1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 // Platform specific code for Linux goes here. For the POSIX comaptible parts
29 // the implementation is in platform-posix.cc.
30
31 #include <pthread.h>
32 #include <semaphore.h>
33 #include <signal.h>
34 #include <sys/prctl.h>
35 #include <sys/time.h>
36 #include <sys/resource.h>
37 #include <sys/syscall.h>
38 #include <sys/types.h>
39 #include <stdlib.h>
40
41 // Ubuntu Dapper requires memory pages to be marked as
42 // executable. Otherwise, OS raises an exception when executing code
43 // in that page.
44 #include <sys/types.h> // mmap & munmap
45 #include <sys/mman.h> // mmap & munmap
46 #include <sys/stat.h> // open
47 #include <fcntl.h> // open
48 #include <unistd.h> // sysconf
49 #ifdef __GLIBC__
50 #include <execinfo.h> // backtrace, backtrace_symbols
51 #endif // def __GLIBC__
52 #include <strings.h> // index
53 #include <errno.h>
54 #include <stdarg.h>
55
56 #undef MAP_TYPE
57
58 #include "v8.h"
59
60 #include "platform-posix.h"
61 #include "platform.h"
62 #include "v8threads.h"
63 #include "vm-state-inl.h"
64
65
66 namespace v8 {
67 namespace internal {
68
69 // 0 is never a valid thread id on Linux since tids and pids share a
70 // name space and pid 0 is reserved (see man 2 kill).
71 static const pthread_t kNoThread = (pthread_t) 0;
72
73
ceiling(double x)74 double ceiling(double x) {
75 return ceil(x);
76 }
77
78
79 static Mutex* limit_mutex = NULL;
80
81
SetUp()82 void OS::SetUp() {
83 // Seed the random number generator. We preserve microsecond resolution.
84 uint64_t seed = Ticks() ^ (getpid() << 16);
85 srandom(static_cast<unsigned int>(seed));
86 limit_mutex = CreateMutex();
87
88 #ifdef __arm__
89 // When running on ARM hardware check that the EABI used by V8 and
90 // by the C code is the same.
91 bool hard_float = OS::ArmUsingHardFloat();
92 if (hard_float) {
93 #if !USE_EABI_HARDFLOAT
94 PrintF("ERROR: Binary compiled with -mfloat-abi=hard but without "
95 "-DUSE_EABI_HARDFLOAT\n");
96 exit(1);
97 #endif
98 } else {
99 #if USE_EABI_HARDFLOAT
100 PrintF("ERROR: Binary not compiled with -mfloat-abi=hard but with "
101 "-DUSE_EABI_HARDFLOAT\n");
102 exit(1);
103 #endif
104 }
105 #endif
106 }
107
108
PostSetUp()109 void OS::PostSetUp() {
110 // Math functions depend on CPU features therefore they are initialized after
111 // CPU.
112 MathSetup();
113 }
114
115
CpuFeaturesImpliedByPlatform()116 uint64_t OS::CpuFeaturesImpliedByPlatform() {
117 return 0; // Linux runs on anything.
118 }
119
120
121 #ifdef __arm__
CPUInfoContainsString(const char * search_string)122 static bool CPUInfoContainsString(const char * search_string) {
123 const char* file_name = "/proc/cpuinfo";
124 // This is written as a straight shot one pass parser
125 // and not using STL string and ifstream because,
126 // on Linux, it's reading from a (non-mmap-able)
127 // character special device.
128 FILE* f = NULL;
129 const char* what = search_string;
130
131 if (NULL == (f = fopen(file_name, "r")))
132 return false;
133
134 int k;
135 while (EOF != (k = fgetc(f))) {
136 if (k == *what) {
137 ++what;
138 while ((*what != '\0') && (*what == fgetc(f))) {
139 ++what;
140 }
141 if (*what == '\0') {
142 fclose(f);
143 return true;
144 } else {
145 what = search_string;
146 }
147 }
148 }
149 fclose(f);
150
151 // Did not find string in the proc file.
152 return false;
153 }
154
155
ArmCpuHasFeature(CpuFeature feature)156 bool OS::ArmCpuHasFeature(CpuFeature feature) {
157 const char* search_string = NULL;
158 // Simple detection of VFP at runtime for Linux.
159 // It is based on /proc/cpuinfo, which reveals hardware configuration
160 // to user-space applications. According to ARM (mid 2009), no similar
161 // facility is universally available on the ARM architectures,
162 // so it's up to individual OSes to provide such.
163 switch (feature) {
164 case VFP3:
165 search_string = "vfpv3";
166 break;
167 case ARMv7:
168 search_string = "ARMv7";
169 break;
170 default:
171 UNREACHABLE();
172 }
173
174 if (CPUInfoContainsString(search_string)) {
175 return true;
176 }
177
178 if (feature == VFP3) {
179 // Some old kernels will report vfp not vfpv3. Here we make a last attempt
180 // to detect vfpv3 by checking for vfp *and* neon, since neon is only
181 // available on architectures with vfpv3.
182 // Checking neon on its own is not enough as it is possible to have neon
183 // without vfp.
