1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "EventHub"
18
19 // #define LOG_NDEBUG 0
20
21 #include "EventHub.h"
22
23 #include <hardware_legacy/power.h>
24
25 #include <cutils/properties.h>
26 #include <utils/Log.h>
27 #include <utils/Timers.h>
28 #include <utils/threads.h>
29 #include <utils/Errors.h>
30
31 #include <stdlib.h>
32 #include <stdio.h>
33 #include <unistd.h>
34 #include <fcntl.h>
35 #include <memory.h>
36 #include <errno.h>
37 #include <assert.h>
38
39 #include <input/KeyLayoutMap.h>
40 #include <input/KeyCharacterMap.h>
41 #include <input/VirtualKeyMap.h>
42
43 #include <string.h>
44 #include <stdint.h>
45 #include <dirent.h>
46
47 #include <sys/inotify.h>
48 #include <sys/epoll.h>
49 #include <sys/ioctl.h>
50 #include <sys/limits.h>
51 #include <sys/sha1.h>
52
53 /* this macro is used to tell if "bit" is set in "array"
54 * it selects a byte from the array, and does a boolean AND
55 * operation with a byte that only has the relevant bit set.
56 * eg. to check for the 12th bit, we do (array[1] & 1<<4)
57 */
58 #define test_bit(bit, array) (array[bit/8] & (1<<(bit%8)))
59
60 /* this macro computes the number of bytes needed to represent a bit array of the specified size */
61 #define sizeof_bit_array(bits) ((bits + 7) / 8)
62
63 #define INDENT " "
64 #define INDENT2 " "
65 #define INDENT3 " "
66
67 namespace android {
68
69 static const char *WAKE_LOCK_ID = "KeyEvents";
70 static const char *DEVICE_PATH = "/dev/input";
71
72 /* return the larger integer */
max(int v1,int v2)73 static inline int max(int v1, int v2)
74 {
75 return (v1 > v2) ? v1 : v2;
76 }
77
toString(bool value)78 static inline const char* toString(bool value) {
79 return value ? "true" : "false";
80 }
81
sha1(const String8 & in)82 static String8 sha1(const String8& in) {
83 SHA1_CTX ctx;
84 SHA1Init(&ctx);
85 SHA1Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
86 u_char digest[SHA1_DIGEST_LENGTH];
87 SHA1Final(digest, &ctx);
88
89 String8 out;
90 for (size_t i = 0; i < SHA1_DIGEST_LENGTH; i++) {
91 out.appendFormat("%02x", digest[i]);
92 }
93 return out;
94 }
95
setDescriptor(InputDeviceIdentifier & identifier)96 static void setDescriptor(InputDeviceIdentifier& identifier) {
97 // Compute a device descriptor that uniquely identifies the device.
98 // The descriptor is assumed to be a stable identifier. Its value should not
99 // change between reboots, reconnections, firmware updates or new releases of Android.
100 // Ideally, we also want the descriptor to be short and relatively opaque.
101 String8 rawDescriptor;
102 rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, identifier.product);
103 if (!identifier.uniqueId.isEmpty()) {
104 rawDescriptor.append("uniqueId:");
105 rawDescriptor.append(identifier.uniqueId);
106 } if (identifier.vendor == 0 && identifier.product == 0) {
107 // If we don't know the vendor and product id, then the device is probably
108 // built-in so we need to rely on other information to uniquely identify
109 // the input device. Usually we try to avoid relying on the device name or
110 // location but for built-in input device, they are unlikely to ever change.
111 if (!identifier.name.isEmpty()) {
112 rawDescriptor.append("name:");
113 rawDescriptor.append(identifier.name);
114 } else if (!identifier.location.isEmpty()) {
115 rawDescriptor.append("location:");
116 rawDescriptor.append(identifier.location);
117 }
118 }
119 identifier.descriptor = sha1(rawDescriptor);
120 ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
121 identifier.descriptor.string());
122 }
123
124 // --- Global Functions ---
125
getAbsAxisUsage(int32_t axis,uint32_t deviceClasses)126 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
127 // Touch devices get dibs on touch-related axes.
128 if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
129 switch (axis) {
130 case ABS_X:
131 case ABS_Y:
132 case ABS_PRESSURE:
133 case ABS_TOOL_WIDTH:
134 case ABS_DISTANCE:
135 case ABS_TILT_X:
136 case ABS_TILT_Y:
137 case ABS_MT_SLOT:
138 case ABS_MT_TOUCH_MAJOR:
139 case ABS_MT_TOUCH_MINOR:
140 case ABS_MT_WIDTH_MAJOR:
141 case ABS_MT_WIDTH_MINOR:
142 case ABS_MT_ORIENTATION:
143 case ABS_MT_POSITION_X:
144 case ABS_MT_POSITION_Y:
145 case ABS_MT_TOOL_TYPE:
146 case ABS_MT_BLOB_ID:
147 case ABS_MT_TRACKING_ID:
148 case ABS_MT_PRESSURE:
149 case ABS_MT_DISTANCE:
150 return INPUT_DEVICE_CLASS_TOUCH;
151 }
152 }
153
154 // Joystick devices get the rest.
