1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 // Platform specific code for FreeBSD goes here. For the POSIX comaptible parts
29 // the implementation is in platform-posix.cc.
30
31 #include <pthread.h>
32 #include <semaphore.h>
33 #include <signal.h>
34 #include <sys/time.h>
35 #include <sys/resource.h>
36 #include <sys/types.h>
37 #include <sys/ucontext.h>
38 #include <stdlib.h>
39
40 #include <sys/types.h> // mmap & munmap
41 #include <sys/mman.h> // mmap & munmap
42 #include <sys/stat.h> // open
43 #include <sys/fcntl.h> // open
44 #include <unistd.h> // getpagesize
45 // If you don't have execinfo.h then you need devel/libexecinfo from ports.
46 #include <execinfo.h> // backtrace, backtrace_symbols
47 #include <strings.h> // index
48 #include <errno.h>
49 #include <stdarg.h>
50 #include <limits.h>
51
52 #undef MAP_TYPE
53
54 #include "v8.h"
55 #include "v8threads.h"
56
57 #include "platform-posix.h"
58 #include "platform.h"
59 #include "vm-state-inl.h"
60
61
62 namespace v8 {
63 namespace internal {
64
65 // 0 is never a valid thread id on FreeBSD since tids and pids share a
66 // name space and pid 0 is used to kill the group (see man 2 kill).
67 static const pthread_t kNoThread = (pthread_t) 0;
68
69
ceiling(double x)70 double ceiling(double x) {
71 // Correct as on OS X
72 if (-1.0 < x && x < 0.0) {
73 return -0.0;
74 } else {
75 return ceil(x);
76 }
77 }
78
79
80 static Mutex* limit_mutex = NULL;
81
82
SetUp()83 void OS::SetUp() {
84 // Seed the random number generator.
85 // Convert the current time to a 64-bit integer first, before converting it
86 // to an unsigned. Going directly can cause an overflow and the seed to be
87 // set to all ones. The seed will be identical for different instances that
88 // call this setup code within the same millisecond.
89 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
90 srandom(static_cast<unsigned int>(seed));
91 limit_mutex = CreateMutex();
92 }
93
94
PostSetUp()95 void OS::PostSetUp() {
96 // Math functions depend on CPU features therefore they are initialized after
97 // CPU.
98 MathSetup();
99 }
100
101
ReleaseStore(volatile AtomicWord * ptr,AtomicWord value)102 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
103 __asm__ __volatile__("" : : : "memory");
104 *ptr = value;
105 }
106
107
CpuFeaturesImpliedByPlatform()108 uint64_t OS::CpuFeaturesImpliedByPlatform() {
109 return 0; // FreeBSD runs on anything.
110 }
111
112
ActivationFrameAlignment()113 int OS::ActivationFrameAlignment() {
114 // 16 byte alignment on FreeBSD
115 return 16;
116 }
117
118
LocalTimezone(double time)119 const char* OS::LocalTimezone(double time) {
120 if (isnan(time)) return "";
121 time_t tv = static_cast<time_t>(floor(time/msPerSecond));
122 struct tm* t = localtime(&tv);
123 if (NULL == t) return "";
124 return t->tm_zone;
125 }
126
127
LocalTimeOffset()128 double OS::LocalTimeOffset() {
129 time_t tv = time(NULL);
130 struct tm* t = localtime(&tv);
131 // tm_gmtoff includes any daylight savings offset, so subtract it.
132 return static_cast<double>(t->tm_gmtoff * msPerSecond -
133 (t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
134 }
135
136
137 // We keep the lowest and highest addresses mapped as a quick way of
138 // determining that pointers are outside the heap (used mostly in assertions
139 // and verification). The estimate is conservative, i.e., not all addresses in
140 // 'allocated' space are actually allocated to our heap. The range is
141 // [lowest, highest), inclusive on the low and and exclusive on the high end.
