• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 // Platform specific code for Linux goes here. For the POSIX comaptible parts
29 // the implementation is in platform-posix.cc.
30 
31 #include <pthread.h>
32 #include <semaphore.h>
33 #include <signal.h>
34 #include <sys/prctl.h>
35 #include <sys/time.h>
36 #include <sys/resource.h>
37 #include <sys/syscall.h>
38 #include <sys/types.h>
39 #include <stdlib.h>
40 
41 // Ubuntu Dapper requires memory pages to be marked as
42 // executable. Otherwise, OS raises an exception when executing code
43 // in that page.
44 #include <sys/types.h>  // mmap & munmap
45 #include <sys/mman.h>   // mmap & munmap
46 #include <sys/stat.h>   // open
47 #include <fcntl.h>      // open
48 #include <unistd.h>     // sysconf
49 #ifdef __GLIBC__
50 #include <execinfo.h>   // backtrace, backtrace_symbols
51 #endif  // def __GLIBC__
52 #include <strings.h>    // index
53 #include <errno.h>
54 #include <stdarg.h>
55 
56 #undef MAP_TYPE
57 
58 #include "v8.h"
59 
60 #include "platform-posix.h"
61 #include "platform.h"
62 #include "v8threads.h"
63 #include "vm-state-inl.h"
64 
65 
66 namespace v8 {
67 namespace internal {
68 
69 // 0 is never a valid thread id on Linux since tids and pids share a
70 // name space and pid 0 is reserved (see man 2 kill).
71 static const pthread_t kNoThread = (pthread_t) 0;
72 
73 
ceiling(double x)74 double ceiling(double x) {
75   return ceil(x);
76 }
77 
78 
79 static Mutex* limit_mutex = NULL;
80 
81 
SetUp()82 void OS::SetUp() {
83   // Seed the random number generator. We preserve microsecond resolution.
84   uint64_t seed = Ticks() ^ (getpid() << 16);
85   srandom(static_cast<unsigned int>(seed));
86   limit_mutex = CreateMutex();
87 
88 #ifdef __arm__
89   // When running on ARM hardware check that the EABI used by V8 and
90   // by the C code is the same.
91   bool hard_float = OS::ArmUsingHardFloat();
92   if (hard_float) {
93 #if !USE_EABI_HARDFLOAT
94     PrintF("ERROR: Binary compiled with -mfloat-abi=hard but without "
95            "-DUSE_EABI_HARDFLOAT\n");
96     exit(1);
97 #endif
98   } else {
99 #if USE_EABI_HARDFLOAT
100     PrintF("ERROR: Binary not compiled with -mfloat-abi=hard but with "
101            "-DUSE_EABI_HARDFLOAT\n");
102     exit(1);
103 #endif
104   }
105 #endif
106 }
107 
108 
PostSetUp()109 void OS::PostSetUp() {
110   // Math functions depend on CPU features therefore they are initialized after
111   // CPU.
112   MathSetup();
113 }
114 
115 
CpuFeaturesImpliedByPlatform()116 uint64_t OS::CpuFeaturesImpliedByPlatform() {
117   return 0;  // Linux runs on anything.
118 }
119 
120 
121 #ifdef __arm__
CPUInfoContainsString(const char * search_string)122 static bool CPUInfoContainsString(const char * search_string) {
123   const char* file_name = "/proc/cpuinfo";
124   // This is written as a straight shot one pass parser
125   // and not using STL string and ifstream because,
126   // on Linux, it's reading from a (non-mmap-able)
127   // character special device.
128   FILE* f = NULL;
129   const char* what = search_string;
130 
131   if (NULL == (f = fopen(file_name, "r")))
132     return false;
133 
134   int k;
135   while (EOF != (k = fgetc(f))) {
136     if (k == *what) {
137       ++what;
138       while ((*what != '\0') && (*what == fgetc(f))) {
139         ++what;
140       }
141       if (*what == '\0') {
142         fclose(f);
143         return true;
144       } else {
145         what = search_string;
146       }
147     }
148   }
149   fclose(f);
150 
151   // Did not find string in the proc file.
152   return false;
153 }
154 
155 
ArmCpuHasFeature(CpuFeature feature)156 bool OS::ArmCpuHasFeature(CpuFeature feature) {
157   const char* search_string = NULL;
158   // Simple detection of VFP at runtime for Linux.
159   // It is based on /proc/cpuinfo, which reveals hardware configuration
160   // to user-space applications.  According to ARM (mid 2009), no similar
161   // facility is universally available on the ARM architectures,
162   // so it's up to individual OSes to provide such.
163   switch (feature) {
164     case VFP3:
165       search_string = "vfpv3";
166       break;
167     case ARMv7:
168       search_string = "ARMv7";
169       break;
170     default:
171       UNREACHABLE();
172   }
173 
174   if (CPUInfoContainsString(search_string)) {
175     return true;
176   }
177 
178   if (feature == VFP3) {
179     // Some old kernels will report vfp not vfpv3. Here we make a last attempt
180     // to detect vfpv3 by checking for vfp *and* neon, since neon is only
181     // available on architectures with vfpv3.
182     // Checking neon on its own is not enough as it is possible to have neon
183     // without vfp.