155 return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
156 }
157
158 // --- EventHub::Device ---
159
Device(int fd,int32_t id,const String8 & path,const InputDeviceIdentifier & identifier)160 EventHub::Device::Device(int fd, int32_t id, const String8& path,
161 const InputDeviceIdentifier& identifier) :
162 next(NULL),
163 fd(fd), id(id), path(path), identifier(identifier),
164 classes(0), configuration(NULL), virtualKeyMap(NULL),
165 ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0),
166 timestampOverrideSec(0), timestampOverrideUsec(0) {
167 memset(keyBitmask, 0, sizeof(keyBitmask));
168 memset(absBitmask, 0, sizeof(absBitmask));
169 memset(relBitmask, 0, sizeof(relBitmask));
170 memset(swBitmask, 0, sizeof(swBitmask));
171 memset(ledBitmask, 0, sizeof(ledBitmask));
172 memset(ffBitmask, 0, sizeof(ffBitmask));
173 memset(propBitmask, 0, sizeof(propBitmask));
174 }
175
~Device()176 EventHub::Device::~Device() {
177 close();
178 delete configuration;
179 delete virtualKeyMap;
180 }
181
close()182 void EventHub::Device::close() {
183 if (fd >= 0) {
184 ::close(fd);
185 fd = -1;
186 }
187 }
188
189
190 // --- EventHub ---
191
192 const uint32_t EventHub::EPOLL_ID_INOTIFY;
193 const uint32_t EventHub::EPOLL_ID_WAKE;
194 const int EventHub::EPOLL_SIZE_HINT;
195 const int EventHub::EPOLL_MAX_EVENTS;
196
EventHub(void)197 EventHub::EventHub(void) :
198 mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(),
199 mOpeningDevices(0), mClosingDevices(0),
200 mNeedToSendFinishedDeviceScan(false),
201 mNeedToReopenDevices(false), mNeedToScanDevices(true),
202 mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
203 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
204
205 mEpollFd = epoll_create(EPOLL_SIZE_HINT);
206 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno);
207
208 mINotifyFd = inotify_init();
209 int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
210 LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s. errno=%d",
211 DEVICE_PATH, errno);
212
213 struct epoll_event eventItem;
214 memset(&eventItem, 0, sizeof(eventItem));
215 eventItem.events = EPOLLIN;
216 eventItem.data.u32 = EPOLL_ID_INOTIFY;
217 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
218 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno);
219
220 int wakeFds[2];
221 result = pipe(wakeFds);
222 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);
223
224 mWakeReadPipeFd = wakeFds[0];
225 mWakeWritePipeFd = wakeFds[1];
226
227 result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
228 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
229 errno);
230
231 result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
232 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
233 errno);
234
235 eventItem.data.u32 = EPOLL_ID_WAKE;
236 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
237 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
238 errno);
239 }
240
~EventHub(void)241 EventHub::~EventHub(void) {
242 closeAllDevicesLocked();
243
244 while (mClosingDevices) {
245 Device* device = mClosingDevices;
246 mClosingDevices = device->next;
247 delete device;
248 }
249
250 ::close(mEpollFd);
251 ::close(mINotifyFd);
252 ::close(mWakeReadPipeFd);
253 ::close(mWakeWritePipeFd);
254
255 release_wake_lock(WAKE_LOCK_ID);
256 }
257
getDeviceIdentifier(int32_t deviceId) const258 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
259 AutoMutex _l(mLock);
260 Device* device = getDeviceLocked(deviceId);
261 if (device == NULL) return InputDeviceIdentifier();
262 return device->identifier;
263 }
264
getDeviceClasses(int32_t deviceId) const265 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
266 AutoMutex _l(mLock);
267 Device* device = getDeviceLocked(deviceId);
268 if (device == NULL) return 0;
269 return device->classes;
270 }
271
getDeviceControllerNumber(int32_t deviceId) const272 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
273 AutoMutex _l(mLock);
274 Device* device = getDeviceLocked(deviceId);
275 if (device == NULL) return 0;
276 return device->controllerNumber;
277 }
278
getConfiguration(int32_t deviceId,PropertyMap * outConfiguration) const279 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
280 AutoMutex _l(mLock);
281 Device* device = getDeviceLocked(deviceId);
282 if (device && device->configuration) {
283 *outConfiguration = *device->configuration;
284 } else {
285 outConfiguration->clear();
286 }
287 }
288
getAbsoluteAxisInfo(int32_t deviceId,int axis,RawAbsoluteAxisInfo * outAxisInfo) const289 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
290 RawAbsoluteAxisInfo* outAxisInfo) const {
291 outAxisInfo->clear();
292
293 if (axis >= 0 && axis <= ABS_MAX) {
294 AutoMutex _l(mLock);
295
296 Device* device = getDeviceLocked(deviceId);
297 if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
298 struct input_absinfo info;
299 if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
300 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
301 axis, device->identifier.name.string(), device->fd, errno);
302 return -errno;
303 }
304
305 if (info.minimum != info.maximum) {
306 outAxisInfo->valid = true;
307 outAxisInfo->minValue = info.minimum;
308 outAxisInfo->maxValue = info.maximum;
309 outAxisInfo->flat = info.flat;
310 outAxisInfo->fuzz = info.fuzz;
311 outAxisInfo->resolution = info.resolution;
312 }
313 return OK;
314 }
315 }
316 return -1;
317 }
318
hasRelativeAxis(int32_t deviceId,int axis) const319 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
320 if (axis >= 0 && axis <= REL_MAX) {
321 AutoMutex _l(mLock);
322
323 Device* device = getDeviceLocked(deviceId);
324 if (device) {
325 return test_bit(axis, device->relBitmask);
326 }
327 }
328 return false;
329 }
330
hasInputProperty(int32_t deviceId,int property) const331 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
332 if (property >= 0 && property <= INPUT_PROP_MAX) {
333 AutoMutex _l(mLock);
334
335 Device* device = getDeviceLocked(deviceId);
336 if (device) {
337 return test_bit(property, device->propBitmask);
338 }
339 }
340 return false;
341 }
342
getScanCodeState(int32_t deviceId,int32_t scanCode) const343 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
344 if (scanCode >= 0 && scanCode <= KEY_MAX) {
345 AutoMutex _l(mLock);
346
347 Device* device = getDeviceLocked(deviceId);
348 if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) {
349 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
350 memset(keyState, 0, sizeof(keyState));
351 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
352 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
353 }
354 }
355 }
356 return AKEY_STATE_UNKNOWN;
357 }
358
getKeyCodeState(int32_t deviceId,int32_t keyCode) const359 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
360 AutoMutex _l(mLock);
361
362 Device* device = getDeviceLocked(deviceId);
363 if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) {
364 Vector<int32_t> scanCodes;
365 device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
366 if (scanCodes.size() != 0) {
367 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
368 memset(keyState, 0, sizeof(keyState));
369 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
370 for (size_t i = 0; i < scanCodes.size(); i++) {
371 int32_t sc = scanCodes.itemAt(i);
372 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
373 return AKEY_STATE_DOWN;
374 }
375 }
376 return AKEY_STATE_UP;
377 }
378 }
379 }
380 return AKEY_STATE_UNKNOWN;
381 }
382
getSwitchState(int32_t deviceId,int32_t sw) const383 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
384 if (sw >= 0 && sw <= SW_MAX) {
385 AutoMutex _l(mLock);
386
387 Device* device = getDeviceLocked(deviceId);
388 if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) {
389 uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
390 memset(swState, 0, sizeof(swState));
391 if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
392 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
393 }
394 }
395 }
396 return AKEY_STATE_UNKNOWN;
397 }
398
getAbsoluteAxisValue(int32_t deviceId,int32_t axis,int32_t * outValue) const399 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
400 *outValue = 0;
401
402 if (axis >= 0 && axis <= ABS_MAX) {
403 AutoMutex _l(mLock);
404
405 Device* device = getDeviceLocked(deviceId);
406 if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
407 struct input_absinfo info;
408 if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
409 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
410 axis, device->identifier.name.string(), device->fd, errno);
411 return -errno;
412 }
413
414 *outValue = info.value;
415 return OK;
416 }
417 }
418 return -1;
419 }
420
markSupportedKeyCodes(int32_t deviceId,size_t numCodes,const int32_t * keyCodes,uint8_t * outFlags) const421 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
422 const int32_t* keyCodes, uint8_t* outFlags) const {
423 AutoMutex _l(mLock);
424
425 Device* device = getDeviceLocked(deviceId);
426 if (device && device->keyMap.haveKeyLayout()) {
427 Vector<int32_t> scanCodes;
428 for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
429 scanCodes.clear();
430
431 status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
432 keyCodes[codeIndex], &scanCodes);
433 if (! err) {
434 // check the possible scan codes identified by the layout map against the
435 // map of codes actually emitted by the driver
436 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
437 if (test_bit(scanCodes[sc], device->keyBitmask)) {
438 outFlags[codeIndex] = 1;
439 break;
440 }
441 }
442 }
443 }
444 return true;
445 }
446 return false;
447 }
448
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t * outKeycode,uint32_t * outFlags) const449 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
450 int32_t* outKeycode, uint32_t* outFlags) const {
451 AutoMutex _l(mLock);
452 Device* device = getDeviceLocked(deviceId);
453
454 if (device) {
455 // Check the key character map first.