184 if (CPUInfoContainsString("vfp") && CPUInfoContainsString("neon")) {
185 return true;
186 }
187 }
188
189 return false;
190 }
191
192
ArmUsingHardFloat()193 bool OS::ArmUsingHardFloat() {
194 // GCC versions 4.6 and above define __ARM_PCS or __ARM_PCS_VFP to specify
195 // the Floating Point ABI used (PCS stands for Procedure Call Standard).
196 // We use these as well as a couple of other defines to statically determine
197 // what FP ABI used.
198 // GCC versions 4.4 and below don't support hard-fp.
199 // GCC versions 4.5 may support hard-fp without defining __ARM_PCS or
200 // __ARM_PCS_VFP.
201
202 #define GCC_VERSION (__GNUC__ * 10000 \
203 + __GNUC_MINOR__ * 100 \
204 + __GNUC_PATCHLEVEL__)
205 #if GCC_VERSION >= 40600
206 #if defined(__ARM_PCS_VFP)
207 return true;
208 #else
209 return false;
210 #endif
211
212 #elif GCC_VERSION < 40500
213 return false;
214
215 #else
216 #if defined(__ARM_PCS_VFP)
217 return true;
218 #elif defined(__ARM_PCS) || defined(__SOFTFP) || !defined(__VFP_FP__)
219 return false;
220 #else
221 #error "Your version of GCC does not report the FP ABI compiled for." \
222 "Please report it on this issue" \
223 "http://code.google.com/p/v8/issues/detail?id=2140"
224
225 #endif
226 #endif
227 #undef GCC_VERSION
228 }
229
230 #endif // def __arm__
231
232
233 #ifdef __mips__
MipsCpuHasFeature(CpuFeature feature)234 bool OS::MipsCpuHasFeature(CpuFeature feature) {
235 const char* search_string = NULL;
236 const char* file_name = "/proc/cpuinfo";
237 // Simple detection of FPU at runtime for Linux.
238 // It is based on /proc/cpuinfo, which reveals hardware configuration
239 // to user-space applications. According to MIPS (early 2010), no similar
240 // facility is universally available on the MIPS architectures,
241 // so it's up to individual OSes to provide such.
242 //
243 // This is written as a straight shot one pass parser
244 // and not using STL string and ifstream because,
245 // on Linux, it's reading from a (non-mmap-able)
246 // character special device.
247
248 switch (feature) {
249 case FPU:
250 search_string = "FPU";
251 break;
252 default:
253 UNREACHABLE();
254 }
255
256 FILE* f = NULL;
257 const char* what = search_string;
258
259 if (NULL == (f = fopen(file_name, "r")))
260 return false;
261
262 int k;
263 while (EOF != (k = fgetc(f))) {
264 if (k == *what) {
265 ++what;
266 while ((*what != '\0') && (*what == fgetc(f))) {
267 ++what;
268 }
269 if (*what == '\0') {
270 fclose(f);
271 return true;
272 } else {
273 what = search_string;
274 }
275 }
276 }
277 fclose(f);
278
279 // Did not find string in the proc file.
280 return false;
281 }
282 #endif // def __mips__
283
284
ActivationFrameAlignment()285 int OS::ActivationFrameAlignment() {
286 #ifdef V8_TARGET_ARCH_ARM
287 // On EABI ARM targets this is required for fp correctness in the
288 // runtime system.
289 return 8;
290 #elif V8_TARGET_ARCH_MIPS
291 return 8;
292 #endif
293 // With gcc 4.4 the tree vectorization optimizer can generate code
294 // that requires 16 byte alignment such as movdqa on x86.
295 return 16;
296 }
297
298
ReleaseStore(volatile AtomicWord * ptr,AtomicWord value)299 void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
300 #if (defined(V8_TARGET_ARCH_ARM) && defined(__arm__)) || \
301 (defined(V8_TARGET_ARCH_MIPS) && defined(__mips__))
302 // Only use on ARM or MIPS hardware.
303 MemoryBarrier();
304 #else
305 __asm__ __volatile__("" : : : "memory");
306 // An x86 store acts as a release barrier.
307 #endif
308 *ptr = value;
309 }
310
311
LocalTimezone(double time)312 const char* OS::LocalTimezone(double time) {
313 if (isnan(time)) return "";
314 time_t tv = static_cast<time_t>(floor(time/msPerSecond));
315 struct tm* t = localtime(&tv);
316 if (NULL == t) return "";
317 return t->tm_zone;
318 }
319
320
LocalTimeOffset()321 double OS::LocalTimeOffset() {
322 time_t tv = time(NULL);
323 struct tm* t = localtime(&tv);
324 // tm_gmtoff includes any daylight savings offset, so subtract it.
325 return static_cast<double>(t->tm_gmtoff * msPerSecond -
326 (t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
327 }
328
329
330 // We keep the lowest and highest addresses mapped as a quick way of
331 // determining that pointers are outside the heap (used mostly in assertions
332 // and verification). The estimate is conservative, i.e., not all addresses in
333 // 'allocated' space are actually allocated to our heap. The range is
334 // [lowest, highest), inclusive on the low and and exclusive on the high end.