184     if (CPUInfoContainsString("vfp") && CPUInfoContainsString("neon")) {
185       return true;
186     }
187   }
188 
189   return false;
190 }
191 
192 
ArmUsingHardFloat()193 bool OS::ArmUsingHardFloat() {
194   // GCC versions 4.6 and above define __ARM_PCS or __ARM_PCS_VFP to specify
195   // the Floating Point ABI used (PCS stands for Procedure Call Standard).
196   // We use these as well as a couple of other defines to statically determine
197   // what FP ABI used.
198   // GCC versions 4.4 and below don't support hard-fp.
199   // GCC versions 4.5 may support hard-fp without defining __ARM_PCS or
200   // __ARM_PCS_VFP.
201 
202 #define GCC_VERSION (__GNUC__ * 10000                                          \
203                      + __GNUC_MINOR__ * 100                                    \
204                      + __GNUC_PATCHLEVEL__)
205 #if GCC_VERSION >= 40600
206 #if defined(__ARM_PCS_VFP)
207   return true;
208 #else
209   return false;
210 #endif
211 
212 #elif GCC_VERSION < 40500
213   return false;
214 
215 #else
216 #if defined(__ARM_PCS_VFP)
217   return true;
218 #elif defined(__ARM_PCS) || defined(__SOFTFP) || !defined(__VFP_FP__)
219   return false;
220 #else
221 #error "Your version of GCC does not report the FP ABI compiled for."          \
222        "Please report it on this issue"                                        \
223        "http://code.google.com/p/v8/issues/detail?id=2140"
224 
225 #endif
226 #endif
227 #undef GCC_VERSION
228 }
229 
230 #endif  // def __arm__
231 
232 
233 #ifdef __mips__
MipsCpuHasFeature(CpuFeature feature)234 bool OS::MipsCpuHasFeature(CpuFeature feature) {
235   const char* search_string = NULL;
236   const char* file_name = "/proc/cpuinfo";
237   // Simple detection of FPU at runtime for Linux.
238   // It is based on /proc/cpuinfo, which reveals hardware configuration
239   // to user-space applications.  According to MIPS (early 2010), no similar
240   // facility is universally available on the MIPS architectures,
241   // so it's up to individual OSes to provide such.
242   //
243   // This is written as a straight shot one pass parser
244   // and not using STL string and ifstream because,
245   // on Linux, it's reading from a (non-mmap-able)
246   // character special device.
247 
248   switch (feature) {
249     case FPU:
250       search_string = "FPU";
251       break;
252     default:
253       UNREACHABLE();
254   }
255 
256   FILE* f = NULL;
257   const char* what = search_string;
258 
259   if (NULL == (f = fopen(file_name, "r")))
260     return false;
261 
262   int k;
263   while (EOF != (k = fgetc(f))) {
264     if (k == *what) {
265       ++what;
266       while ((*what != '\0') && (*what == fgetc(f))) {
267         ++what;
268       }
269       if (*what == '\0') {
270         fclose(f);
271         return true;
272       } else {
273         what = search_string;
274       }
275     }
276   }
277   fclose(f);
278 
279   // Did not find string in the proc file.
280   return false;
281 }
282 #endif  // def __mips__
283 
284 
ActivationFrameAlignment()285 int OS::ActivationFrameAlignment() {
286 #ifdef V8_TARGET_ARCH_ARM
287   // On EABI ARM targets this is required for fp correctness in the
288   // runtime system.
289   return 8;
290 #elif V8_TARGET_ARCH_MIPS
291   return 8;
292 #endif
293   // With gcc 4.4 the tree vectorization optimizer can generate code
294   // that requires 16 byte alignment such as movdqa on x86.
295   return 16;
296 }
297 
298 
ReleaseStore(volatile AtomicWord * ptr,AtomicWord value)299 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
300 #if (defined(V8_TARGET_ARCH_ARM) && defined(__arm__)) || \
301     (defined(V8_TARGET_ARCH_MIPS) && defined(__mips__))
302   // Only use on ARM or MIPS hardware.
303   MemoryBarrier();
304 #else
305   __asm__ __volatile__("" : : : "memory");
306   // An x86 store acts as a release barrier.
307 #endif
308   *ptr = value;
309 }
310 
311 
LocalTimezone(double time)312 const char* OS::LocalTimezone(double time) {
313   if (isnan(time)) return "";
314   time_t tv = static_cast<time_t>(floor(time/msPerSecond));
315   struct tm* t = localtime(&tv);
316   if (NULL == t) return "";
317   return t->tm_zone;
318 }
319 
320 
LocalTimeOffset()321 double OS::LocalTimeOffset() {
322   time_t tv = time(NULL);
323   struct tm* t = localtime(&tv);
324   // tm_gmtoff includes any daylight savings offset, so subtract it.
325   return static_cast<double>(t->tm_gmtoff * msPerSecond -
326                              (t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
327 }
328 
329 
330 // We keep the lowest and highest addresses mapped as a quick way of
331 // determining that pointers are outside the heap (used mostly in assertions
332 // and verification).  The estimate is conservative, i.e., not all addresses in
333 // 'allocated' space are actually allocated to our heap.  The range is
334 // [lowest, highest), inclusive on the low and and exclusive on the high end.