456 sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
457 if (kcm != NULL) {
458 if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
459 *outFlags = 0;
460 return NO_ERROR;
461 }
462 }
463
464 // Check the key layout next.
465 if (device->keyMap.haveKeyLayout()) {
466 if (!device->keyMap.keyLayoutMap->mapKey(
467 scanCode, usageCode, outKeycode, outFlags)) {
468 return NO_ERROR;
469 }
470 }
471 }
472
473 *outKeycode = 0;
474 *outFlags = 0;
475 return NAME_NOT_FOUND;
476 }
477
mapAxis(int32_t deviceId,int32_t scanCode,AxisInfo * outAxisInfo) const478 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
479 AutoMutex _l(mLock);
480 Device* device = getDeviceLocked(deviceId);
481
482 if (device && device->keyMap.haveKeyLayout()) {
483 status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
484 if (err == NO_ERROR) {
485 return NO_ERROR;
486 }
487 }
488
489 return NAME_NOT_FOUND;
490 }
491
setExcludedDevices(const Vector<String8> & devices)492 void EventHub::setExcludedDevices(const Vector<String8>& devices) {
493 AutoMutex _l(mLock);
494
495 mExcludedDevices = devices;
496 }
497
hasScanCode(int32_t deviceId,int32_t scanCode) const498 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
499 AutoMutex _l(mLock);
500 Device* device = getDeviceLocked(deviceId);
501 if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
502 if (test_bit(scanCode, device->keyBitmask)) {
503 return true;
504 }
505 }
506 return false;
507 }
508
hasLed(int32_t deviceId,int32_t led) const509 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
510 AutoMutex _l(mLock);
511 Device* device = getDeviceLocked(deviceId);
512 if (device && led >= 0 && led <= LED_MAX) {
513 if (test_bit(led, device->ledBitmask)) {
514 return true;
515 }
516 }
517 return false;
518 }
519
setLedState(int32_t deviceId,int32_t led,bool on)520 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
521 AutoMutex _l(mLock);
522 Device* device = getDeviceLocked(deviceId);
523 if (device && !device->isVirtual() && led >= 0 && led <= LED_MAX) {
524 struct input_event ev;
525 ev.time.tv_sec = 0;
526 ev.time.tv_usec = 0;
527 ev.type = EV_LED;
528 ev.code = led;
529 ev.value = on ? 1 : 0;
530
531 ssize_t nWrite;
532 do {
533 nWrite = write(device->fd, &ev, sizeof(struct input_event));
534 } while (nWrite == -1 && errno == EINTR);
535 }
536 }
537
getVirtualKeyDefinitions(int32_t deviceId,Vector<VirtualKeyDefinition> & outVirtualKeys) const538 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
539 Vector<VirtualKeyDefinition>& outVirtualKeys) const {
540 outVirtualKeys.clear();
541
542 AutoMutex _l(mLock);
543 Device* device = getDeviceLocked(deviceId);
544 if (device && device->virtualKeyMap) {
545 outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
546 }
547 }
548
getKeyCharacterMap(int32_t deviceId) const549 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
550 AutoMutex _l(mLock);
551 Device* device = getDeviceLocked(deviceId);
552 if (device) {
553 return device->getKeyCharacterMap();
554 }
555 return NULL;
556 }
557
setKeyboardLayoutOverlay(int32_t deviceId,const sp<KeyCharacterMap> & map)558 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
559 const sp<KeyCharacterMap>& map) {
560 AutoMutex _l(mLock);
561 Device* device = getDeviceLocked(deviceId);
562 if (device) {
563 if (map != device->overlayKeyMap) {
564 device->overlayKeyMap = map;
565 device->combinedKeyMap = KeyCharacterMap::combine(
566 device->keyMap.keyCharacterMap, map);
567 return true;
568 }
569 }
570 return false;
571 }
572
vibrate(int32_t deviceId,nsecs_t duration)573 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
574 AutoMutex _l(mLock);
575 Device* device = getDeviceLocked(deviceId);
576 if (device && !device->isVirtual()) {
577 ff_effect effect;
578 memset(&effect, 0, sizeof(effect));
579 effect.type = FF_RUMBLE;
580 effect.id = device->ffEffectId;
581 effect.u.rumble.strong_magnitude = 0xc000;
582 effect.u.rumble.weak_magnitude = 0xc000;
583 effect.replay.length = (duration + 999999LL) / 1000000LL;
584 effect.replay.delay = 0;
585 if (ioctl(device->fd, EVIOCSFF, &effect)) {
586 ALOGW("Could not upload force feedback effect to device %s due to error %d.",
587 device->identifier.name.string(), errno);
588 return;
589 }
590 device->ffEffectId = effect.id;
591
592 struct input_event ev;
593 ev.time.tv_sec = 0;
594 ev.time.tv_usec = 0;
595 ev.type = EV_FF;
596 ev.code = device->ffEffectId;
597 ev.value = 1;
598 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
599 ALOGW("Could not start force feedback effect on device %s due to error %d.",
600 device->identifier.name.string(), errno);
601 return;
602 }
603 device->ffEffectPlaying = true;
604 }
605 }
606
cancelVibrate(int32_t deviceId)607 void EventHub::cancelVibrate(int32_t deviceId) {
608 AutoMutex _l(mLock);
609 Device* device = getDeviceLocked(deviceId);
610 if (device && !device->isVirtual()) {
611 if (device->ffEffectPlaying) {
612 device->ffEffectPlaying = false;
613
614 struct input_event ev;
615 ev.time.tv_sec = 0;
616 ev.time.tv_usec = 0;
617 ev.type = EV_FF;
618 ev.code = device->ffEffectId;
619 ev.value = 0;
620 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
621 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
622 device->identifier.name.string(), errno);
623 return;
624 }
625 }
626 }
627 }
628
getDeviceLocked(int32_t deviceId) const629 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
630 if (deviceId == BUILT_IN_KEYBOARD_ID) {
631 deviceId = mBuiltInKeyboardId;
632 }
633 ssize_t index = mDevices.indexOfKey(deviceId);
634 return index >= 0 ? mDevices.valueAt(index) : NULL;
635 }
636
getDeviceByPathLocked(const char * devicePath) const637 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
638 for (size_t i = 0; i < mDevices.size(); i++) {
639 Device* device = mDevices.valueAt(i);
640 if (device->path == devicePath) {
641 return device;
642 }
643 }
644 return NULL;
645 }
646
getEvents(int timeoutMillis,RawEvent * buffer,size_t bufferSize)647 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
648 ALOG_ASSERT(bufferSize >= 1);
649
650 AutoMutex _l(mLock);
651
652 struct input_event readBuffer[bufferSize];
653
654 RawEvent* event = buffer;
655 size_t capacity = bufferSize;
656 bool awoken = false;
657 for (;;) {
658 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
659
660 // Reopen input devices if needed.