335 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
336 static void* highest_ever_allocated = reinterpret_cast<void*>(0);
337
338
UpdateAllocatedSpaceLimits(void * address,int size)339 static void UpdateAllocatedSpaceLimits(void* address, int size) {
340 ASSERT(limit_mutex != NULL);
341 ScopedLock lock(limit_mutex);
342
343 lowest_ever_allocated = Min(lowest_ever_allocated, address);
344 highest_ever_allocated =
345 Max(highest_ever_allocated,
346 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
347 }
348
349
IsOutsideAllocatedSpace(void * address)350 bool OS::IsOutsideAllocatedSpace(void* address) {
351 return address < lowest_ever_allocated || address >= highest_ever_allocated;
352 }
353
354
AllocateAlignment()355 size_t OS::AllocateAlignment() {
356 return sysconf(_SC_PAGESIZE);
357 }
358
359
Allocate(const size_t requested,size_t * allocated,bool is_executable)360 void* OS::Allocate(const size_t requested,
361 size_t* allocated,
362 bool is_executable) {
363 const size_t msize = RoundUp(requested, AllocateAlignment());
364 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
365 void* addr = OS::GetRandomMmapAddr();
366 void* mbase = mmap(addr, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
367 if (mbase == MAP_FAILED) {
368 LOG(i::Isolate::Current(),
369 StringEvent("OS::Allocate", "mmap failed"));
370 return NULL;
371 }
372 *allocated = msize;
373 UpdateAllocatedSpaceLimits(mbase, msize);
374 return mbase;
375 }
376
377
Free(void * address,const size_t size)378 void OS::Free(void* address, const size_t size) {
379 // TODO(1240712): munmap has a return value which is ignored here.
380 int result = munmap(address, size);
381 USE(result);
382 ASSERT(result == 0);
383 }
384
385
Sleep(int milliseconds)386 void OS::Sleep(int milliseconds) {
387 unsigned int ms = static_cast<unsigned int>(milliseconds);
388 usleep(1000 * ms);
389 }
390
391
Abort()392 void OS::Abort() {
393 // Redirect to std abort to signal abnormal program termination.
394 if (FLAG_break_on_abort) {
395 DebugBreak();
396 }
397 abort();
398 }
399
400
DebugBreak()401 void OS::DebugBreak() {
402 // TODO(lrn): Introduce processor define for runtime system (!= V8_ARCH_x,
403 // which is the architecture of generated code).
404 #if (defined(__arm__) || defined(__thumb__))
405 # if defined(CAN_USE_ARMV5_INSTRUCTIONS)
406 asm("bkpt 0");
407 # endif
408 #elif defined(__mips__)
409 asm("break");
410 #else
411 asm("int $3");
412 #endif
413 }
414
415
416 class PosixMemoryMappedFile : public OS::MemoryMappedFile {
417 public:
PosixMemoryMappedFile(FILE * file,void * memory,int size)418 PosixMemoryMappedFile(FILE* file, void* memory, int size)
419 : file_(file), memory_(memory), size_(size) { }
420 virtual ~PosixMemoryMappedFile();
memory()421 virtual void* memory() { return memory_; }
size()422 virtual int size() { return size_; }
423 private:
424 FILE* file_;
425 void* memory_;
426 int size_;
427 };
428
429
open(const char * name)430 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
431 FILE* file = fopen(name, "r+");
432 if (file == NULL) return NULL;
433
434 fseek(file, 0, SEEK_END);
435 int size = ftell(file);
436
437 void* memory =
438 mmap(OS::GetRandomMmapAddr(),
439 size,
440 PROT_READ | PROT_WRITE,
441 MAP_SHARED,
442 fileno(file),
443 0);
444 return new PosixMemoryMappedFile(file, memory, size);
445 }
446
447
create(const char * name,int size,void * initial)448 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
449 void* initial) {
450 FILE* file = fopen(name, "w+");
451 if (file == NULL) return NULL;
452 int result = fwrite(initial, size, 1, file);
453 if (result < 1) {
454 fclose(file);
455 return NULL;
456 }
457 void* memory =
458 mmap(OS::GetRandomMmapAddr(),
459 size,
460 PROT_READ | PROT_WRITE,
461 MAP_SHARED,
462 fileno(file),
463 0);
464 return new PosixMemoryMappedFile(file, memory, size);
465 }
466
467
~PosixMemoryMappedFile()468 PosixMemoryMappedFile::~PosixMemoryMappedFile() {
469 if (memory_) OS::Free(memory_, size_);
470 fclose(file_);
471 }
472
473
LogSharedLibraryAddresses()474 void OS::LogSharedLibraryAddresses() {
475 // This function assumes that the layout of the file is as follows:
476 // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
477 // If we encounter an unexpected situation we abort scanning further entries.
478 FILE* fp = fopen("/proc/self/maps", "r");
479 if (fp == NULL) return;
480
481 // Allocate enough room to be able to store a full file name.
482 const int kLibNameLen = FILENAME_MAX + 1;
483 char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
484
485 i::Isolate* isolate = ISOLATE;
486 // This loop will terminate once the scanning hits an EOF.
487 while (true) {
488 uintptr_t start, end;
489 char attr_r, attr_w, attr_x, attr_p;
490 // Parse the addresses and permission bits at the beginning of the line.
491 if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
492 if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
493
494 int c;
495 if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') {
496 // Found a read-only executable entry. Skip characters until we reach
497 // the beginning of the filename or the end of the line.
