1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ValueEnumerator class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/IR/ValueSymbolTable.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 using namespace llvm;
26
27 namespace llvm_2_9 {
28
isIntOrIntVectorValue(const std::pair<const Value *,unsigned> & V)29 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
30 return V.first->getType()->isIntOrIntVectorTy();
31 }
32
33 /// ValueEnumerator - Enumerate module-level information.
ValueEnumerator(const Module * M)34 ValueEnumerator::ValueEnumerator(const Module *M) {
35 // Enumerate the global variables.
36 for (Module::const_global_iterator I = M->global_begin(),
37 E = M->global_end(); I != E; ++I)
38 EnumerateValue(I);
39
40 // Enumerate the functions.
41 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
42 EnumerateValue(I);
43 EnumerateAttributes(cast<Function>(I)->getAttributes());
44 }
45
46 // Enumerate the aliases.
47 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
48 I != E; ++I)
49 EnumerateValue(I);
50
51 // Remember what is the cutoff between globalvalue's and other constants.
52 unsigned FirstConstant = Values.size();
53
54 // Enumerate the global variable initializers.
55 for (Module::const_global_iterator I = M->global_begin(),
56 E = M->global_end(); I != E; ++I)
57 if (I->hasInitializer())
58 EnumerateValue(I->getInitializer());
59
60 // Enumerate the aliasees.
61 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
62 I != E; ++I)
63 EnumerateValue(I->getAliasee());
64
65 // Insert constants and metadata that are named at module level into the slot
66 // pool so that the module symbol table can refer to them...
67 EnumerateValueSymbolTable(M->getValueSymbolTable());
68 EnumerateNamedMetadata(M);
69
70 SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
71
72 // Enumerate types used by function bodies and argument lists.
73 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
74
75 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
76 I != E; ++I)
77 EnumerateType(I->getType());
78
79 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
80 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
81 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
82 OI != E; ++OI) {
83 if (MDNode *MD = dyn_cast<MDNode>(*OI))
84 if (MD->isFunctionLocal() && MD->getFunction())
85 // These will get enumerated during function-incorporation.
86 continue;
87 EnumerateOperandType(*OI);
88 }
89 EnumerateType(I->getType());
90 if (const CallInst *CI = dyn_cast<CallInst>(I))
91 EnumerateAttributes(CI->getAttributes());
92 else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
93 EnumerateAttributes(II->getAttributes());
94
95 // Enumerate metadata attached with this instruction.
96 MDs.clear();
97 I->getAllMetadataOtherThanDebugLoc(MDs);
98 for (unsigned i = 0, e = MDs.size(); i != e; ++i)
99 EnumerateMetadata(MDs[i].second);
100
101 if (!I->getDebugLoc().isUnknown()) {
102 MDNode *Scope, *IA;
103 I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext());
104 if (Scope) EnumerateMetadata(Scope);
105 if (IA) EnumerateMetadata(IA);
106 }
107 }
108 }
109
110 // Optimize constant ordering.
111 OptimizeConstants(FirstConstant, Values.size());
112 }
113
getInstructionID(const Instruction * Inst) const114 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
115 InstructionMapType::const_iterator I = InstructionMap.find(Inst);
116 assert(I != InstructionMap.end() && "Instruction is not mapped!");
117 return I->second;
118 }
119
setInstructionID(const Instruction * I)120 void ValueEnumerator::setInstructionID(const Instruction *I) {
121 InstructionMap[I] = InstructionCount++;
122 }
123
getValueID(const Value * V) const124 unsigned ValueEnumerator::getValueID(const Value *V) const {
125 if (isa<MDNode>(V) || isa<MDString>(V)) {
126 ValueMapType::const_iterator I = MDValueMap.find(V);
127 assert(I != MDValueMap.end() && "Value not in slotcalculator!");
128 return I->second-1;
129 }
130
131 ValueMapType::const_iterator I = ValueMap.find(V);
132 assert(I != ValueMap.end() && "Value not in slotcalculator!");
133 return I->second-1;
134 }
135
dump() const136 void ValueEnumerator::dump() const {
137 print(dbgs(), ValueMap, "Default");
138 dbgs() << '\n';
139 print(dbgs(), MDValueMap, "MetaData");
140 dbgs() << '\n';
141 }
142
print(raw_ostream & OS,const ValueMapType & Map,const char * Name) const143 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
144 const char *Name) const {
145
146 OS << "Map Name: " << Name << "\n";
147 OS << "Size: " << Map.size() << "\n";
148 for (ValueMapType::const_iterator I = Map.begin(),
149 E = Map.end(); I != E; ++I) {
150
151 const Value *V = I->first;
152 if (V->hasName())
153 OS << "Value: " << V->getName();
154 else
155 OS << "Value: [null]\n";
156 V->dump();
157
158 OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
159 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
160 UI != UE; ++UI) {
161 if (UI != V->use_begin())
162 OS << ",";
163 if((*UI)->hasName())
164 OS << " " << (*UI)->getName();
165 else
166 OS << " [null]";
167
168 }
169 OS << "\n\n";
170 }
171 }
172
173 // Optimize constant ordering.