142 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
143 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
144
145
UpdateAllocatedSpaceLimits(void * address,int size)146 static void UpdateAllocatedSpaceLimits(void* address, int size) {
147 ASSERT(limit_mutex != NULL);
148 ScopedLock lock(limit_mutex);
149
150 lowest_ever_allocated = Min(lowest_ever_allocated, address);
151 highest_ever_allocated =
152 Max(highest_ever_allocated,
153 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
154 }
155
156
IsOutsideAllocatedSpace(void * address)157 bool OS::IsOutsideAllocatedSpace(void* address) {
158 return address < lowest_ever_allocated || address >= highest_ever_allocated;
159 }
160
161
AllocateAlignment()162 size_t OS::AllocateAlignment() {
163 return getpagesize();
164 }
165
166
Allocate(const size_t requested,size_t * allocated,bool executable)167 void* OS::Allocate(const size_t requested,
168 size_t* allocated,
169 bool executable) {
170 const size_t msize = RoundUp(requested, getpagesize());
171 int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0);
172 void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);
173
174 if (mbase == MAP_FAILED) {
175 LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed"));
176 return NULL;
177 }
178 *allocated = msize;
179 UpdateAllocatedSpaceLimits(mbase, msize);
180 return mbase;
181 }
182
183
Free(void * buf,const size_t length)184 void OS::Free(void* buf, const size_t length) {
185 // TODO(1240712): munmap has a return value which is ignored here.
186 int result = munmap(buf, length);
187 USE(result);
188 ASSERT(result == 0);
189 }
190
191
Sleep(int milliseconds)192 void OS::Sleep(int milliseconds) {
193 unsigned int ms = static_cast<unsigned int>(milliseconds);
194 usleep(1000 * ms);
195 }
196
197
Abort()198 void OS::Abort() {
199 // Redirect to std abort to signal abnormal program termination.
200 abort();
201 }
202
203
DebugBreak()204 void OS::DebugBreak() {
205 #if (defined(__arm__) || defined(__thumb__))
206 # if defined(CAN_USE_ARMV5_INSTRUCTIONS)
207 asm("bkpt 0");
208 # endif
209 #else
210 asm("int $3");
211 #endif
212 }
213
214
215 class PosixMemoryMappedFile : public OS::MemoryMappedFile {
216 public:
PosixMemoryMappedFile(FILE * file,void * memory,int size)217 PosixMemoryMappedFile(FILE* file, void* memory, int size)
218 : file_(file), memory_(memory), size_(size) { }
219 virtual ~PosixMemoryMappedFile();
memory()220 virtual void* memory() { return memory_; }
size()221 virtual int size() { return size_; }
222 private:
223 FILE* file_;
224 void* memory_;
225 int size_;
226 };
227
228
open(const char * name)229 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
230 FILE* file = fopen(name, "r+");
231 if (file == NULL) return NULL;
232
233 fseek(file, 0, SEEK_END);
234 int size = ftell(file);
235
236 void* memory =
237 mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
238 return new PosixMemoryMappedFile(file, memory, size);
239 }
240
241
create(const char * name,int size,void * initial)242 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
243 void* initial) {
244 FILE* file = fopen(name, "w+");
245 if (file == NULL) return NULL;
246 int result = fwrite(initial, size, 1, file);
247 if (result < 1) {
248 fclose(file);
249 return NULL;
250 }
251 void* memory =
252 mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
253 return new PosixMemoryMappedFile(file, memory, size);
254 }
255
256
~PosixMemoryMappedFile()257 PosixMemoryMappedFile::~PosixMemoryMappedFile() {
258 if (memory_) munmap(memory_, size_);
259 fclose(file_);
260 }
261
262
StringToLong(char * buffer)263 static unsigned StringToLong(char* buffer) {
264 return static_cast<unsigned>(strtol(buffer, NULL, 16)); // NOLINT
265 }
266
267
LogSharedLibraryAddresses()268 void OS::LogSharedLibraryAddresses() {
269 static const int MAP_LENGTH = 1024;
270 int fd = open("/proc/self/maps", O_RDONLY);
271 if (fd < 0) return;
272 while (true) {
273 char addr_buffer[11];
274 addr_buffer[0] = '0';
275 addr_buffer[1] = 'x';
276 addr_buffer[10] = 0;
277 int result = read(fd, addr_buffer + 2, 8);
278 if (result < 8) break;
279 unsigned start = StringToLong(addr_buffer);
280 result = read(fd, addr_buffer + 2, 1);
281 if (result < 1) break;
282 if (addr_buffer[2] != '-') break;
283 result = read(fd, addr_buffer + 2, 8);
284 if (result < 8) break;
285 unsigned end = StringToLong(addr_buffer);
286 char buffer[MAP_LENGTH];
287 int bytes_read = -1;
288 do {
289 bytes_read++;
290 if (bytes_read >= MAP_LENGTH - 1)
291 break;
292 result = read(fd, buffer + bytes_read, 1);
293 if (result < 1) break;
294 } while (buffer[bytes_read] != '\n');
295 buffer[bytes_read] = 0;
296 // Ignore mappings that are not executable.