498 do {
499 c = getc(fp);
500 } while ((c != EOF) && (c != '\n') && (c != '/'));
501 if (c == EOF) break; // EOF: Was unexpected, just exit.
502
503 // Process the filename if found.
504 if (c == '/') {
505 ungetc(c, fp); // Push the '/' back into the stream to be read below.
506
507 // Read to the end of the line. Exit if the read fails.
508 if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
509
510 // Drop the newline character read by fgets. We do not need to check
511 // for a zero-length string because we know that we at least read the
512 // '/' character.
513 lib_name[strlen(lib_name) - 1] = '\0';
514 } else {
515 // No library name found, just record the raw address range.
516 snprintf(lib_name, kLibNameLen,
517 "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
518 }
519 LOG(isolate, SharedLibraryEvent(lib_name, start, end));
520 } else {
521 // Entry not describing executable data. Skip to end of line to set up
522 // reading the next entry.
523 do {
524 c = getc(fp);
525 } while ((c != EOF) && (c != '\n'));
526 if (c == EOF) break;
527 }
528 }
529 free(lib_name);
530 fclose(fp);
531 }
532
533
534 static const char kGCFakeMmap[] = "/tmp/__v8_gc__";
535
536
SignalCodeMovingGC()537 void OS::SignalCodeMovingGC() {
538 // Support for ll_prof.py.
539 //
540 // The Linux profiler built into the kernel logs all mmap's with
541 // PROT_EXEC so that analysis tools can properly attribute ticks. We
542 // do a mmap with a name known by ll_prof.py and immediately munmap
543 // it. This injects a GC marker into the stream of events generated
544 // by the kernel and allows us to synchronize V8 code log and the
545 // kernel log.
546 int size = sysconf(_SC_PAGESIZE);
547 FILE* f = fopen(kGCFakeMmap, "w+");
548 void* addr = mmap(OS::GetRandomMmapAddr(),
549 size,
550 PROT_READ | PROT_EXEC,
551 MAP_PRIVATE,
552 fileno(f),
553 0);
554 ASSERT(addr != MAP_FAILED);
555 OS::Free(addr, size);
556 fclose(f);
557 }
558
559
StackWalk(Vector<OS::StackFrame> frames)560 int OS::StackWalk(Vector<OS::StackFrame> frames) {
561 // backtrace is a glibc extension.
562 #ifdef __GLIBC__
563 int frames_size = frames.length();
564 ScopedVector<void*> addresses(frames_size);
565
566 int frames_count = backtrace(addresses.start(), frames_size);
567
568 char** symbols = backtrace_symbols(addresses.start(), frames_count);
569 if (symbols == NULL) {
570 return kStackWalkError;
571 }
572
573 for (int i = 0; i < frames_count; i++) {
574 frames[i].address = addresses[i];
575 // Format a text representation of the frame based on the information
576 // available.
577 SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
578 "%s",
579 symbols[i]);
580 // Make sure line termination is in place.
581 frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
582 }
583
584 free(symbols);
585
586 return frames_count;
587 #else // ndef __GLIBC__
588 return 0;
589 #endif // ndef __GLIBC__
590 }
591
592
593 // Constants used for mmap.
594 static const int kMmapFd = -1;
595 static const int kMmapFdOffset = 0;
596
VirtualMemory()597 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
598
VirtualMemory(size_t size)599 VirtualMemory::VirtualMemory(size_t size) {
600 address_ = ReserveRegion(size);
601 size_ = size;
602 }
603
604
VirtualMemory(size_t size,size_t alignment)605 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
606 : address_(NULL), size_(0) {
607 ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
608 size_t request_size = RoundUp(size + alignment,
609 static_cast<intptr_t>(OS::AllocateAlignment()));
610 void* reservation = mmap(OS::GetRandomMmapAddr(),
611 request_size,
612 PROT_NONE,
613 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
614 kMmapFd,
615 kMmapFdOffset);
616 if (reservation == MAP_FAILED) return;
617
618 Address base = static_cast<Address>(reservation);
619 Address aligned_base = RoundUp(base, alignment);
620 ASSERT_LE(base, aligned_base);
621
622 // Unmap extra memory reserved before and after the desired block.