335 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
336 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
337 
338 
UpdateAllocatedSpaceLimits(void * address,int size)339 static void UpdateAllocatedSpaceLimits(void* address, int size) {
340   ASSERT(limit_mutex != NULL);
341   ScopedLock lock(limit_mutex);
342 
343   lowest_ever_allocated = Min(lowest_ever_allocated, address);
344   highest_ever_allocated =
345       Max(highest_ever_allocated,
346           reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
347 }
348 
349 
IsOutsideAllocatedSpace(void * address)350 bool OS::IsOutsideAllocatedSpace(void* address) {
351   return address < lowest_ever_allocated || address >= highest_ever_allocated;
352 }
353 
354 
AllocateAlignment()355 size_t OS::AllocateAlignment() {
356   return sysconf(_SC_PAGESIZE);
357 }
358 
359 
Allocate(const size_t requested,size_t * allocated,bool is_executable)360 void* OS::Allocate(const size_t requested,
361                    size_t* allocated,
362                    bool is_executable) {
363   const size_t msize = RoundUp(requested, AllocateAlignment());
364   int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
365   void* addr = OS::GetRandomMmapAddr();
366   void* mbase = mmap(addr, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
367   if (mbase == MAP_FAILED) {
368     LOG(i::Isolate::Current(),
369         StringEvent("OS::Allocate", "mmap failed"));
370     return NULL;
371   }
372   *allocated = msize;
373   UpdateAllocatedSpaceLimits(mbase, msize);
374   return mbase;
375 }
376 
377 
Free(void * address,const size_t size)378 void OS::Free(void* address, const size_t size) {
379   // TODO(1240712): munmap has a return value which is ignored here.
380   int result = munmap(address, size);
381   USE(result);
382   ASSERT(result == 0);
383 }
384 
385 
Sleep(int milliseconds)386 void OS::Sleep(int milliseconds) {
387   unsigned int ms = static_cast<unsigned int>(milliseconds);
388   usleep(1000 * ms);
389 }
390 
391 
Abort()392 void OS::Abort() {
393   // Redirect to std abort to signal abnormal program termination.
394   if (FLAG_break_on_abort) {
395     DebugBreak();
396   }
397   abort();
398 }
399 
400 
DebugBreak()401 void OS::DebugBreak() {
402 // TODO(lrn): Introduce processor define for runtime system (!= V8_ARCH_x,
403 //  which is the architecture of generated code).
404 #if (defined(__arm__) || defined(__thumb__))
405 # if defined(CAN_USE_ARMV5_INSTRUCTIONS)
406   asm("bkpt 0");
407 # endif
408 #elif defined(__mips__)
409   asm("break");
410 #else
411   asm("int $3");
412 #endif
413 }
414 
415 
416 class PosixMemoryMappedFile : public OS::MemoryMappedFile {
417  public:
PosixMemoryMappedFile(FILE * file,void * memory,int size)418   PosixMemoryMappedFile(FILE* file, void* memory, int size)
419     : file_(file), memory_(memory), size_(size) { }
420   virtual ~PosixMemoryMappedFile();
memory()421   virtual void* memory() { return memory_; }
size()422   virtual int size() { return size_; }
423  private:
424   FILE* file_;
425   void* memory_;
426   int size_;
427 };
428 
429 
open(const char * name)430 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
431   FILE* file = fopen(name, "r+");
432   if (file == NULL) return NULL;
433 
434   fseek(file, 0, SEEK_END);
435   int size = ftell(file);
436 
437   void* memory =
438       mmap(OS::GetRandomMmapAddr(),
439            size,
440            PROT_READ | PROT_WRITE,
441            MAP_SHARED,
442            fileno(file),
443            0);
444   return new PosixMemoryMappedFile(file, memory, size);
445 }
446 
447 
create(const char * name,int size,void * initial)448 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
449     void* initial) {
450   FILE* file = fopen(name, "w+");
451   if (file == NULL) return NULL;
452   int result = fwrite(initial, size, 1, file);
453   if (result < 1) {
454     fclose(file);
455     return NULL;
456   }
457   void* memory =
458       mmap(OS::GetRandomMmapAddr(),
459            size,
460            PROT_READ | PROT_WRITE,
461            MAP_SHARED,
462            fileno(file),
463            0);
464   return new PosixMemoryMappedFile(file, memory, size);
465 }
466 
467 
~PosixMemoryMappedFile()468 PosixMemoryMappedFile::~PosixMemoryMappedFile() {
469   if (memory_) OS::Free(memory_, size_);
470   fclose(file_);
471 }
472 
473 
LogSharedLibraryAddresses()474 void OS::LogSharedLibraryAddresses() {
475   // This function assumes that the layout of the file is as follows:
476   // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
477   // If we encounter an unexpected situation we abort scanning further entries.
478   FILE* fp = fopen("/proc/self/maps", "r");
479   if (fp == NULL) return;
480 
481   // Allocate enough room to be able to store a full file name.
482   const int kLibNameLen = FILENAME_MAX + 1;
483   char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
484 
485   i::Isolate* isolate = ISOLATE;
486   // This loop will terminate once the scanning hits an EOF.
487   while (true) {
488     uintptr_t start, end;
489     char attr_r, attr_w, attr_x, attr_p;
490     // Parse the addresses and permission bits at the beginning of the line.
491     if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
492     if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
493 
494     int c;
495     if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') {
496       // Found a read-only executable entry. Skip characters until we reach
497       // the beginning of the filename or the end of the line.
498       do {
499         c = getc(fp);
500       } while ((c != EOF) && (c != '\n') && (c != '/'));
501       if (c == EOF) break;  // EOF: Was unexpected, just exit.