661 if (mNeedToReopenDevices) {
662 mNeedToReopenDevices = false;
663
664 ALOGI("Reopening all input devices due to a configuration change.");
665
666 closeAllDevicesLocked();
667 mNeedToScanDevices = true;
668 break; // return to the caller before we actually rescan
669 }
670
671 // Report any devices that had last been added/removed.
672 while (mClosingDevices) {
673 Device* device = mClosingDevices;
674 ALOGV("Reporting device closed: id=%d, name=%s\n",
675 device->id, device->path.string());
676 mClosingDevices = device->next;
677 event->when = now;
678 event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
679 event->type = DEVICE_REMOVED;
680 event += 1;
681 delete device;
682 mNeedToSendFinishedDeviceScan = true;
683 if (--capacity == 0) {
684 break;
685 }
686 }
687
688 if (mNeedToScanDevices) {
689 mNeedToScanDevices = false;
690 scanDevicesLocked();
691 mNeedToSendFinishedDeviceScan = true;
692 }
693
694 while (mOpeningDevices != NULL) {
695 Device* device = mOpeningDevices;
696 ALOGV("Reporting device opened: id=%d, name=%s\n",
697 device->id, device->path.string());
698 mOpeningDevices = device->next;
699 event->when = now;
700 event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
701 event->type = DEVICE_ADDED;
702 event += 1;
703 mNeedToSendFinishedDeviceScan = true;
704 if (--capacity == 0) {
705 break;
706 }
707 }
708
709 if (mNeedToSendFinishedDeviceScan) {
710 mNeedToSendFinishedDeviceScan = false;
711 event->when = now;
712 event->type = FINISHED_DEVICE_SCAN;
713 event += 1;
714 if (--capacity == 0) {
715 break;
716 }
717 }
718
719 // Grab the next input event.
720 bool deviceChanged = false;
721 while (mPendingEventIndex < mPendingEventCount) {
722 const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
723 if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
724 if (eventItem.events & EPOLLIN) {
725 mPendingINotify = true;
726 } else {
727 ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
728 }
729 continue;
730 }
731
732 if (eventItem.data.u32 == EPOLL_ID_WAKE) {
733 if (eventItem.events & EPOLLIN) {
734 ALOGV("awoken after wake()");
735 awoken = true;
736 char buffer[16];
737 ssize_t nRead;
738 do {
739 nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
740 } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
741 } else {
742 ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
743 eventItem.events);
744 }
745 continue;
746 }
747
748 ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
749 if (deviceIndex < 0) {
750 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
751 eventItem.events, eventItem.data.u32);
752 continue;
753 }
754
755 Device* device = mDevices.valueAt(deviceIndex);
756 if (eventItem.events & EPOLLIN) {
757 int32_t readSize = read(device->fd, readBuffer,
758 sizeof(struct input_event) * capacity);
759 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
760 // Device was removed before INotify noticed.
761 ALOGW("could not get event, removed? (fd: %d size: %d bufferSize: %d "
762 "capacity: %d errno: %d)\n",
763 device->fd, readSize, bufferSize, capacity, errno);
764 deviceChanged = true;
765 closeDeviceLocked(device);
766 } else if (readSize < 0) {
767 if (errno != EAGAIN && errno != EINTR) {
768 ALOGW("could not get event (errno=%d)", errno);
769 }
770 } else if ((readSize % sizeof(struct input_event)) != 0) {
771 ALOGE("could not get event (wrong size: %d)", readSize);
772 } else {
773 int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
774
775 size_t count = size_t(readSize) / sizeof(struct input_event);
776 for (size_t i = 0; i < count; i++) {
777 struct input_event& iev = readBuffer[i];
778 ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d",
779 device->path.string(),
780 (int) iev.time.tv_sec, (int) iev.time.tv_usec,
781 iev.type, iev.code, iev.value);
782
783 // Some input devices may have a better concept of the time
784 // when an input event was actually generated than the kernel
785 // which simply timestamps all events on entry to evdev.
786 // This is a custom Android extension of the input protocol
787 // mainly intended for use with uinput based device drivers.
788 if (iev.type == EV_MSC) {
789 if (iev.code == MSC_ANDROID_TIME_SEC) {
790 device->timestampOverrideSec = iev.value;
791 continue;
792 } else if (iev.code == MSC_ANDROID_TIME_USEC) {
793 device->timestampOverrideUsec = iev.value;
794 continue;
795 }
796 }
797 if (device->timestampOverrideSec || device->timestampOverrideUsec) {
798 iev.time.tv_sec = device->timestampOverrideSec;
799 iev.time.tv_usec = device->timestampOverrideUsec;
800 if (iev.type == EV_SYN && iev.code == SYN_REPORT) {
801 device->timestampOverrideSec = 0;
802 device->timestampOverrideUsec = 0;
803 }
804 ALOGV("applied override time %d.%06d",
805 int(iev.time.tv_sec), int(iev.time.tv_usec));
806 }
807
808 #ifdef HAVE_POSIX_CLOCKS
809 // Use the time specified in the event instead of the current time
810 // so that downstream code can get more accurate estimates of
811 // event dispatch latency from the time the event is enqueued onto
812 // the evdev client buffer.