623 if (aligned_base != base) {
624 size_t prefix_size = static_cast<size_t>(aligned_base - base);
625 OS::Free(base, prefix_size);
626 request_size -= prefix_size;
627 }
628
629 size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
630 ASSERT_LE(aligned_size, request_size);
631
632 if (aligned_size != request_size) {
633 size_t suffix_size = request_size - aligned_size;
634 OS::Free(aligned_base + aligned_size, suffix_size);
635 request_size -= suffix_size;
636 }
637
638 ASSERT(aligned_size == request_size);
639
640 address_ = static_cast<void*>(aligned_base);
641 size_ = aligned_size;
642 }
643
644
~VirtualMemory()645 VirtualMemory::~VirtualMemory() {
646 if (IsReserved()) {
647 bool result = ReleaseRegion(address(), size());
648 ASSERT(result);
649 USE(result);
650 }
651 }
652
653
IsReserved()654 bool VirtualMemory::IsReserved() {
655 return address_ != NULL;
656 }
657
658
Reset()659 void VirtualMemory::Reset() {
660 address_ = NULL;
661 size_ = 0;
662 }
663
664
Commit(void * address,size_t size,bool is_executable)665 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
666 return CommitRegion(address, size, is_executable);
667 }
668
669
Uncommit(void * address,size_t size)670 bool VirtualMemory::Uncommit(void* address, size_t size) {
671 return UncommitRegion(address, size);
672 }
673
674
Guard(void * address)675 bool VirtualMemory::Guard(void* address) {
676 OS::Guard(address, OS::CommitPageSize());
677 return true;
678 }
679
680
ReserveRegion(size_t size)681 void* VirtualMemory::ReserveRegion(size_t size) {
682 void* result = mmap(OS::GetRandomMmapAddr(),
683 size,
684 PROT_NONE,
685 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
686 kMmapFd,
687 kMmapFdOffset);
688
689 if (result == MAP_FAILED) return NULL;
690
691 return result;
692 }
693
694
CommitRegion(void * base,size_t size,bool is_executable)695 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
696 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
697 if (MAP_FAILED == mmap(base,
698 size,
699 prot,
700 MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
701 kMmapFd,
702 kMmapFdOffset)) {
703 return false;
704 }
705
706 UpdateAllocatedSpaceLimits(base, size);
707 return true;
708 }
709
710
UncommitRegion(void * base,size_t size)711 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
712 return mmap(base,
713 size,
714 PROT_NONE,
715 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
716 kMmapFd,
717 kMmapFdOffset) != MAP_FAILED;
718 }
719
720
ReleaseRegion(void * base,size_t size)721 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
722 return munmap(base, size) == 0;
723 }
724
725
726 class Thread::PlatformData : public Malloced {
727 public:
PlatformData()728 PlatformData() : thread_(kNoThread) {}
729
730 pthread_t thread_; // Thread handle for pthread.
731 };
732
Thread(const Options & options)733 Thread::Thread(const Options& options)
734 : data_(new PlatformData()),
735 stack_size_(options.stack_size()) {
736 set_name(options.name());
737 }
738
739
~Thread()740 Thread::~Thread() {
741 delete data_;
742 }
743
744
ThreadEntry(void * arg)745 static void* ThreadEntry(void* arg) {
746 Thread* thread = reinterpret_cast<Thread*>(arg);
747 // This is also initialized by the first argument to pthread_create() but we
748 // don't know which thread will run first (the original thread or the new
749 // one) so we initialize it here too.
750 #ifdef PR_SET_NAME
751 prctl(PR_SET_NAME,
752 reinterpret_cast<unsigned long>(thread->name()), // NOLINT
753 0, 0, 0);
754 #endif
755 thread->data()->thread_ = pthread_self();
756 ASSERT(thread->data()->thread_ != kNoThread);
757 thread->Run();
758 return NULL;
759 }
760
761
set_name(const char * name)762 void Thread::set_name(const char* name) {
763 strncpy(name_, name, sizeof(name_));
764 name_[sizeof(name_) - 1] = '\0';
765 }
766
767
Start()768 void Thread::Start() {
769 pthread_attr_t* attr_ptr = NULL;
770 pthread_attr_t attr;
771 if (stack_size_ > 0) {
772 pthread_attr_init(&attr);
773 pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
774 attr_ptr = &attr;
775 }
776 int result = pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this);
777 CHECK_EQ(0, result);
778 ASSERT(data_->thread_ != kNoThread);
779 }
780
781
Join()782 void Thread::Join() {
783 pthread_join(data_->thread_, NULL);
784 }
785
786
CreateThreadLocalKey()787 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
788 pthread_key_t key;
789 int result = pthread_key_create(&key, NULL);
790 USE(result);
791 ASSERT(result == 0);
792 return static_cast<LocalStorageKey>(key);
793 }
794
795
DeleteThreadLocalKey(LocalStorageKey key)796 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
797 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
798 int result = pthread_key_delete(pthread_key);
799 USE(result);
800 ASSERT(result == 0);
801 }
802
803
GetThreadLocal(LocalStorageKey key)804 void* Thread::GetThreadLocal(LocalStorageKey key) {
805 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
806 return pthread_getspecific(pthread_key);
807 }
808
809
SetThreadLocal(LocalStorageKey key,void * value)810 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
811 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
812 pthread_setspecific(pthread_key, value);
813 }
814
815
YieldCPU()816 void Thread::YieldCPU() {
817 sched_yield();
818 }
819
820
821 class LinuxMutex : public Mutex {
822 public:
LinuxMutex()823 LinuxMutex() {
824 pthread_mutexattr_t attrs;
825 int result = pthread_mutexattr_init(&attrs);
826 ASSERT(result == 0);
827 result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
828 ASSERT(result == 0);
829 result = pthread_mutex_init(&mutex_, &attrs);
830 ASSERT(result == 0);
831 USE(result);
832 }
833
~LinuxMutex()834 virtual ~LinuxMutex() { pthread_mutex_destroy(&mutex_); }
835
Lock()836 virtual int Lock() {
837 int result = pthread_mutex_lock(&mutex_);
838 return result;
839 }
840
Unlock()841 virtual int Unlock() {
842 int result = pthread_mutex_unlock(&mutex_);
843 return result;
844 }
845
TryLock()846 virtual bool TryLock() {
847 int result = pthread_mutex_trylock(&mutex_);
848 // Return false if the lock is busy and locking failed.