502 
503       // Process the filename if found.
504       if (c == '/') {
505         ungetc(c, fp);  // Push the '/' back into the stream to be read below.
506 
507         // Read to the end of the line. Exit if the read fails.
508         if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
509 
510         // Drop the newline character read by fgets. We do not need to check
511         // for a zero-length string because we know that we at least read the
512         // '/' character.
513         lib_name[strlen(lib_name) - 1] = '\0';
514       } else {
515         // No library name found, just record the raw address range.
516         snprintf(lib_name, kLibNameLen,
517                  "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
518       }
519       LOG(isolate, SharedLibraryEvent(lib_name, start, end));
520     } else {
521       // Entry not describing executable data. Skip to end of line to set up
522       // reading the next entry.
523       do {
524         c = getc(fp);
525       } while ((c != EOF) && (c != '\n'));
526       if (c == EOF) break;
527     }
528   }
529   free(lib_name);
530   fclose(fp);
531 }
532 
533 
534 static const char kGCFakeMmap[] = "/tmp/__v8_gc__";
535 
536 
SignalCodeMovingGC()537 void OS::SignalCodeMovingGC() {
538   // Support for ll_prof.py.
539   //
540   // The Linux profiler built into the kernel logs all mmap's with
541   // PROT_EXEC so that analysis tools can properly attribute ticks. We
542   // do a mmap with a name known by ll_prof.py and immediately munmap
543   // it. This injects a GC marker into the stream of events generated
544   // by the kernel and allows us to synchronize V8 code log and the
545   // kernel log.
546   int size = sysconf(_SC_PAGESIZE);
547   FILE* f = fopen(kGCFakeMmap, "w+");
548   void* addr = mmap(OS::GetRandomMmapAddr(),
549                     size,
550                     PROT_READ | PROT_EXEC,
551                     MAP_PRIVATE,
552                     fileno(f),
553                     0);
554   ASSERT(addr != MAP_FAILED);
555   OS::Free(addr, size);
556   fclose(f);
557 }
558 
559 
StackWalk(Vector<OS::StackFrame> frames)560 int OS::StackWalk(Vector<OS::StackFrame> frames) {
561   // backtrace is a glibc extension.
562 #ifdef __GLIBC__
563   int frames_size = frames.length();
564   ScopedVector<void*> addresses(frames_size);
565 
566   int frames_count = backtrace(addresses.start(), frames_size);
567 
568   char** symbols = backtrace_symbols(addresses.start(), frames_count);
569   if (symbols == NULL) {
570     return kStackWalkError;
571   }
572 
573   for (int i = 0; i < frames_count; i++) {
574     frames[i].address = addresses[i];
575     // Format a text representation of the frame based on the information
576     // available.
577     SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
578              "%s",
579              symbols[i]);
580     // Make sure line termination is in place.
581     frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
582   }
583 
584   free(symbols);
585 
586   return frames_count;
587 #else  // ndef __GLIBC__
588   return 0;
589 #endif  // ndef __GLIBC__
590 }
591 
592 
593 // Constants used for mmap.
594 static const int kMmapFd = -1;
595 static const int kMmapFdOffset = 0;
596 
VirtualMemory()597 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
598 
VirtualMemory(size_t size)599 VirtualMemory::VirtualMemory(size_t size) {
600   address_ = ReserveRegion(size);
601   size_ = size;
602 }
603 
604 
VirtualMemory(size_t size,size_t alignment)605 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
606     : address_(NULL), size_(0) {
607   ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
608   size_t request_size = RoundUp(size + alignment,
609                                 static_cast<intptr_t>(OS::AllocateAlignment()));
610   void* reservation = mmap(OS::GetRandomMmapAddr(),
611                            request_size,
612                            PROT_NONE,
613                            MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
614                            kMmapFd,
615                            kMmapFdOffset);
616   if (reservation == MAP_FAILED) return;
617 
618   Address base = static_cast<Address>(reservation);
619   Address aligned_base = RoundUp(base, alignment);
620   ASSERT_LE(base, aligned_base);
621 
622   // Unmap extra memory reserved before and after the desired block.