813 //
814 // The event's timestamp fortuitously uses the same monotonic clock
815 // time base as the rest of Android. The kernel event device driver
816 // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
817 // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
818 // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
819 // system call that also queries ktime_get_ts().
820 event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
821 + nsecs_t(iev.time.tv_usec) * 1000LL;
822 ALOGV("event time %lld, now %lld", event->when, now);
823
824 // Bug 7291243: Add a guard in case the kernel generates timestamps
825 // that appear to be far into the future because they were generated
826 // using the wrong clock source.
827 //
828 // This can happen because when the input device is initially opened
829 // it has a default clock source of CLOCK_REALTIME. Any input events
830 // enqueued right after the device is opened will have timestamps
831 // generated using CLOCK_REALTIME. We later set the clock source
832 // to CLOCK_MONOTONIC but it is already too late.
833 //
834 // Invalid input event timestamps can result in ANRs, crashes and
835 // and other issues that are hard to track down. We must not let them
836 // propagate through the system.
837 //
838 // Log a warning so that we notice the problem and recover gracefully.
839 if (event->when >= now + 10 * 1000000000LL) {
840 // Double-check. Time may have moved on.
841 nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC);
842 if (event->when > time) {
843 ALOGW("An input event from %s has a timestamp that appears to "
844 "have been generated using the wrong clock source "
845 "(expected CLOCK_MONOTONIC): "
846 "event time %lld, current time %lld, call time %lld. "
847 "Using current time instead.",
848 device->path.string(), event->when, time, now);
849 event->when = time;
850 } else {
851 ALOGV("Event time is ok but failed the fast path and required "
852 "an extra call to systemTime: "
853 "event time %lld, current time %lld, call time %lld.",
854 event->when, time, now);
855 }
856 }
857 #else
858 event->when = now;
859 #endif
860 event->deviceId = deviceId;
861 event->type = iev.type;
862 event->code = iev.code;
863 event->value = iev.value;
864 event += 1;
865 capacity -= 1;
866 }
867 if (capacity == 0) {
868 // The result buffer is full. Reset the pending event index
869 // so we will try to read the device again on the next iteration.
870 mPendingEventIndex -= 1;
871 break;
872 }
873 }
874 } else if (eventItem.events & EPOLLHUP) {
875 ALOGI("Removing device %s due to epoll hang-up event.",
876 device->identifier.name.string());
877 deviceChanged = true;
878 closeDeviceLocked(device);
879 } else {
880 ALOGW("Received unexpected epoll event 0x%08x for device %s.",
881 eventItem.events, device->identifier.name.string());
882 }
883 }
884
885 // readNotify() will modify the list of devices so this must be done after
886 // processing all other events to ensure that we read all remaining events
887 // before closing the devices.
888 if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
889 mPendingINotify = false;
890 readNotifyLocked();
891 deviceChanged = true;
892 }
893
894 // Report added or removed devices immediately.
895 if (deviceChanged) {
896 continue;
897 }
898
899 // Return now if we have collected any events or if we were explicitly awoken.
900 if (event != buffer || awoken) {
901 break;
902 }
903
904 // Poll for events. Mind the wake lock dance!
905 // We hold a wake lock at all times except during epoll_wait(). This works due to some
906 // subtle choreography. When a device driver has pending (unread) events, it acquires
907 // a kernel wake lock. However, once the last pending event has been read, the device
908 // driver will release the kernel wake lock. To prevent the system from going to sleep
909 // when this happens, the EventHub holds onto its own user wake lock while the client
910 // is processing events. Thus the system can only sleep if there are no events
911 // pending or currently being processed.
912 //
913 // The timeout is advisory only. If the device is asleep, it will not wake just to
914 // service the timeout.
915 mPendingEventIndex = 0;
916
917 mLock.unlock(); // release lock before poll, must be before release_wake_lock
918 release_wake_lock(WAKE_LOCK_ID);
919
920 int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
921
922 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
923 mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
924
925 if (pollResult == 0) {
926 // Timed out.
927 mPendingEventCount = 0;
928 break;
929 }
930
931 if (pollResult < 0) {
932 // An error occurred.
933 mPendingEventCount = 0;
934
935 // Sleep after errors to avoid locking up the system.
936 // Hopefully the error is transient.
937 if (errno != EINTR) {
938 ALOGW("poll failed (errno=%d)\n", errno);
939 usleep(100000);
940 }
941 } else {
942 // Some events occurred.
943 mPendingEventCount = size_t(pollResult);
944 }
945 }
946
947 // All done, return the number of events we read.
948 return event - buffer;
949 }
950
wake()951 void EventHub::wake() {
952 ALOGV("wake() called");
953
954 ssize_t nWrite;
955 do {
956 nWrite = write(mWakeWritePipeFd, "W", 1);
957 } while (nWrite == -1 && errno == EINTR);
958
959 if (nWrite != 1 && errno != EAGAIN) {
960 ALOGW("Could not write wake signal, errno=%d", errno);
961 }
962 }
963
scanDevicesLocked()964 void EventHub::scanDevicesLocked() {
965 status_t res = scanDirLocked(DEVICE_PATH);
966 if(res < 0) {
967 ALOGE("scan dir failed for %s\n", DEVICE_PATH);
968 }
969 if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
970 createVirtualKeyboardLocked();
971 }
972 }
973
974 // ----------------------------------------------------------------------------
975
containsNonZeroByte(const uint8_t * array,uint32_t startIndex,uint32_t endIndex)976 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
977 const uint8_t* end = array + endIndex;
978 array += startIndex;
979 while (array != end) {
980 if (*(array++) != 0) {
981 return true;
982 }
983 }
984 return false;
985 }
986
987 static const int32_t GAMEPAD_KEYCODES[] = {
988 AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
989 AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
990 AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
991 AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
992 AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
993 AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
994 AKEYCODE_BUTTON_1, AKEYCODE_BUTTON_2, AKEYCODE_BUTTON_3, AKEYCODE_BUTTON_4,
995 AKEYCODE_BUTTON_5, AKEYCODE_BUTTON_6, AKEYCODE_BUTTON_7, AKEYCODE_BUTTON_8,
996 AKEYCODE_BUTTON_9, AKEYCODE_BUTTON_10, AKEYCODE_BUTTON_11, AKEYCODE_BUTTON_12,
997 AKEYCODE_BUTTON_13, AKEYCODE_BUTTON_14, AKEYCODE_BUTTON_15, AKEYCODE_BUTTON_16,
998 };
999
openDeviceLocked(const char * devicePath)1000 status_t EventHub::openDeviceLocked(const char *devicePath) {
1001 char buffer[80];
1002
1003 ALOGV("Opening device: %s", devicePath);
1004
1005 int fd = open(devicePath, O_RDWR | O_CLOEXEC);
1006 if(fd < 0) {
1007 ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
1008 return -1;
1009 }
1010
1011 InputDeviceIdentifier identifier;
1012
1013 // Get device name.