174 namespace {
175 struct CstSortPredicate {
176 ValueEnumerator &VE;
CstSortPredicatellvm_2_9::__anoncea5f7190111::CstSortPredicate177 explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
operator ()llvm_2_9::__anoncea5f7190111::CstSortPredicate178 bool operator()(const std::pair<const Value*, unsigned> &LHS,
179 const std::pair<const Value*, unsigned> &RHS) {
180 // Sort by plane.
181 if (LHS.first->getType() != RHS.first->getType())
182 return VE.getTypeID(LHS.first->getType()) <
183 VE.getTypeID(RHS.first->getType());
184 // Then by frequency.
185 return LHS.second > RHS.second;
186 }
187 };
188 }
189
190 /// OptimizeConstants - Reorder constant pool for denser encoding.
OptimizeConstants(unsigned CstStart,unsigned CstEnd)191 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
192 if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
193
194 CstSortPredicate P(*this);
195 std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
196
197 // Ensure that integer and vector of integer constants are at the start of the
198 // constant pool. This is important so that GEP structure indices come before
199 // gep constant exprs.
200 std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
201 isIntOrIntVectorValue);
202
203 // Rebuild the modified portion of ValueMap.
204 for (; CstStart != CstEnd; ++CstStart)
205 ValueMap[Values[CstStart].first] = CstStart+1;
206 }
207
208
209 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
210 /// table into the values table.
EnumerateValueSymbolTable(const ValueSymbolTable & VST)211 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
212 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
213 VI != VE; ++VI)
214 EnumerateValue(VI->getValue());
215 }
216
217 /// EnumerateNamedMetadata - Insert all of the values referenced by
218 /// named metadata in the specified module.
EnumerateNamedMetadata(const Module * M)219 void ValueEnumerator::EnumerateNamedMetadata(const Module *M) {
220 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
221 E = M->named_metadata_end(); I != E; ++I)
222 EnumerateNamedMDNode(I);
223 }
224
EnumerateNamedMDNode(const NamedMDNode * MD)225 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
226 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
227 EnumerateMetadata(MD->getOperand(i));
228 }
229
230 /// EnumerateMDNodeOperands - Enumerate all non-function-local values
231 /// and types referenced by the given MDNode.
EnumerateMDNodeOperands(const MDNode * N)232 void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) {
233 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
234 if (Value *V = N->getOperand(i)) {
235 if (isa<MDNode>(V) || isa<MDString>(V))
236 EnumerateMetadata(V);
237 else if (!isa<Instruction>(V) && !isa<Argument>(V))
238 EnumerateValue(V);
239 } else
240 EnumerateType(Type::getVoidTy(N->getContext()));
241 }
242 }
243
EnumerateMetadata(const Value * MD)244 void ValueEnumerator::EnumerateMetadata(const Value *MD) {
245 assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
246
247 // Enumerate the type of this value.
248 EnumerateType(MD->getType());
249
250 const MDNode *N = dyn_cast<MDNode>(MD);
251
252 // In the module-level pass, skip function-local nodes themselves, but
253 // do walk their operands.
254 if (N && N->isFunctionLocal() && N->getFunction()) {
255 EnumerateMDNodeOperands(N);
256 return;
257 }
258
259 // Check to see if it's already in!
260 unsigned &MDValueID = MDValueMap[MD];
261 if (MDValueID) {
262 // Increment use count.
263 MDValues[MDValueID-1].second++;
264 return;
265 }
266 MDValues.push_back(std::make_pair(MD, 1U));
267 MDValueID = MDValues.size();
268
269 // Enumerate all non-function-local operands.
270 if (N)
271 EnumerateMDNodeOperands(N);
272 }
273
274 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
275 /// information reachable from the given MDNode.
EnumerateFunctionLocalMetadata(const MDNode * N)276 void ValueEnumerator::EnumerateFunctionLocalMetadata(const MDNode *N) {
277 assert(N->isFunctionLocal() && N->getFunction() &&
278 "EnumerateFunctionLocalMetadata called on non-function-local mdnode!");
279
280 // Enumerate the type of this value.
281 EnumerateType(N->getType());
282
283 // Check to see if it's already in!
284 unsigned &MDValueID = MDValueMap[N];
285 if (MDValueID) {
286 // Increment use count.
