // Check for heap-number
2716 mov(map, FieldOperand(value, HeapObject::kMapOffset));
2717 cmp(map, FACTORY->heap_number_map());
2718 j(not_equal, ¬_heap_number, Label::kNear);
2719 mov(length, Immediate(HeapNumber::kSize));
2720 jmp(&is_data_object, Label::kNear);
2721
2722 bind(¬_heap_number);
2723 // Check for strings.
2724 ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
2725 ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
2726 // If it's a string and it's not a cons string then it's an object containing
2727 // no GC pointers.
2728 Register instance_type = ecx;
2729 movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
2730 test_b(instance_type, kIsIndirectStringMask | kIsNotStringMask);
2731 j(not_zero, value_is_white_and_not_data);
2732 // It's a non-indirect (non-cons and non-slice) string.
2733 // If it's external, the length is just ExternalString::kSize.
2734 // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
2735 Label not_external;
2736 // External strings are the only ones with the kExternalStringTag bit
2737 // set.
2738 ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
2739 ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
2740 test_b(instance_type, kExternalStringTag);
2741 j(zero, ¬_external, Label::kNear);
2742 mov(length, Immediate(ExternalString::kSize));
2743 jmp(&is_data_object, Label::kNear);
2744
2745 bind(¬_external);
2746 // Sequential string, either ASCII or UC16.
2747 ASSERT(kAsciiStringTag == 0x04);
2748 and_(length, Immediate(kStringEncodingMask));
2749 xor_(length, Immediate(kStringEncodingMask));
2750 add(length, Immediate(0x04));
2751 // Value now either 4 (if ASCII) or 8 (if UC16), i.e., char-size shifted
2752 // by 2. If we multiply the string length as smi by this, it still
2753 // won't overflow a 32-bit value.
2754 ASSERT_EQ(SeqAsciiString::kMaxSize, SeqTwoByteString::kMaxSize);
2755 ASSERT(SeqAsciiString::kMaxSize <=
2756 static_cast<int>(0xffffffffu >> (2 + kSmiTagSize)));
2757 imul(length, FieldOperand(value, String::kLengthOffset));
2758 shr(length, 2 + kSmiTagSize + kSmiShiftSize);
2759 add(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask));
2760 and_(length, Immediate(~kObjectAlignmentMask));
2761
2762 bind(&is_data_object);
2763 // Value is a data object, and it is white. Mark it black. Since we know
2764 // that the object is white we can make it black by flipping one bit.
2765 or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
2766
2767 and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask));
2768 add(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset),
2769 length);
2770 if (FLAG_debug_code) {
2771 mov(length, Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
2772 cmp(length, Operand(bitmap_scratch, MemoryChunk::kSizeOffset));
2773 Check(less_equal, "Live Bytes Count overflow chunk size");
2774 }
2775
2776 bind(&done);
2777 }
2778
2779
CheckEnumCache(Label * call_runtime)2780 void MacroAssembler::CheckEnumCache(Label* call_runtime) {
2781 Label next;
2782 mov(ecx, eax);
2783 bind(&next);
2784
2785 // Check that there are no elements. Register ecx contains the
2786 // current JS object we've reached through the prototype chain.
2787 cmp(FieldOperand(ecx, JSObject::kElementsOffset),
2788 isolate()->factory()->empty_fixed_array());
2789 j(not_equal, call_runtime);
2790
2791 // Check that instance descriptors are not empty so that we can
2792 // check for an enum cache. Leave the map in ebx for the subsequent
2793 // prototype load.
2794 mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
2795 mov(edx, FieldOperand(ebx, Map::kInstanceDescriptorsOrBitField3Offset));
2796 JumpIfSmi(edx, call_runtime);
2797
2798 // Check that there is an enum cache in the non-empty instance
2799 // descriptors (edx). This is the case if the next enumeration
2800 // index field does not contain a smi.
2801 mov(edx, FieldOperand(edx, DescriptorArray::kEnumerationIndexOffset));
2802 JumpIfSmi(edx, call_runtime);
2803
2804 // For all objects but the receiver, check that the cache is empty.
2805 Label check_prototype;
2806 cmp(ecx, eax);
2807 j(equal, &check_prototype, Label::kNear);
2808 mov(edx, FieldOperand(edx, DescriptorArray::kEnumCacheBridgeCacheOffset));
2809 cmp(edx, isolate()->factory()->empty_fixed_array());
2810 j(not_equal, call_runtime);
2811
2812 // Load the prototype from the map and loop if non-null.
2813 bind(&check_prototype);
2814 mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
2815 cmp(ecx, isolate()->factory()->null_value());
2816 j(not_equal, &next);
2817 }
2818
2819 } } // namespace v8::internal
2820
2821 #endif // V8_TARGET_ARCH_IA32
2822