1014 if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
1015 //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
1016 } else {
1017 buffer[sizeof(buffer) - 1] = '\0';
1018 identifier.name.setTo(buffer);
1019 }
1020
1021 // Check to see if the device is on our excluded list
1022 for (size_t i = 0; i < mExcludedDevices.size(); i++) {
1023 const String8& item = mExcludedDevices.itemAt(i);
1024 if (identifier.name == item) {
1025 ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
1026 close(fd);
1027 return -1;
1028 }
1029 }
1030
1031 // Get device driver version.
1032 int driverVersion;
1033 if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
1034 ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
1035 close(fd);
1036 return -1;
1037 }
1038
1039 // Get device identifier.
1040 struct input_id inputId;
1041 if(ioctl(fd, EVIOCGID, &inputId)) {
1042 ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
1043 close(fd);
1044 return -1;
1045 }
1046 identifier.bus = inputId.bustype;
1047 identifier.product = inputId.product;
1048 identifier.vendor = inputId.vendor;
1049 identifier.version = inputId.version;
1050
1051 // Get device physical location.
1052 if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
1053 //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
1054 } else {
1055 buffer[sizeof(buffer) - 1] = '\0';
1056 identifier.location.setTo(buffer);
1057 }
1058
1059 // Get device unique id.
1060 if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
1061 //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
1062 } else {
1063 buffer[sizeof(buffer) - 1] = '\0';
1064 identifier.uniqueId.setTo(buffer);
1065 }
1066
1067 // Fill in the descriptor.
1068 setDescriptor(identifier);
1069
1070 // Make file descriptor non-blocking for use with poll().
1071 if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
1072 ALOGE("Error %d making device file descriptor non-blocking.", errno);
1073 close(fd);
1074 return -1;
1075 }
1076
1077 // Allocate device. (The device object takes ownership of the fd at this point.)
1078 int32_t deviceId = mNextDeviceId++;
1079 Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
1080
1081 ALOGV("add device %d: %s\n", deviceId, devicePath);
1082 ALOGV(" bus: %04x\n"
1083 " vendor %04x\n"
1084 " product %04x\n"
1085 " version %04x\n",
1086 identifier.bus, identifier.vendor, identifier.product, identifier.version);
1087 ALOGV(" name: \"%s\"\n", identifier.name.string());
1088 ALOGV(" location: \"%s\"\n", identifier.location.string());
1089 ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.string());
1090 ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.string());
1091 ALOGV(" driver: v%d.%d.%d\n",
1092 driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
1093
1094 // Load the configuration file for the device.
1095 loadConfigurationLocked(device);
1096
1097 // Figure out the kinds of events the device reports.
1098 ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
1099 ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
1100 ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
1101 ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
1102 ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
1103 ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
1104 ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
1105
1106 // See if this is a keyboard. Ignore everything in the button range except for
1107 // joystick and gamepad buttons which are handled like keyboards for the most part.
1108 bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
1109 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
1110 sizeof_bit_array(KEY_MAX + 1));
1111 bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
1112 sizeof_bit_array(BTN_MOUSE))
1113 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
1114 sizeof_bit_array(BTN_DIGI));
1115 if (haveKeyboardKeys || haveGamepadButtons) {
1116 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1117 }
1118
1119 // See if this is a cursor device such as a trackball or mouse.
1120 if (test_bit(BTN_MOUSE, device->keyBitmask)
1121 && test_bit(REL_X, device->relBitmask)
1122 && test_bit(REL_Y, device->relBitmask)) {
1123 device->classes |= INPUT_DEVICE_CLASS_CURSOR;
1124 }
1125
1126 // See if this is a touch pad.
1127 // Is this a new modern multi-touch driver?
1128 if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
1129 && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
1130 // Some joysticks such as the PS3 controller report axes that conflict
1131 // with the ABS_MT range. Try to confirm that the device really is
1132 // a touch screen.
1133 if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
1134 device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
1135 }
1136 // Is this an old style single-touch driver?
1137 } else if (test_bit(BTN_TOUCH, device->keyBitmask)
1138 && test_bit(ABS_X, device->absBitmask)
1139 && test_bit(ABS_Y, device->absBitmask)) {
1140 device->classes |= INPUT_DEVICE_CLASS_TOUCH;
1141 }
1142
1143 // See if this device is a joystick.
1144 // Assumes that joysticks always have gamepad buttons in order to distinguish them
1145 // from other devices such as accelerometers that also have absolute axes.
1146 if (haveGamepadButtons) {
1147 uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
1148 for (int i = 0; i <= ABS_MAX; i++) {
1149 if (test_bit(i, device->absBitmask)
1150 && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
1151 device->classes = assumedClasses;
1152 break;
1153 }
1154 }
1155 }
1156
1157 // Check whether this device has switches.
1158 for (int i = 0; i <= SW_MAX; i++) {
1159 if (test_bit(i, device->swBitmask)) {
1160 device->classes |= INPUT_DEVICE_CLASS_SWITCH;
1161 break;
1162 }
1163 }
1164
1165 // Check whether this device supports the vibrator.
1166 if (test_bit(FF_RUMBLE, device->ffBitmask)) {
1167 device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
1168 }
1169
1170 // Configure virtual keys.
1171 if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
1172 // Load the virtual keys for the touch screen, if any.
1173 // We do this now so that we can make sure to load the keymap if necessary.
1174 status_t status = loadVirtualKeyMapLocked(device);
1175 if (!status) {
1176 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1177 }
1178 }
1179
1180 // Load the key map.
1181 // We need to do this for joysticks too because the key layout may specify axes.
1182 status_t keyMapStatus = NAME_NOT_FOUND;
1183 if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
1184 // Load the keymap for the device.
1185 keyMapStatus = loadKeyMapLocked(device);
1186 }
1187
1188 // Configure the keyboard, gamepad or virtual keyboard.
1189 if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1190 // Register the keyboard as a built-in keyboard if it is eligible.