297 if (buffer[3] != 'x') continue;
298 char* start_of_path = index(buffer, '/');
299 // There may be no filename in this line. Skip to next.
300 if (start_of_path == NULL) continue;
301 buffer[bytes_read] = 0;
302 LOG(i::Isolate::Current(), SharedLibraryEvent(start_of_path, start, end));
303 }
304 close(fd);
305 }
306
307
SignalCodeMovingGC()308 void OS::SignalCodeMovingGC() {
309 }
310
311
StackWalk(Vector<OS::StackFrame> frames)312 int OS::StackWalk(Vector<OS::StackFrame> frames) {
313 int frames_size = frames.length();
314 ScopedVector<void*> addresses(frames_size);
315
316 int frames_count = backtrace(addresses.start(), frames_size);
317
318 char** symbols = backtrace_symbols(addresses.start(), frames_count);
319 if (symbols == NULL) {
320 return kStackWalkError;
321 }
322
323 for (int i = 0; i < frames_count; i++) {
324 frames[i].address = addresses[i];
325 // Format a text representation of the frame based on the information
326 // available.
327 SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
328 "%s",
329 symbols[i]);
330 // Make sure line termination is in place.
331 frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
332 }
333
334 free(symbols);
335
336 return frames_count;
337 }
338
339
340 // Constants used for mmap.
341 static const int kMmapFd = -1;
342 static const int kMmapFdOffset = 0;
343
VirtualMemory()344 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
345
VirtualMemory(size_t size)346 VirtualMemory::VirtualMemory(size_t size) {
347 address_ = ReserveRegion(size);
348 size_ = size;
349 }
350
351
VirtualMemory(size_t size,size_t alignment)352 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
353 : address_(NULL), size_(0) {
354 ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
355 size_t request_size = RoundUp(size + alignment,
356 static_cast<intptr_t>(OS::AllocateAlignment()));
357 void* reservation = mmap(OS::GetRandomMmapAddr(),
358 request_size,
359 PROT_NONE,
360 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
361 kMmapFd,
362 kMmapFdOffset);
363 if (reservation == MAP_FAILED) return;
364
365 Address base = static_cast<Address>(reservation);
366 Address aligned_base = RoundUp(base, alignment);
367 ASSERT_LE(base, aligned_base);
368
369 // Unmap extra memory reserved before and after the desired block.