849 if (result == EBUSY) {
850 return false;
851 }
852 ASSERT(result == 0); // Verify no other errors.
853 return true;
854 }
855
856 private:
857 pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms.
858 };
859
860
CreateMutex()861 Mutex* OS::CreateMutex() {
862 return new LinuxMutex();
863 }
864
865
866 class LinuxSemaphore : public Semaphore {
867 public:
LinuxSemaphore(int count)868 explicit LinuxSemaphore(int count) { sem_init(&sem_, 0, count); }
~LinuxSemaphore()869 virtual ~LinuxSemaphore() { sem_destroy(&sem_); }
870
871 virtual void Wait();
872 virtual bool Wait(int timeout);
Signal()873 virtual void Signal() { sem_post(&sem_); }
874 private:
875 sem_t sem_;
876 };
877
878
Wait()879 void LinuxSemaphore::Wait() {
880 while (true) {
881 int result = sem_wait(&sem_);
882 if (result == 0) return; // Successfully got semaphore.
883 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
884 }
885 }
886
887
888 #ifndef TIMEVAL_TO_TIMESPEC
889 #define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
890 (ts)->tv_sec = (tv)->tv_sec; \
891 (ts)->tv_nsec = (tv)->tv_usec * 1000; \
892 } while (false)
893 #endif
894
895
Wait(int timeout)896 bool LinuxSemaphore::Wait(int timeout) {
897 const long kOneSecondMicros = 1000000; // NOLINT
898
899 // Split timeout into second and nanosecond parts.
900 struct timeval delta;
901 delta.tv_usec = timeout % kOneSecondMicros;
902 delta.tv_sec = timeout / kOneSecondMicros;
903
904 struct timeval current_time;
905 // Get the current time.
906 if (gettimeofday(¤t_time, NULL) == -1) {
907 return false;
908 }
909
910 // Calculate time for end of timeout.
911 struct timeval end_time;
912 timeradd(¤t_time, &delta, &end_time);
913
914 struct timespec ts;
915 TIMEVAL_TO_TIMESPEC(&end_time, &ts);
916 // Wait for semaphore signalled or timeout.
917 while (true) {
918 int result = sem_timedwait(&sem_, &ts);
919 if (result == 0) return true; // Successfully got semaphore.
920 if (result > 0) {
921 // For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1.
922 errno = result;
923 result = -1;
924 }
925 if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
926 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
927 }
928 }
929
930
CreateSemaphore(int count)931 Semaphore* OS::CreateSemaphore(int count) {
932 return new LinuxSemaphore(count);
933 }
934
935
936 #if !defined(__GLIBC__) && (defined(__arm__) || defined(__thumb__))
937 // Android runs a fairly new Linux kernel, so signal info is there,
938 // but the C library doesn't have the structs defined.
939
940 struct sigcontext {
941 uint32_t trap_no;
942 uint32_t error_code;
943 uint32_t oldmask;
944 uint32_t gregs[16];
945 uint32_t arm_cpsr;
946 uint32_t fault_address;
947 };
948 typedef uint32_t __sigset_t;
949 typedef struct sigcontext mcontext_t;
950 typedef struct ucontext {
951 uint32_t uc_flags;
952 struct ucontext* uc_link;
953 stack_t uc_stack;
954 mcontext_t uc_mcontext;
955 __sigset_t uc_sigmask;
956 } ucontext_t;
957 enum ArmRegisters {R15 = 15, R13 = 13, R11 = 11};
958
959 #elif !defined(__GLIBC__) && defined(__mips__)
960 // MIPS version of sigcontext, for Android bionic.
961 struct sigcontext {
962 uint32_t regmask;
963 uint32_t status;
964 uint64_t pc;
965 uint64_t gregs[32];
966 uint64_t fpregs[32];
967 uint32_t acx;
968 uint32_t fpc_csr;
969 uint32_t fpc_eir;
970 uint32_t used_math;
971 uint32_t dsp;
972 uint64_t mdhi;
973 uint64_t mdlo;
974 uint32_t hi1;
975 uint32_t lo1;
976 uint32_t hi2;
977 uint32_t lo2;
978 uint32_t hi3;
979 uint32_t lo3;
980 };
981 typedef uint32_t __sigset_t;
982 typedef struct sigcontext mcontext_t;
983 typedef struct ucontext {
984 uint32_t uc_flags;
985 struct ucontext* uc_link;
986 stack_t uc_stack;
987 mcontext_t uc_mcontext;
988 __sigset_t uc_sigmask;
989 } ucontext_t;
990
991 #elif !defined(__GLIBC__) && defined(__i386__)
992 // x86 version for Android.