1191 if (!keyMapStatus
1192 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
1193 && isEligibleBuiltInKeyboard(device->identifier,
1194 device->configuration, &device->keyMap)) {
1195 mBuiltInKeyboardId = device->id;
1196 }
1197
1198 // 'Q' key support = cheap test of whether this is an alpha-capable kbd
1199 if (hasKeycodeLocked(device, AKEYCODE_Q)) {
1200 device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
1201 }
1202
1203 // See if this device has a DPAD.
1204 if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
1205 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
1206 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
1207 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
1208 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
1209 device->classes |= INPUT_DEVICE_CLASS_DPAD;
1210 }
1211
1212 // See if this device has a gamepad.
1213 for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
1214 if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
1215 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
1216 break;
1217 }
1218 }
1219
1220 // Disable kernel key repeat since we handle it ourselves
1221 unsigned int repeatRate[] = {0,0};
1222 if (ioctl(fd, EVIOCSREP, repeatRate)) {
1223 ALOGW("Unable to disable kernel key repeat for %s: %s", devicePath, strerror(errno));
1224 }
1225 }
1226
1227 // If the device isn't recognized as something we handle, don't monitor it.
1228 if (device->classes == 0) {
1229 ALOGV("Dropping device: id=%d, path='%s', name='%s'",
1230 deviceId, devicePath, device->identifier.name.string());
1231 delete device;
1232 return -1;
1233 }
1234
1235 // Determine whether the device is external or internal.
1236 if (isExternalDeviceLocked(device)) {
1237 device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
1238 }
1239
1240 if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_GAMEPAD)) {
1241 device->controllerNumber = getNextControllerNumberLocked(device);
1242 }
1243
1244 // Register with epoll.
1245 struct epoll_event eventItem;
1246 memset(&eventItem, 0, sizeof(eventItem));
1247 eventItem.events = EPOLLIN;
1248 eventItem.data.u32 = deviceId;
1249 if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
1250 ALOGE("Could not add device fd to epoll instance. errno=%d", errno);
1251 delete device;
1252 return -1;
1253 }
1254
1255 // Enable wake-lock behavior on kernels that support it.
1256 // TODO: Only need this for devices that can really wake the system.
1257 bool usingSuspendBlockIoctl = !ioctl(fd, EVIOCSSUSPENDBLOCK, 1);
1258
1259 // Tell the kernel that we want to use the monotonic clock for reporting timestamps
1260 // associated with input events. This is important because the input system
1261 // uses the timestamps extensively and assumes they were recorded using the monotonic
1262 // clock.
1263 //
1264 // In older kernel, before Linux 3.4, there was no way to tell the kernel which
1265 // clock to use to input event timestamps. The standard kernel behavior was to
1266 // record a real time timestamp, which isn't what we want. Android kernels therefore
1267 // contained a patch to the evdev_event() function in drivers/input/evdev.c to
1268 // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic
1269 // clock to be used instead of the real time clock.
1270 //
1271 // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock.
1272 // Therefore, we no longer require the Android-specific kernel patch described above
1273 // as long as we make sure to set select the monotonic clock. We do that here.
1274 int clockId = CLOCK_MONOTONIC;
1275 bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
1276
1277 ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
1278 "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, "
1279 "usingSuspendBlockIoctl=%s, usingClockIoctl=%s",
1280 deviceId, fd, devicePath, device->identifier.name.string(),
1281 device->classes,
1282 device->configurationFile.string(),
1283 device->keyMap.keyLayoutFile.string(),
1284 device->keyMap.keyCharacterMapFile.string(),
1285 toString(mBuiltInKeyboardId == deviceId),
1286 toString(usingSuspendBlockIoctl), toString(usingClockIoctl));
1287
1288 addDeviceLocked(device);
1289 return 0;
1290 }
1291
createVirtualKeyboardLocked()1292 void EventHub::createVirtualKeyboardLocked() {
1293 InputDeviceIdentifier identifier;
1294 identifier.name = "Virtual";
1295 identifier.uniqueId = "<virtual>";
1296 setDescriptor(identifier);
1297
1298 Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
1299 device->classes = INPUT_DEVICE_CLASS_KEYBOARD
1300 | INPUT_DEVICE_CLASS_ALPHAKEY
1301 | INPUT_DEVICE_CLASS_DPAD
1302 | INPUT_DEVICE_CLASS_VIRTUAL;
1303 loadKeyMapLocked(device);
1304 addDeviceLocked(device);
1305 }
1306
addDeviceLocked(Device * device)1307 void EventHub::addDeviceLocked(Device* device) {
1308 mDevices.add(device->id, device);
1309 device->next = mOpeningDevices;
1310 mOpeningDevices = device;
1311 }
1312
loadConfigurationLocked(Device * device)1313 void EventHub::loadConfigurationLocked(Device* device) {
1314 device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
1315 device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
1316 if (device->configurationFile.isEmpty()) {
1317 ALOGD("No input device configuration file found for device '%s'.",
1318 device->identifier.name.string());
1319 } else {
1320 status_t status = PropertyMap::load(device->configurationFile,
1321 &device->configuration);
1322 if (status) {
1323 ALOGE("Error loading input device configuration file for device '%s'. "
1324 "Using default configuration.",
1325 device->identifier.name.string());
1326 }
1327 }
1328 }
1329
loadVirtualKeyMapLocked(Device * device)1330 status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
1331 // The virtual key map is supplied by the kernel as a system board property file.