370 if (aligned_base != base) {
371 size_t prefix_size = static_cast<size_t>(aligned_base - base);
372 OS::Free(base, prefix_size);
373 request_size -= prefix_size;
374 }
375
376 size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
377 ASSERT_LE(aligned_size, request_size);
378
379 if (aligned_size != request_size) {
380 size_t suffix_size = request_size - aligned_size;
381 OS::Free(aligned_base + aligned_size, suffix_size);
382 request_size -= suffix_size;
383 }
384
385 ASSERT(aligned_size == request_size);
386
387 address_ = static_cast<void*>(aligned_base);
388 size_ = aligned_size;
389 }
390
391
~VirtualMemory()392 VirtualMemory::~VirtualMemory() {
393 if (IsReserved()) {
394 bool result = ReleaseRegion(address(), size());
395 ASSERT(result);
396 USE(result);
397 }
398 }
399
400
IsReserved()401 bool VirtualMemory::IsReserved() {
402 return address_ != NULL;
403 }
404
405
Reset()406 void VirtualMemory::Reset() {
407 address_ = NULL;
408 size_ = 0;
409 }
410
411
Commit(void * address,size_t size,bool is_executable)412 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
413 return CommitRegion(address, size, is_executable);
414 }
415
416
Uncommit(void * address,size_t size)417 bool VirtualMemory::Uncommit(void* address, size_t size) {
418 return UncommitRegion(address, size);
419 }
420
421
Guard(void * address)422 bool VirtualMemory::Guard(void* address) {
423 OS::Guard(address, OS::CommitPageSize());
424 return true;
425 }
426
427
ReserveRegion(size_t size)428 void* VirtualMemory::ReserveRegion(size_t size) {
429 void* result = mmap(OS::GetRandomMmapAddr(),
430 size,
431 PROT_NONE,
432 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
433 kMmapFd,
434 kMmapFdOffset);
435
436 if (result == MAP_FAILED) return NULL;
437
438 return result;
439 }
440
441
CommitRegion(void * base,size_t size,bool is_executable)442 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
443 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
444 if (MAP_FAILED == mmap(base,
445 size,
446 prot,
447 MAP_PRIVATE | MAP_ANON | MAP_FIXED,
448 kMmapFd,
449 kMmapFdOffset)) {
450 return false;
451 }
452
453 UpdateAllocatedSpaceLimits(base, size);
454 return true;
455 }
456
457
UncommitRegion(void * base,size_t size)458 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
459 return mmap(base,
460 size,
461 PROT_NONE,
462 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
463 kMmapFd,
464 kMmapFdOffset) != MAP_FAILED;
465 }
466
467
ReleaseRegion(void * base,size_t size)468 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
469 return munmap(base, size) == 0;
470 }
471
472
473 class Thread::PlatformData : public Malloced {
474 public:
475 pthread_t thread_; // Thread handle for pthread.
476 };
477
478
Thread(const Options & options)479 Thread::Thread(const Options& options)
480 : data_(new PlatformData),
481 stack_size_(options.stack_size()) {
482 set_name(options.name());
483 }
484
485
~Thread()486 Thread::~Thread() {
487 delete data_;
488 }
489
490
ThreadEntry(void * arg)491 static void* ThreadEntry(void* arg) {
492 Thread* thread = reinterpret_cast<Thread*>(arg);
493 // This is also initialized by the first argument to pthread_create() but we
494 // don't know which thread will run first (the original thread or the new
495 // one) so we initialize it here too.