623   if (aligned_base != base) {
624     size_t prefix_size = static_cast<size_t>(aligned_base - base);
625     OS::Free(base, prefix_size);
626     request_size -= prefix_size;
627   }
628 
629   size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
630   ASSERT_LE(aligned_size, request_size);
631 
632   if (aligned_size != request_size) {
633     size_t suffix_size = request_size - aligned_size;
634     OS::Free(aligned_base + aligned_size, suffix_size);
635     request_size -= suffix_size;
636   }
637 
638   ASSERT(aligned_size == request_size);
639 
640   address_ = static_cast<void*>(aligned_base);
641   size_ = aligned_size;
642 }
643 
644 
~VirtualMemory()645 VirtualMemory::~VirtualMemory() {
646   if (IsReserved()) {
647     bool result = ReleaseRegion(address(), size());
648     ASSERT(result);
649     USE(result);
650   }
651 }
652 
653 
IsReserved()654 bool VirtualMemory::IsReserved() {
655   return address_ != NULL;
656 }
657 
658 
Reset()659 void VirtualMemory::Reset() {
660   address_ = NULL;
661   size_ = 0;
662 }
663 
664 
Commit(void * address,size_t size,bool is_executable)665 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
666   return CommitRegion(address, size, is_executable);
667 }
668 
669 
Uncommit(void * address,size_t size)670 bool VirtualMemory::Uncommit(void* address, size_t size) {
671   return UncommitRegion(address, size);
672 }
673 
674 
Guard(void * address)675 bool VirtualMemory::Guard(void* address) {
676   OS::Guard(address, OS::CommitPageSize());
677   return true;
678 }
679 
680 
ReserveRegion(size_t size)681 void* VirtualMemory::ReserveRegion(size_t size) {
682   void* result = mmap(OS::GetRandomMmapAddr(),
683                       size,
684                       PROT_NONE,
685                       MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
686                       kMmapFd,
687                       kMmapFdOffset);
688 
689   if (result == MAP_FAILED) return NULL;
690 
691   return result;
692 }
693 
694 
CommitRegion(void * base,size_t size,bool is_executable)695 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
696   int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
697   if (MAP_FAILED == mmap(base,
698                          size,
699                          prot,
700                          MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
701                          kMmapFd,
702                          kMmapFdOffset)) {
703     return false;
704   }
705 
706   UpdateAllocatedSpaceLimits(base, size);
707   return true;
708 }
709 
710 
UncommitRegion(void * base,size_t size)711 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
712   return mmap(base,
713               size,
714               PROT_NONE,
715               MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
716               kMmapFd,
717               kMmapFdOffset) != MAP_FAILED;
718 }
719 
720 
ReleaseRegion(void * base,size_t size)721 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
722   return munmap(base, size) == 0;
723 }
724 
725 
726 class Thread::PlatformData : public Malloced {
727  public:
PlatformData()728   PlatformData() : thread_(kNoThread) {}
729 
730   pthread_t thread_;  // Thread handle for pthread.
731 };
732 
Thread(const Options & options)733 Thread::Thread(const Options& options)
734     : data_(new PlatformData()),
735       stack_size_(options.stack_size()) {
736   set_name(options.name());
737 }
738 
739 
~Thread()740 Thread::~Thread() {
741   delete data_;
742 }
743 
744 
ThreadEntry(void * arg)745 static void* ThreadEntry(void* arg) {
746   Thread* thread = reinterpret_cast<Thread*>(arg);
747   // This is also initialized by the first argument to pthread_create() but we
748   // don't know which thread will run first (the original thread or the new
749   // one) so we initialize it here too.
750 #ifdef PR_SET_NAME
751   prctl(PR_SET_NAME,
752         reinterpret_cast<unsigned long>(thread->name()),  // NOLINT
753         0, 0, 0);
754 #endif
755   thread->data()->thread_ = pthread_self();
756   ASSERT(thread->data()->thread_ != kNoThread);
757   thread->Run();
758   return NULL;
759 }
760 
761 
set_name(const char * name)762 void Thread::set_name(const char* name) {
763   strncpy(name_, name, sizeof(name_));
764   name_[sizeof(name_) - 1] = '\0';
765 }
766 
767 
Start()768 void Thread::Start() {
769   pthread_attr_t* attr_ptr = NULL;
770   pthread_attr_t attr;
771   if (stack_size_ > 0) {
772     pthread_attr_init(&attr);
773     pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
774     attr_ptr = &attr;
775   }
776   int result = pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this);
777   CHECK_EQ(0, result);
778   ASSERT(data_->thread_ != kNoThread);
779 }
780 
781 
Join()782 void Thread::Join() {
783   pthread_join(data_->thread_, NULL);
784 }
785 
786 
CreateThreadLocalKey()787 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
788   pthread_key_t key;
789   int result = pthread_key_create(&key, NULL);
790   USE(result);
791   ASSERT(result == 0);
792   return static_cast<LocalStorageKey>(key);
793 }
794 
795 
DeleteThreadLocalKey(LocalStorageKey key)796 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
797   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
798   int result = pthread_key_delete(pthread_key);
799   USE(result);
800   ASSERT(result == 0);
801 }
802 
803 
GetThreadLocal(LocalStorageKey key)804 void* Thread::GetThreadLocal(LocalStorageKey key) {
805   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
806   return pthread_getspecific(pthread_key);
807 }
808 
809 
SetThreadLocal(LocalStorageKey key,void * value)810 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
811   pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
812   pthread_setspecific(pthread_key, value);
813 }
814 
815 
YieldCPU()816 void Thread::YieldCPU() {
817   sched_yield();
818 }
819 
820 
821 class LinuxMutex : public Mutex {
822  public:
LinuxMutex()823   LinuxMutex() {
824     pthread_mutexattr_t attrs;
825     int result = pthread_mutexattr_init(&attrs);
826     ASSERT(result == 0);
827     result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
828     ASSERT(result == 0);
829     result = pthread_mutex_init(&mutex_, &attrs);
830     ASSERT(result == 0);
831     USE(result);
832   }
833 
~LinuxMutex()834   virtual ~LinuxMutex() { pthread_mutex_destroy(&mutex_); }
835 
Lock()836   virtual int Lock() {
837     int result = pthread_mutex_lock(&mutex_);
838     return result;
839   }
840 
Unlock()841   virtual int Unlock() {
842     int result = pthread_mutex_unlock(&mutex_);
843     return result;
844   }
845 
TryLock()846   virtual bool TryLock() {
847     int result = pthread_mutex_trylock(&mutex_);
848     // Return false if the lock is busy and locking failed.