1332 String8 path;
1333 path.append("/sys/board_properties/virtualkeys.");
1334 path.append(device->identifier.name);
1335 if (access(path.string(), R_OK)) {
1336 return NAME_NOT_FOUND;
1337 }
1338 return VirtualKeyMap::load(path, &device->virtualKeyMap);
1339 }
1340
loadKeyMapLocked(Device * device)1341 status_t EventHub::loadKeyMapLocked(Device* device) {
1342 return device->keyMap.load(device->identifier, device->configuration);
1343 }
1344
isExternalDeviceLocked(Device * device)1345 bool EventHub::isExternalDeviceLocked(Device* device) {
1346 if (device->configuration) {
1347 bool value;
1348 if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
1349 return !value;
1350 }
1351 }
1352 return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1353 }
1354
getNextControllerNumberLocked(Device * device)1355 int32_t EventHub::getNextControllerNumberLocked(Device* device) {
1356 if (mControllerNumbers.isFull()) {
1357 ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
1358 device->identifier.name.string());
1359 return 0;
1360 }
1361 // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
1362 // one
1363 return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
1364 }
1365
releaseControllerNumberLocked(Device * device)1366 void EventHub::releaseControllerNumberLocked(Device* device) {
1367 int32_t num = device->controllerNumber;
1368 device->controllerNumber= 0;
1369 if (num == 0) {
1370 return;
1371 }
1372 mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
1373 }
1374
1375
hasKeycodeLocked(Device * device,int keycode) const1376 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1377 if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
1378 return false;
1379 }
1380
1381 Vector<int32_t> scanCodes;
1382 device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1383 const size_t N = scanCodes.size();
1384 for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1385 int32_t sc = scanCodes.itemAt(i);
1386 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1387 return true;
1388 }
1389 }
1390
1391 return false;
1392 }
1393
closeDeviceByPathLocked(const char * devicePath)1394 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
1395 Device* device = getDeviceByPathLocked(devicePath);
1396 if (device) {
1397 closeDeviceLocked(device);
1398 return 0;
1399 }
1400 ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1401 return -1;
1402 }
1403
closeAllDevicesLocked()1404 void EventHub::closeAllDevicesLocked() {
1405 while (mDevices.size() > 0) {
1406 closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
1407 }
1408 }
1409
closeDeviceLocked(Device * device)1410 void EventHub::closeDeviceLocked(Device* device) {
1411 ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1412 device->path.string(), device->identifier.name.string(), device->id,
1413 device->fd, device->classes);
1414
1415 if (device->id == mBuiltInKeyboardId) {
1416 ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1417 device->path.string(), mBuiltInKeyboardId);
1418 mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
1419 }
1420
1421 if (!device->isVirtual()) {
1422 if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
1423 ALOGW("Could not remove device fd from epoll instance. errno=%d", errno);
1424 }
1425 }
1426
1427 releaseControllerNumberLocked(device);
1428
1429 mDevices.removeItem(device->id);
1430 device->close();
1431
1432 // Unlink for opening devices list if it is present.
1433 Device* pred = NULL;
1434 bool found = false;
1435 for (Device* entry = mOpeningDevices; entry != NULL; ) {
1436 if (entry == device) {
1437 found = true;
1438 break;
1439 }
1440 pred = entry;
1441 entry = entry->next;
1442 }
1443 if (found) {
1444 // Unlink the device from the opening devices list then delete it.
1445 // We don't need to tell the client that the device was closed because
1446 // it does not even know it was opened in the first place.
1447 ALOGI("Device %s was immediately closed after opening.", device->path.string());
1448 if (pred) {
1449 pred->next = device->next;
1450 } else {
1451 mOpeningDevices = device->next;
1452 }
1453 delete device;
1454 } else {
1455 // Link into closing devices list.
1456 // The device will be deleted later after we have informed the client.
1457 device->next = mClosingDevices;
1458 mClosingDevices = device;
1459 }
1460 }
1461
readNotifyLocked()1462 status_t EventHub::readNotifyLocked() {
1463 int res;
1464 char devname[PATH_MAX];
1465 char *filename;
1466 char event_buf[512];
1467 int event_size;
1468 int event_pos = 0;
1469 struct inotify_event *event;
1470
1471 ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
1472 res = read(mINotifyFd, event_buf, sizeof(event_buf));
1473 if(res < (int)sizeof(*event)) {
1474 if(errno == EINTR)
1475 return 0;
1476 ALOGW("could not get event, %s\n", strerror(errno));
1477 return -1;
1478 }
1479 //printf("got %d bytes of event information\n", res);
1480
1481 strcpy(devname, DEVICE_PATH);
1482 filename = devname + strlen(devname);
1483 *filename++ = '/';
1484
1485 while(res >= (int)sizeof(*event)) {
1486 event = (struct inotify_event *)(event_buf + event_pos);
1487 //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1488 if(event->len) {
1489 strcpy(filename, event->name);
1490 if(event->mask & IN_CREATE) {
1491 openDeviceLocked(devname);
1492 } else {
1493 ALOGI("Removing device '%s' due to inotify event\n", devname);
1494 closeDeviceByPathLocked(devname);
1495 }
1496 }
1497 event_size = sizeof(*event) + event->len;
1498 res -= event_size;
1499 event_pos += event_size;
1500 }
1501 return 0;
1502 }
1503
scanDirLocked(const char * dirname)1504 status_t EventHub::scanDirLocked(const char *dirname)
1505 {
1506 char devname[PATH_MAX];
1507 char *filename;
1508 DIR *dir;
1509 struct dirent *de;
1510 dir = opendir(dirname);
1511 if(dir == NULL)
1512 return -1;
1513 strcpy(devname, dirname);
1514 filename = devname + strlen(devname);
1515 *filename++ = '/';
1516 while((de = readdir(dir))) {
1517 if(de->d_name[0] == '.' &&
1518 (de->d_name[1] == '\0' ||
1519 (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1520 continue;
1521 strcpy(filename, de->d_name);
1522 openDeviceLocked(devname);
1523 }
1524 closedir(dir);
1525 return 0;
1526 }
1527
requestReopenDevices()1528 void EventHub::requestReopenDevices() {
1529 ALOGV("requestReopenDevices() called");
1530
1531 AutoMutex _l(mLock);
1532 mNeedToReopenDevices = true;
1533 }
1534
dump(String8 & dump)1535 void EventHub::dump(String8& dump) {
1536 dump.append("Event Hub State:\n");
1537
1538 { // acquire lock
1539 AutoMutex _l(mLock);
1540
1541 dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1542
1543 dump.append(INDENT "Devices:\n");
1544
1545 for (size_t i = 0; i < mDevices.size(); i++) {
1546 const Device* device = mDevices.valueAt(i);
1547 if (mBuiltInKeyboardId == device->id) {
1548 dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1549 device->id, device->identifier.name.string());
1550 } else {
1551 dump.appendFormat(INDENT2 "%d: %s\n", device->id,
1552 device->identifier.name.string());
1553 }
1554 dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
1555 dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
1556 dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
1557 dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
1558 dump.appendFormat(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
1559 dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1560 dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1561 "product=0x%04x, version=0x%04x\n",
1562 device->identifier.bus, device->identifier.vendor,
1563 device->identifier.product, device->identifier.version);
1564 dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
1565 device->keyMap.keyLayoutFile.string());
1566 dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
1567 device->keyMap.keyCharacterMapFile.string());
1568 dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
1569 device->configurationFile.string());
1570 dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
1571 toString(device->overlayKeyMap != NULL));
1572 }
1573 } // release lock
1574 }
1575
monitor()1576 void EventHub::monitor() {
1577 // Acquire and release the lock to ensure that the event hub has not deadlocked.
1578 mLock.lock();
1579 mLock.unlock();
1580 }
1581
1582
1583 }; // namespace android
1584