496 thread->data()->thread_ = pthread_self();
497 ASSERT(thread->data()->thread_ != kNoThread);
498 thread->Run();
499 return NULL;
500 }
501
502
set_name(const char * name)503 void Thread::set_name(const char* name) {
504 strncpy(name_, name, sizeof(name_));
505 name_[sizeof(name_) - 1] = '\0';
506 }
507
508
Start()509 void Thread::Start() {
510 pthread_attr_t* attr_ptr = NULL;
511 pthread_attr_t attr;
512 if (stack_size_ > 0) {
513 pthread_attr_init(&attr);
514 pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
515 attr_ptr = &attr;
516 }
517 pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this);
518 ASSERT(data_->thread_ != kNoThread);
519 }
520
521
Join()522 void Thread::Join() {
523 pthread_join(data_->thread_, NULL);
524 }
525
526
CreateThreadLocalKey()527 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
528 pthread_key_t key;
529 int result = pthread_key_create(&key, NULL);
530 USE(result);
531 ASSERT(result == 0);
532 return static_cast<LocalStorageKey>(key);
533 }
534
535
DeleteThreadLocalKey(LocalStorageKey key)536 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
537 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
538 int result = pthread_key_delete(pthread_key);
539 USE(result);
540 ASSERT(result == 0);
541 }
542
543
GetThreadLocal(LocalStorageKey key)544 void* Thread::GetThreadLocal(LocalStorageKey key) {
545 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
546 return pthread_getspecific(pthread_key);
547 }
548
549
SetThreadLocal(LocalStorageKey key,void * value)550 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
551 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
552 pthread_setspecific(pthread_key, value);
553 }
554
555
YieldCPU()556 void Thread::YieldCPU() {
557 sched_yield();
558 }
559
560
561 class FreeBSDMutex : public Mutex {
562 public:
FreeBSDMutex()563 FreeBSDMutex() {
564 pthread_mutexattr_t attrs;
565 int result = pthread_mutexattr_init(&attrs);
566 ASSERT(result == 0);
567 result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
568 ASSERT(result == 0);
569 result = pthread_mutex_init(&mutex_, &attrs);
570 ASSERT(result == 0);
571 }
572
~FreeBSDMutex()573 virtual ~FreeBSDMutex() { pthread_mutex_destroy(&mutex_); }
574
Lock()575 virtual int Lock() {
576 int result = pthread_mutex_lock(&mutex_);
577 return result;
578 }
579
Unlock()580 virtual int Unlock() {
581 int result = pthread_mutex_unlock(&mutex_);
582 return result;
583 }
584
TryLock()585 virtual bool TryLock() {
586 int result = pthread_mutex_trylock(&mutex_);
587 // Return false if the lock is busy and locking failed.
588 if (result == EBUSY) {
589 return false;
590 }
591 ASSERT(result == 0); // Verify no other errors.
592 return true;
593 }
594
595 private:
596 pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms.
597 };
598
599
CreateMutex()600 Mutex* OS::CreateMutex() {
601 return new FreeBSDMutex();
602 }
603
604
605 class FreeBSDSemaphore : public Semaphore {
606 public:
FreeBSDSemaphore(int count)607 explicit FreeBSDSemaphore(int count) { sem_init(&sem_, 0, count); }
~FreeBSDSemaphore()608 virtual ~FreeBSDSemaphore() { sem_destroy(&sem_); }
609
610 virtual void Wait();
611 virtual bool Wait(int timeout);
Signal()612 virtual void Signal() { sem_post(&sem_); }
613 private:
614 sem_t sem_;
615 };
616
617
Wait()618 void FreeBSDSemaphore::Wait() {
619 while (true) {
620 int result = sem_wait(&sem_);
621 if (result == 0) return; // Successfully got semaphore.
622 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
623 }
624 }
625
626
Wait(int timeout)627 bool FreeBSDSemaphore::Wait(int timeout) {
628 const long kOneSecondMicros = 1000000; // NOLINT
629
630 // Split timeout into second and nanosecond parts.
631 struct timeval delta;
632 delta.tv_usec = timeout % kOneSecondMicros;
633 delta.tv_sec = timeout / kOneSecondMicros;
634
635 struct timeval current_time;
636 // Get the current time.
637 if (gettimeofday(¤t_time, NULL) == -1) {
638 return false;
639 }
640
641 // Calculate time for end of timeout.
642 struct timeval end_time;
643 timeradd(¤t_time, &delta, &end_time);
644
645 struct timespec ts;
646 TIMEVAL_TO_TIMESPEC(&end_time, &ts);
647 while (true) {
648 int result = sem_timedwait(&sem_, &ts);
649 if (result == 0) return true; // Successfully got semaphore.