287 MDValues[MDValueID-1].second++;
288 return;
289 }
290 MDValues.push_back(std::make_pair(N, 1U));
291 MDValueID = MDValues.size();
292
293 // To incoroporate function-local information visit all function-local
294 // MDNodes and all function-local values they reference.
295 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
296 if (Value *V = N->getOperand(i)) {
297 if (MDNode *O = dyn_cast<MDNode>(V)) {
298 if (O->isFunctionLocal() && O->getFunction())
299 EnumerateFunctionLocalMetadata(O);
300 } else if (isa<Instruction>(V) || isa<Argument>(V))
301 EnumerateValue(V);
302 }
303
304 // Also, collect all function-local MDNodes for easy access.
305 FunctionLocalMDs.push_back(N);
306 }
307
EnumerateValue(const Value * V)308 void ValueEnumerator::EnumerateValue(const Value *V) {
309 assert(!V->getType()->isVoidTy() && "Can't insert void values!");
310 assert(!isa<MDNode>(V) && !isa<MDString>(V) &&
311 "EnumerateValue doesn't handle Metadata!");
312
313 // Check to see if it's already in!
314 unsigned &ValueID = ValueMap[V];
315 if (ValueID) {
316 // Increment use count.
317 Values[ValueID-1].second++;
318 return;
319 }
320
321 // Enumerate the type of this value.
322 EnumerateType(V->getType());
323
324 if (const Constant *C = dyn_cast<Constant>(V)) {
325 if (isa<GlobalValue>(C)) {
326 // Initializers for globals are handled explicitly elsewhere.
327 } else if (C->getNumOperands()) {
328 // If a constant has operands, enumerate them. This makes sure that if a
329 // constant has uses (for example an array of const ints), that they are
330 // inserted also.
331
332 // We prefer to enumerate them with values before we enumerate the user
333 // itself. This makes it more likely that we can avoid forward references
334 // in the reader. We know that there can be no cycles in the constants
335 // graph that don't go through a global variable.
336 for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
337 I != E; ++I)
338 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
339 EnumerateValue(*I);
340
341 // Finally, add the value. Doing this could make the ValueID reference be
342 // dangling, don't reuse it.
343 Values.push_back(std::make_pair(V, 1U));
344 ValueMap[V] = Values.size();
345 return;
346 } else if (const ConstantDataSequential *CDS =
347 dyn_cast<ConstantDataSequential>(C)) {
348 // For our legacy handling of the new ConstantDataSequential type, we
349 // need to enumerate the individual elements, as well as mark the
350 // outer constant as used.
351 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
352 EnumerateValue(CDS->getElementAsConstant(i));
353 Values.push_back(std::make_pair(V, 1U));
354 ValueMap[V] = Values.size();
355 return;
356 }
357 }
358
359 // Add the value.
360 Values.push_back(std::make_pair(V, 1U));
361 ValueID = Values.size();
362 }
363
364
EnumerateType(Type * Ty)365 void ValueEnumerator::EnumerateType(Type *Ty) {
366 unsigned *TypeID = &TypeMap[Ty];
367
368 // We've already seen this type.
369 if (*TypeID)
370 return;
371
372 // If it is a non-anonymous struct, mark the type as being visited so that we
373 // don't recursively visit it. This is safe because we allow forward
374 // references of these in the bitcode reader.
375 if (StructType *STy = dyn_cast<StructType>(Ty))
376 if (!STy->isLiteral())
377 *TypeID = ~0U;
378
379 // Enumerate all of the subtypes before we enumerate this type. This ensures
380 // that the type will be enumerated in an order that can be directly built.
381 for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
382 I != E; ++I)
383 EnumerateType(*I);
384
385 // Refresh the TypeID pointer in case the table rehashed.
386 TypeID = &TypeMap[Ty];
387
388 // Check to see if we got the pointer another way. This can happen when
389 // enumerating recursive types that hit the base case deeper than they start.
390 //
391 // If this is actually a struct that we are treating as forward ref'able,
392 // then emit the definition now that all of its contents are available.
393 if (*TypeID && *TypeID != ~0U)
394 return;
395
396 // Add this type now that its contents are all happily enumerated.
397 Types.push_back(Ty);
398
399 *TypeID = Types.size();
400 }
401
402 // Enumerate the types for the specified value. If the value is a constant,
403 // walk through it, enumerating the types of the constant.
EnumerateOperandType(const Value * V)404 void ValueEnumerator::EnumerateOperandType(const Value *V) {
405 EnumerateType(V->getType());
406
407 if (const Constant *C = dyn_cast<Constant>(V)) {
408 // If this constant is already enumerated, ignore it, we know its type must
409 // be enumerated.