849     if (result == EBUSY) {
850       return false;
851     }
852     ASSERT(result == 0);  // Verify no other errors.
853     return true;
854   }
855 
856  private:
857   pthread_mutex_t mutex_;   // Pthread mutex for POSIX platforms.
858 };
859 
860 
CreateMutex()861 Mutex* OS::CreateMutex() {
862   return new LinuxMutex();
863 }
864 
865 
866 class LinuxSemaphore : public Semaphore {
867  public:
LinuxSemaphore(int count)868   explicit LinuxSemaphore(int count) {  sem_init(&sem_, 0, count); }
~LinuxSemaphore()869   virtual ~LinuxSemaphore() { sem_destroy(&sem_); }
870 
871   virtual void Wait();
872   virtual bool Wait(int timeout);
Signal()873   virtual void Signal() { sem_post(&sem_); }
874  private:
875   sem_t sem_;
876 };
877 
878 
Wait()879 void LinuxSemaphore::Wait() {
880   while (true) {
881     int result = sem_wait(&sem_);
882     if (result == 0) return;  // Successfully got semaphore.
883     CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
884   }
885 }
886 
887 
888 #ifndef TIMEVAL_TO_TIMESPEC
889 #define TIMEVAL_TO_TIMESPEC(tv, ts) do {                            \
890     (ts)->tv_sec = (tv)->tv_sec;                                    \
891     (ts)->tv_nsec = (tv)->tv_usec * 1000;                           \
892 } while (false)
893 #endif
894 
895 
Wait(int timeout)896 bool LinuxSemaphore::Wait(int timeout) {
897   const long kOneSecondMicros = 1000000;  // NOLINT
898 
899   // Split timeout into second and nanosecond parts.
900   struct timeval delta;
901   delta.tv_usec = timeout % kOneSecondMicros;
902   delta.tv_sec = timeout / kOneSecondMicros;
903 
904   struct timeval current_time;
905   // Get the current time.
906   if (gettimeofday(&current_time, NULL) == -1) {
907     return false;
908   }
909 
910   // Calculate time for end of timeout.
911   struct timeval end_time;
912   timeradd(&current_time, &delta, &end_time);
913 
914   struct timespec ts;
915   TIMEVAL_TO_TIMESPEC(&end_time, &ts);
916   // Wait for semaphore signalled or timeout.
917   while (true) {
918     int result = sem_timedwait(&sem_, &ts);
919     if (result == 0) return true;  // Successfully got semaphore.
920     if (result > 0) {
921       // For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1.
922       errno = result;
923       result = -1;
924     }
925     if (result == -1 && errno == ETIMEDOUT) return false;  // Timeout.
926     CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
927   }
928 }
929 
930 
CreateSemaphore(int count)931 Semaphore* OS::CreateSemaphore(int count) {
932   return new LinuxSemaphore(count);
933 }
934 
935 
936 #if !defined(__GLIBC__) && (defined(__arm__) || defined(__thumb__))
937 // Android runs a fairly new Linux kernel, so signal info is there,
938 // but the C library doesn't have the structs defined.
939 
940 struct sigcontext {
941   uint32_t trap_no;
942   uint32_t error_code;
943   uint32_t oldmask;
944   uint32_t gregs[16];
945   uint32_t arm_cpsr;
946   uint32_t fault_address;
947 };
948 typedef uint32_t __sigset_t;
949 typedef struct sigcontext mcontext_t;
950 typedef struct ucontext {
951   uint32_t uc_flags;
952   struct ucontext* uc_link;
953   stack_t uc_stack;
954   mcontext_t uc_mcontext;
955   __sigset_t uc_sigmask;
956 } ucontext_t;
957 enum ArmRegisters {R15 = 15, R13 = 13, R11 = 11};
958 
959 #elif !defined(__GLIBC__) && defined(__mips__)
960 // MIPS version of sigcontext, for Android bionic.
961 struct sigcontext {
962   uint32_t regmask;
963   uint32_t status;
964   uint64_t pc;
965   uint64_t gregs[32];
966   uint64_t fpregs[32];
967   uint32_t acx;
968   uint32_t fpc_csr;
969   uint32_t fpc_eir;
970   uint32_t used_math;
971   uint32_t dsp;
972   uint64_t mdhi;
973   uint64_t mdlo;
974   uint32_t hi1;
975   uint32_t lo1;
976   uint32_t hi2;
977   uint32_t lo2;
978   uint32_t hi3;
979   uint32_t lo3;
980 };
981 typedef uint32_t __sigset_t;
982 typedef struct sigcontext mcontext_t;
983 typedef struct ucontext {
984   uint32_t uc_flags;
985   struct ucontext* uc_link;
986   stack_t uc_stack;
987   mcontext_t uc_mcontext;
988   __sigset_t uc_sigmask;
989 } ucontext_t;
990 
991 #elif !defined(__GLIBC__) && defined(__i386__)
992 // x86 version for Android.