650 if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
651 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
652 }
653 }
654
655
CreateSemaphore(int count)656 Semaphore* OS::CreateSemaphore(int count) {
657 return new FreeBSDSemaphore(count);
658 }
659
660
GetThreadID()661 static pthread_t GetThreadID() {
662 pthread_t thread_id = pthread_self();
663 return thread_id;
664 }
665
666
667 class Sampler::PlatformData : public Malloced {
668 public:
PlatformData()669 PlatformData() : vm_tid_(GetThreadID()) {}
670
vm_tid() const671 pthread_t vm_tid() const { return vm_tid_; }
672
673 private:
674 pthread_t vm_tid_;
675 };
676
677
ProfilerSignalHandler(int signal,siginfo_t * info,void * context)678 static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
679 USE(info);
680 if (signal != SIGPROF) return;
681 Isolate* isolate = Isolate::UncheckedCurrent();
682 if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) {
683 // We require a fully initialized and entered isolate.
684 return;
685 }
686 if (v8::Locker::IsActive() &&
687 !isolate->thread_manager()->IsLockedByCurrentThread()) {
688 return;
689 }
690
691 Sampler* sampler = isolate->logger()->sampler();
692 if (sampler == NULL || !sampler->IsActive()) return;
693
694 TickSample sample_obj;
695 TickSample* sample = CpuProfiler::TickSampleEvent(isolate);
696 if (sample == NULL) sample = &sample_obj;
697
698 // Extracting the sample from the context is extremely machine dependent.
699 ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
700 mcontext_t& mcontext = ucontext->uc_mcontext;
701 sample->state = isolate->current_vm_state();
702 #if V8_HOST_ARCH_IA32
703 sample->pc = reinterpret_cast<Address>(mcontext.mc_eip);
704 sample->sp = reinterpret_cast<Address>(mcontext.mc_esp);
705 sample->fp = reinterpret_cast<Address>(mcontext.mc_ebp);
706 #elif V8_HOST_ARCH_X64
707 sample->pc = reinterpret_cast<Address>(mcontext.mc_rip);
708 sample->sp = reinterpret_cast<Address>(mcontext.mc_rsp);
709 sample->fp = reinterpret_cast<Address>(mcontext.mc_rbp);
710 #elif V8_HOST_ARCH_ARM
711 sample->pc = reinterpret_cast<Address>(mcontext.mc_r15);
712 sample->sp = reinterpret_cast<Address>(mcontext.mc_r13);
713 sample->fp = reinterpret_cast<Address>(mcontext.mc_r11);
714 #endif
715 sampler->SampleStack(sample);
716 sampler->Tick(sample);
717 }
718
719
720 class SignalSender : public Thread {
721 public:
722 enum SleepInterval {
723 HALF_INTERVAL,
724 FULL_INTERVAL
725 };
726
727 static const int kSignalSenderStackSize = 64 * KB;
728
SignalSender(int interval)729 explicit SignalSender(int interval)
730 : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)),
731 interval_(interval) {}
732
AddActiveSampler(Sampler * sampler)733 static void AddActiveSampler(Sampler* sampler) {
734 ScopedLock lock(mutex_.Pointer());
735 SamplerRegistry::AddActiveSampler(sampler);
736 if (instance_ == NULL) {
737 // Install a signal handler.
738 struct sigaction sa;
739 sa.sa_sigaction = ProfilerSignalHandler;
740 sigemptyset(&sa.sa_mask);
741 sa.sa_flags = SA_RESTART | SA_SIGINFO;
742 signal_handler_installed_ =
743 (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0);
744
745 // Start a thread that sends SIGPROF signal to VM threads.
746 instance_ = new SignalSender(sampler->interval());
747 instance_->Start();
748 } else {
749 ASSERT(instance_->interval_ == sampler->interval());
750 }
751 }
752
RemoveActiveSampler(Sampler * sampler)753 static void RemoveActiveSampler(Sampler* sampler) {
754 ScopedLock lock(mutex_.Pointer());
755 SamplerRegistry::RemoveActiveSampler(sampler);
756 if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
757 RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
758 delete instance_;
759 instance_ = NULL;
760
761 // Restore the old signal handler.
762 if (signal_handler_installed_) {
763 sigaction(SIGPROF, &old_signal_handler_, 0);
764 signal_handler_installed_ = false;
765 }
766 }
767 }
768
769 // Implement Thread::Run().