993 struct sigcontext {
994 uint32_t gregs[19];
995 void* fpregs;
996 uint32_t oldmask;
997 uint32_t cr2;
998 };
999
1000 typedef uint32_t __sigset_t;
1001 typedef struct sigcontext mcontext_t;
1002 typedef struct ucontext {
1003 uint32_t uc_flags;
1004 struct ucontext* uc_link;
1005 stack_t uc_stack;
1006 mcontext_t uc_mcontext;
1007 __sigset_t uc_sigmask;
1008 } ucontext_t;
1009 enum { REG_EBP = 6, REG_ESP = 7, REG_EIP = 14 };
1010 #endif
1011
1012
GetThreadID()1013 static int GetThreadID() {
1014 // Glibc doesn't provide a wrapper for gettid(2).
1015 #if defined(ANDROID)
1016 return syscall(__NR_gettid);
1017 #else
1018 return syscall(SYS_gettid);
1019 #endif
1020 }
1021
1022
ProfilerSignalHandler(int signal,siginfo_t * info,void * context)1023 static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
1024 USE(info);
1025 if (signal != SIGPROF) return;
1026 Isolate* isolate = Isolate::UncheckedCurrent();
1027 if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) {
1028 // We require a fully initialized and entered isolate.
1029 return;
1030 }
1031 if (v8::Locker::IsActive() &&
1032 !isolate->thread_manager()->IsLockedByCurrentThread()) {
1033 return;
1034 }
1035
1036 Sampler* sampler = isolate->logger()->sampler();
1037 if (sampler == NULL || !sampler->IsActive()) return;
1038
1039 TickSample sample_obj;
1040 TickSample* sample = CpuProfiler::TickSampleEvent(isolate);
1041 if (sample == NULL) sample = &sample_obj;
1042
1043 // Extracting the sample from the context is extremely machine dependent.
1044 ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
1045 mcontext_t& mcontext = ucontext->uc_mcontext;
1046 sample->state = isolate->current_vm_state();
1047 #if V8_HOST_ARCH_IA32
1048 sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_EIP]);
1049 sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_ESP]);
1050 sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_EBP]);
1051 #elif V8_HOST_ARCH_X64
1052 sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_RIP]);
1053 sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_RSP]);
1054 sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_RBP]);
1055 #elif V8_HOST_ARCH_ARM
1056 // An undefined macro evaluates to 0, so this applies to Android's Bionic also.
1057 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1058 sample->pc = reinterpret_cast<Address>(mcontext.gregs[R15]);
1059 sample->sp = reinterpret_cast<Address>(mcontext.gregs[R13]);
1060 sample->fp = reinterpret_cast<Address>(mcontext.gregs[R11]);
1061 #else
1062 sample->pc = reinterpret_cast<Address>(mcontext.arm_pc);
1063 sample->sp = reinterpret_cast<Address>(mcontext.arm_sp);
1064 sample->fp = reinterpret_cast<Address>(mcontext.arm_fp);
1065 #endif // (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1066 #elif V8_HOST_ARCH_MIPS
1067 sample->pc = reinterpret_cast<Address>(mcontext.pc);
1068 sample->sp = reinterpret_cast<Address>(mcontext.gregs[29]);
1069 sample->fp = reinterpret_cast<Address>(mcontext.gregs[30]);
1070 #endif // V8_HOST_ARCH_*
1071 sampler->SampleStack(sample);
1072 sampler->Tick(sample);
1073 }
1074
1075
1076 class Sampler::PlatformData : public Malloced {
1077 public:
PlatformData()1078 PlatformData() : vm_tid_(GetThreadID()) {}
1079
vm_tid() const1080 int vm_tid() const { return vm_tid_; }
1081
1082 private:
1083 const int vm_tid_;
1084 };
1085
1086
1087 class SignalSender : public Thread {
1088 public:
1089 enum SleepInterval {
1090 HALF_INTERVAL,
1091 FULL_INTERVAL
1092 };
1093
1094 static const int kSignalSenderStackSize = 64 * KB;
1095
SignalSender(int interval)1096 explicit SignalSender(int interval)
1097 : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)),
1098 vm_tgid_(getpid()),
1099 interval_(interval) {}
1100
InstallSignalHandler()1101 static void InstallSignalHandler() {
1102 struct sigaction sa;
1103 sa.sa_sigaction = ProfilerSignalHandler;
1104 sigemptyset(&sa.sa_mask);
1105 sa.sa_flags = SA_RESTART | SA_SIGINFO;
1106 signal_handler_installed_ =
1107 (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0);
1108 }
1109
RestoreSignalHandler()1110 static void RestoreSignalHandler() {
1111 if (signal_handler_installed_) {
1112 sigaction(SIGPROF, &old_signal_handler_, 0);
1113 signal_handler_installed_ = false;
1114 }
1115 }
1116
AddActiveSampler(Sampler * sampler)1117 static void AddActiveSampler(Sampler* sampler) {
1118 ScopedLock lock(mutex_.Pointer());
1119 SamplerRegistry::AddActiveSampler(sampler);
1120 if (instance_ == NULL) {
1121 // Start a thread that will send SIGPROF signal to VM threads,
1122 // when CPU profiling will be enabled.
1123 instance_ = new SignalSender(sampler->interval());
1124 instance_->Start();
1125 } else {
1126 ASSERT(instance_->interval_ == sampler->interval());
1127 }
1128 }
1129
RemoveActiveSampler(Sampler * sampler)1130 static void RemoveActiveSampler(Sampler* sampler) {
1131 ScopedLock lock(mutex_.Pointer());
1132 SamplerRegistry::RemoveActiveSampler(sampler);
1133 if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
1134 RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
1135 delete instance_;
1136 instance_ = NULL;
1137 RestoreSignalHandler();
1138 }
1139 }
1140
1141 // Implement Thread::Run().