993 struct sigcontext {
994   uint32_t gregs[19];
995   void* fpregs;
996   uint32_t oldmask;
997   uint32_t cr2;
998 };
999 
1000 typedef uint32_t __sigset_t;
1001 typedef struct sigcontext mcontext_t;
1002 typedef struct ucontext {
1003   uint32_t uc_flags;
1004   struct ucontext* uc_link;
1005   stack_t uc_stack;
1006   mcontext_t uc_mcontext;
1007   __sigset_t uc_sigmask;
1008 } ucontext_t;
1009 enum { REG_EBP = 6, REG_ESP = 7, REG_EIP = 14 };
1010 #endif
1011 
1012 
GetThreadID()1013 static int GetThreadID() {
1014   // Glibc doesn't provide a wrapper for gettid(2).
1015 #if defined(ANDROID)
1016   return syscall(__NR_gettid);
1017 #else
1018   return syscall(SYS_gettid);
1019 #endif
1020 }
1021 
1022 
ProfilerSignalHandler(int signal,siginfo_t * info,void * context)1023 static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
1024   USE(info);
1025   if (signal != SIGPROF) return;
1026   Isolate* isolate = Isolate::UncheckedCurrent();
1027   if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) {
1028     // We require a fully initialized and entered isolate.
1029     return;
1030   }
1031   if (v8::Locker::IsActive() &&
1032       !isolate->thread_manager()->IsLockedByCurrentThread()) {
1033     return;
1034   }
1035 
1036   Sampler* sampler = isolate->logger()->sampler();
1037   if (sampler == NULL || !sampler->IsActive()) return;
1038 
1039   TickSample sample_obj;
1040   TickSample* sample = CpuProfiler::TickSampleEvent(isolate);
1041   if (sample == NULL) sample = &sample_obj;
1042 
1043   // Extracting the sample from the context is extremely machine dependent.
1044   ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
1045   mcontext_t& mcontext = ucontext->uc_mcontext;
1046   sample->state = isolate->current_vm_state();
1047 #if V8_HOST_ARCH_IA32
1048   sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_EIP]);
1049   sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_ESP]);
1050   sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_EBP]);
1051 #elif V8_HOST_ARCH_X64
1052   sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_RIP]);
1053   sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_RSP]);
1054   sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_RBP]);
1055 #elif V8_HOST_ARCH_ARM
1056 // An undefined macro evaluates to 0, so this applies to Android's Bionic also.
1057 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1058   sample->pc = reinterpret_cast<Address>(mcontext.gregs[R15]);
1059   sample->sp = reinterpret_cast<Address>(mcontext.gregs[R13]);
1060   sample->fp = reinterpret_cast<Address>(mcontext.gregs[R11]);
1061 #else
1062   sample->pc = reinterpret_cast<Address>(mcontext.arm_pc);
1063   sample->sp = reinterpret_cast<Address>(mcontext.arm_sp);
1064   sample->fp = reinterpret_cast<Address>(mcontext.arm_fp);
1065 #endif  // (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1066 #elif V8_HOST_ARCH_MIPS
1067   sample->pc = reinterpret_cast<Address>(mcontext.pc);
1068   sample->sp = reinterpret_cast<Address>(mcontext.gregs[29]);
1069   sample->fp = reinterpret_cast<Address>(mcontext.gregs[30]);
1070 #endif  // V8_HOST_ARCH_*
1071   sampler->SampleStack(sample);
1072   sampler->Tick(sample);
1073 }
1074 
1075 
1076 class Sampler::PlatformData : public Malloced {
1077  public:
PlatformData()1078   PlatformData() : vm_tid_(GetThreadID()) {}
1079 
vm_tid() const1080   int vm_tid() const { return vm_tid_; }
1081 
1082  private:
1083   const int vm_tid_;
1084 };
1085 
1086 
1087 class SignalSender : public Thread {
1088  public:
1089   enum SleepInterval {
1090     HALF_INTERVAL,
1091     FULL_INTERVAL
1092   };
1093 
1094   static const int kSignalSenderStackSize = 64 * KB;
1095 
SignalSender(int interval)1096   explicit SignalSender(int interval)
1097       : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)),
1098         vm_tgid_(getpid()),
1099         interval_(interval) {}
1100 
InstallSignalHandler()1101   static void InstallSignalHandler() {
1102     struct sigaction sa;
1103     sa.sa_sigaction = ProfilerSignalHandler;
1104     sigemptyset(&sa.sa_mask);
1105     sa.sa_flags = SA_RESTART | SA_SIGINFO;
1106     signal_handler_installed_ =
1107         (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0);
1108   }
1109 
RestoreSignalHandler()1110   static void RestoreSignalHandler() {
1111     if (signal_handler_installed_) {
1112       sigaction(SIGPROF, &old_signal_handler_, 0);
1113       signal_handler_installed_ = false;
1114     }
1115   }
1116 
AddActiveSampler(Sampler * sampler)1117   static void AddActiveSampler(Sampler* sampler) {
1118     ScopedLock lock(mutex_.Pointer());
1119     SamplerRegistry::AddActiveSampler(sampler);
1120     if (instance_ == NULL) {
1121       // Start a thread that will send SIGPROF signal to VM threads,
1122       // when CPU profiling will be enabled.
1123       instance_ = new SignalSender(sampler->interval());
1124       instance_->Start();
1125     } else {
1126       ASSERT(instance_->interval_ == sampler->interval());
1127     }
1128   }
1129 
RemoveActiveSampler(Sampler * sampler)1130   static void RemoveActiveSampler(Sampler* sampler) {
1131     ScopedLock lock(mutex_.Pointer());
1132     SamplerRegistry::RemoveActiveSampler(sampler);
1133     if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
1134       RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
1135       delete instance_;
1136       instance_ = NULL;
1137       RestoreSignalHandler();
1138     }
1139   }
1140 
1141   // Implement Thread::Run().