Run()770 virtual void Run() {
771 SamplerRegistry::State state;
772 while ((state = SamplerRegistry::GetState()) !=
773 SamplerRegistry::HAS_NO_SAMPLERS) {
774 bool cpu_profiling_enabled =
775 (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
776 bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
777 // When CPU profiling is enabled both JavaScript and C++ code is
778 // profiled. We must not suspend.
779 if (!cpu_profiling_enabled) {
780 if (rate_limiter_.SuspendIfNecessary()) continue;
781 }
782 if (cpu_profiling_enabled && runtime_profiler_enabled) {
783 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
784 return;
785 }
786 Sleep(HALF_INTERVAL);
787 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
788 return;
789 }
790 Sleep(HALF_INTERVAL);
791 } else {
792 if (cpu_profiling_enabled) {
793 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile,
794 this)) {
795 return;
796 }
797 }
798 if (runtime_profiler_enabled) {
799 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile,
800 NULL)) {
801 return;
802 }
803 }
804 Sleep(FULL_INTERVAL);
805 }
806 }
807 }
808
DoCpuProfile(Sampler * sampler,void * raw_sender)809 static void DoCpuProfile(Sampler* sampler, void* raw_sender) {
810 if (!sampler->IsProfiling()) return;
811 SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender);
812 sender->SendProfilingSignal(sampler->platform_data()->vm_tid());
813 }
814
DoRuntimeProfile(Sampler * sampler,void * ignored)815 static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
816 if (!sampler->isolate()->IsInitialized()) return;
817 sampler->isolate()->runtime_profiler()->NotifyTick();
818 }
819
SendProfilingSignal(pthread_t tid)820 void SendProfilingSignal(pthread_t tid) {
821 if (!signal_handler_installed_) return;
822 pthread_kill(tid, SIGPROF);
823 }
824
Sleep(SleepInterval full_or_half)825 void Sleep(SleepInterval full_or_half) {
826 // Convert ms to us and subtract 100 us to compensate delays
827 // occuring during signal delivery.
828 useconds_t interval = interval_ * 1000 - 100;
829 if (full_or_half == HALF_INTERVAL) interval /= 2;
830 int result = usleep(interval);
831 #ifdef DEBUG
832 if (result != 0 && errno != EINTR) {
833 fprintf(stderr,
834 "SignalSender usleep error; interval = %u, errno = %d\n",
835 interval,
836 errno);
837 ASSERT(result == 0 || errno == EINTR);
838 }
839 #endif
840 USE(result);
841 }
842
843 const int interval_;
844 RuntimeProfilerRateLimiter rate_limiter_;
845
846 // Protects the process wide state below.
847 static LazyMutex mutex_;
848 static SignalSender* instance_;
849 static bool signal_handler_installed_;
850 static struct sigaction old_signal_handler_;
851
852 private:
853 DISALLOW_COPY_AND_ASSIGN(SignalSender);
854 };
855
856 LazyMutex SignalSender::mutex_ = LAZY_MUTEX_INITIALIZER;
857 SignalSender* SignalSender::instance_ = NULL;
858 struct sigaction SignalSender::old_signal_handler_;
859 bool SignalSender::signal_handler_installed_ = false;
860
861
Sampler(Isolate * isolate,int interval)862 Sampler::Sampler(Isolate* isolate, int interval)
863 : isolate_(isolate),
864 interval_(interval),
865 profiling_(false),
866 active_(false),
867 samples_taken_(0) {
868 data_ = new PlatformData;
869 }
870
871
~Sampler()872 Sampler::~Sampler() {
873 ASSERT(!IsActive());
874 delete data_;
875 }
876
877
Start()878 void Sampler::Start() {
879 ASSERT(!IsActive());
880 SetActive(true);
881 SignalSender::AddActiveSampler(this);
882 }
883
884
Stop()885 void Sampler::Stop() {
886 ASSERT(IsActive());
887 SignalSender::RemoveActiveSampler(this);
888 SetActive(false);
889 }
890
891
892 } } // namespace v8::internal
893