Run()1142 virtual void Run() {
1143 SamplerRegistry::State state;
1144 while ((state = SamplerRegistry::GetState()) !=
1145 SamplerRegistry::HAS_NO_SAMPLERS) {
1146 bool cpu_profiling_enabled =
1147 (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
1148 bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
1149 if (cpu_profiling_enabled && !signal_handler_installed_) {
1150 InstallSignalHandler();
1151 } else if (!cpu_profiling_enabled && signal_handler_installed_) {
1152 RestoreSignalHandler();
1153 }
1154 // When CPU profiling is enabled both JavaScript and C++ code is
1155 // profiled. We must not suspend.
1156 if (!cpu_profiling_enabled) {
1157 if (rate_limiter_.SuspendIfNecessary()) continue;
1158 }
1159 if (cpu_profiling_enabled && runtime_profiler_enabled) {
1160 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
1161 return;
1162 }
1163 Sleep(HALF_INTERVAL);
1164 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
1165 return;
1166 }
1167 Sleep(HALF_INTERVAL);
1168 } else {
1169 if (cpu_profiling_enabled) {
1170 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile,
1171 this)) {
1172 return;
1173 }
1174 }
1175 if (runtime_profiler_enabled) {
1176 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile,
1177 NULL)) {
1178 return;
1179 }
1180 }
1181 Sleep(FULL_INTERVAL);
1182 }
1183 }
1184 }
1185
DoCpuProfile(Sampler * sampler,void * raw_sender)1186 static void DoCpuProfile(Sampler* sampler, void* raw_sender) {
1187 if (!sampler->IsProfiling()) return;
1188 SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender);
1189 sender->SendProfilingSignal(sampler->platform_data()->vm_tid());
1190 }
1191
DoRuntimeProfile(Sampler * sampler,void * ignored)1192 static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
1193 if (!sampler->isolate()->IsInitialized()) return;
1194 sampler->isolate()->runtime_profiler()->NotifyTick();
1195 }
1196
SendProfilingSignal(int tid)1197 void SendProfilingSignal(int tid) {
1198 if (!signal_handler_installed_) return;
1199 // Glibc doesn't provide a wrapper for tgkill(2).
1200 #if defined(ANDROID)
1201 syscall(__NR_tgkill, vm_tgid_, tid, SIGPROF);
1202 #else
1203 syscall(SYS_tgkill, vm_tgid_, tid, SIGPROF);
1204 #endif
1205 }
1206
Sleep(SleepInterval full_or_half)1207 void Sleep(SleepInterval full_or_half) {
1208 // Convert ms to us and subtract 100 us to compensate delays
1209 // occuring during signal delivery.
1210 useconds_t interval = interval_ * 1000 - 100;
1211 if (full_or_half == HALF_INTERVAL) interval /= 2;
1212 #if defined(ANDROID)
1213 usleep(interval);
1214 #else
1215 int result = usleep(interval);
1216 #ifdef DEBUG
1217 if (result != 0 && errno != EINTR) {
1218 fprintf(stderr,
1219 "SignalSender usleep error; interval = %u, errno = %d\n",
1220 interval,
1221 errno);
1222 ASSERT(result == 0 || errno == EINTR);
1223 }
1224 #endif // DEBUG
1225 USE(result);
1226 #endif // ANDROID
1227 }
1228
1229 const int vm_tgid_;
1230 const int interval_;
1231 RuntimeProfilerRateLimiter rate_limiter_;
1232
1233 // Protects the process wide state below.
1234 static LazyMutex mutex_;
1235 static SignalSender* instance_;
1236 static bool signal_handler_installed_;
1237 static struct sigaction old_signal_handler_;
1238
1239 private:
1240 DISALLOW_COPY_AND_ASSIGN(SignalSender);
1241 };
1242
1243
1244 LazyMutex SignalSender::mutex_ = LAZY_MUTEX_INITIALIZER;
1245 SignalSender* SignalSender::instance_ = NULL;
1246 struct sigaction SignalSender::old_signal_handler_;
1247 bool SignalSender::signal_handler_installed_ = false;
1248
1249
Sampler(Isolate * isolate,int interval)1250 Sampler::Sampler(Isolate* isolate, int interval)
1251 : isolate_(isolate),
1252 interval_(interval),
1253 profiling_(false),
1254 active_(false),
1255 samples_taken_(0) {
1256 data_ = new PlatformData;
1257 }
1258
1259
~Sampler()1260 Sampler::~Sampler() {
1261 ASSERT(!IsActive());
1262 delete data_;
1263 }
1264
1265
Start()1266 void Sampler::Start() {
1267 ASSERT(!IsActive());
1268 SetActive(true);
1269 SignalSender::AddActiveSampler(this);
1270 }
1271
1272
Stop()1273 void Sampler::Stop() {
1274 ASSERT(IsActive());
1275 SignalSender::RemoveActiveSampler(this);
1276 SetActive(false);
1277 }
1278
1279
1280 } } // namespace v8::internal
1281