Run()1142   virtual void Run() {
1143     SamplerRegistry::State state;
1144     while ((state = SamplerRegistry::GetState()) !=
1145            SamplerRegistry::HAS_NO_SAMPLERS) {
1146       bool cpu_profiling_enabled =
1147           (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
1148       bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
1149       if (cpu_profiling_enabled && !signal_handler_installed_) {
1150         InstallSignalHandler();
1151       } else if (!cpu_profiling_enabled && signal_handler_installed_) {
1152         RestoreSignalHandler();
1153       }
1154       // When CPU profiling is enabled both JavaScript and C++ code is
1155       // profiled. We must not suspend.
1156       if (!cpu_profiling_enabled) {
1157         if (rate_limiter_.SuspendIfNecessary()) continue;
1158       }
1159       if (cpu_profiling_enabled && runtime_profiler_enabled) {
1160         if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
1161           return;
1162         }
1163         Sleep(HALF_INTERVAL);
1164         if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
1165           return;
1166         }
1167         Sleep(HALF_INTERVAL);
1168       } else {
1169         if (cpu_profiling_enabled) {
1170           if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile,
1171                                                       this)) {
1172             return;
1173           }
1174         }
1175         if (runtime_profiler_enabled) {
1176           if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile,
1177                                                       NULL)) {
1178             return;
1179           }
1180         }
1181         Sleep(FULL_INTERVAL);
1182       }
1183     }
1184   }
1185 
DoCpuProfile(Sampler * sampler,void * raw_sender)1186   static void DoCpuProfile(Sampler* sampler, void* raw_sender) {
1187     if (!sampler->IsProfiling()) return;
1188     SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender);
1189     sender->SendProfilingSignal(sampler->platform_data()->vm_tid());
1190   }
1191 
DoRuntimeProfile(Sampler * sampler,void * ignored)1192   static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
1193     if (!sampler->isolate()->IsInitialized()) return;
1194     sampler->isolate()->runtime_profiler()->NotifyTick();
1195   }
1196 
SendProfilingSignal(int tid)1197   void SendProfilingSignal(int tid) {
1198     if (!signal_handler_installed_) return;
1199     // Glibc doesn't provide a wrapper for tgkill(2).
1200 #if defined(ANDROID)
1201     syscall(__NR_tgkill, vm_tgid_, tid, SIGPROF);
1202 #else
1203     syscall(SYS_tgkill, vm_tgid_, tid, SIGPROF);
1204 #endif
1205   }
1206 
Sleep(SleepInterval full_or_half)1207   void Sleep(SleepInterval full_or_half) {
1208     // Convert ms to us and subtract 100 us to compensate delays
1209     // occuring during signal delivery.
1210     useconds_t interval = interval_ * 1000 - 100;
1211     if (full_or_half == HALF_INTERVAL) interval /= 2;
1212 #if defined(ANDROID)
1213     usleep(interval);
1214 #else
1215     int result = usleep(interval);
1216 #ifdef DEBUG
1217     if (result != 0 && errno != EINTR) {
1218       fprintf(stderr,
1219               "SignalSender usleep error; interval = %u, errno = %d\n",
1220               interval,
1221               errno);
1222       ASSERT(result == 0 || errno == EINTR);
1223     }
1224 #endif  // DEBUG
1225     USE(result);
1226 #endif  // ANDROID
1227   }
1228 
1229   const int vm_tgid_;
1230   const int interval_;
1231   RuntimeProfilerRateLimiter rate_limiter_;
1232 
1233   // Protects the process wide state below.
1234   static LazyMutex mutex_;
1235   static SignalSender* instance_;
1236   static bool signal_handler_installed_;
1237   static struct sigaction old_signal_handler_;
1238 
1239  private:
1240   DISALLOW_COPY_AND_ASSIGN(SignalSender);
1241 };
1242 
1243 
1244 LazyMutex SignalSender::mutex_ = LAZY_MUTEX_INITIALIZER;
1245 SignalSender* SignalSender::instance_ = NULL;
1246 struct sigaction SignalSender::old_signal_handler_;
1247 bool SignalSender::signal_handler_installed_ = false;
1248 
1249 
Sampler(Isolate * isolate,int interval)1250 Sampler::Sampler(Isolate* isolate, int interval)
1251     : isolate_(isolate),
1252       interval_(interval),
1253       profiling_(false),
1254       active_(false),
1255       samples_taken_(0) {
1256   data_ = new PlatformData;
1257 }
1258 
1259 
~Sampler()1260 Sampler::~Sampler() {
1261   ASSERT(!IsActive());
1262   delete data_;
1263 }
1264 
1265 
Start()1266 void Sampler::Start() {
1267   ASSERT(!IsActive());
1268   SetActive(true);
1269   SignalSender::AddActiveSampler(this);
1270 }
1271 
1272 
Stop()1273 void Sampler::Stop() {
1274   ASSERT(IsActive());
1275   SignalSender::RemoveActiveSampler(this);
1276   SetActive(false);
1277 }
1278 
1279 
1280 } }  // namespace v8::internal
1281