410 if (ValueMap.count(V)) return;
411
412 // This constant may have operands, make sure to enumerate the types in
413 // them.
414 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
415 const Value *Op = C->getOperand(i);
416
417 // Don't enumerate basic blocks here, this happens as operands to
418 // blockaddress.
419 if (isa<BasicBlock>(Op)) continue;
420
421 EnumerateOperandType(Op);
422 }
423
424 if (const MDNode *N = dyn_cast<MDNode>(V)) {
425 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
426 if (Value *Elem = N->getOperand(i))
427 EnumerateOperandType(Elem);
428 }
429 } else if (isa<MDString>(V) || isa<MDNode>(V))
430 EnumerateMetadata(V);
431 }
432
EnumerateAttributes(AttributeSet PAL)433 void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
434 if (PAL.isEmpty()) return; // null is always 0.
435
436 // Do a lookup.
437 unsigned &Entry = AttributeMap[PAL];
438 if (Entry == 0) {
439 // Never saw this before, add it.
440 Attribute.push_back(PAL);
441 Entry = Attribute.size();
442 }
443
444 // Do lookups for all attribute groups.
445 for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) {
446 AttributeSet AS = PAL.getSlotAttributes(i);
447 unsigned &Entry = AttributeGroupMap[AS];
448 if (Entry == 0) {
449 AttributeGroups.push_back(AS);
450 Entry = AttributeGroups.size();
451 }
452 }
453 }
454
incorporateFunction(const Function & F)455 void ValueEnumerator::incorporateFunction(const Function &F) {
456 InstructionCount = 0;
457 NumModuleValues = Values.size();
458 NumModuleMDValues = MDValues.size();
459
460 // Adding function arguments to the value table.
461 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
462 I != E; ++I)
463 EnumerateValue(I);
464
465 FirstFuncConstantID = Values.size();
466
467 // Add all function-level constants to the value table.
468 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
469 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
470 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
471 OI != E; ++OI) {
472 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
473 isa<InlineAsm>(*OI))
474 EnumerateValue(*OI);
475 }
476 BasicBlocks.push_back(BB);
477 ValueMap[BB] = BasicBlocks.size();
478 }
479
480 // Optimize the constant layout.
481 OptimizeConstants(FirstFuncConstantID, Values.size());
482
483 // Add the function's parameter attributes so they are available for use in
484 // the function's instruction.
485 EnumerateAttributes(F.getAttributes());
486
487 FirstInstID = Values.size();
488
489 SmallVector<MDNode *, 8> FnLocalMDVector;
490 // Add all of the instructions.
491 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
492 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
493 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
494 OI != E; ++OI) {
495 if (MDNode *MD = dyn_cast<MDNode>(*OI))
496 if (MD->isFunctionLocal() && MD->getFunction())
497 // Enumerate metadata after the instructions they might refer to.
498 FnLocalMDVector.push_back(MD);
499 }
500
501 SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
502 I->getAllMetadataOtherThanDebugLoc(MDs);
503 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
504 MDNode *N = MDs[i].second;
505 if (N->isFunctionLocal() && N->getFunction())
506 FnLocalMDVector.push_back(N);
507 }
508
509 if (!I->getType()->isVoidTy())
510 EnumerateValue(I);
511 }
512 }
513
514 // Add all of the function-local metadata.
515 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
516 EnumerateFunctionLocalMetadata(FnLocalMDVector[i]);
517 }
518
purgeFunction()519 void ValueEnumerator::purgeFunction() {
520 /// Remove purged values from the ValueMap.
521 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
522 ValueMap.erase(Values[i].first);
523 for (unsigned i = NumModuleMDValues, e = MDValues.size(); i != e; ++i)
524 MDValueMap.erase(MDValues[i].first);
525 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
526 ValueMap.erase(BasicBlocks[i]);
527
528 Values.resize(NumModuleValues);
529 MDValues.resize(NumModuleMDValues);
530 BasicBlocks.clear();
531 FunctionLocalMDs.clear();
532 }
533
IncorporateFunctionInfoGlobalBBIDs(const Function * F,DenseMap<const BasicBlock *,unsigned> & IDMap)534 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
535 DenseMap<const BasicBlock*, unsigned> &IDMap) {
536 unsigned Counter = 0;
537 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
538 IDMap[BB] = ++Counter;
539 }
540
541 /// getGlobalBasicBlockID - This returns the function-specific ID for the
542 /// specified basic block. This is relatively expensive information, so it
543 /// should only be used by rare constructs such as address-of-label.
getGlobalBasicBlockID(const BasicBlock * BB) const544 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
545 unsigned &Idx = GlobalBasicBlockIDs[BB];
546 if (Idx != 0)
547 return Idx-1;
548
549 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
550 return getGlobalBasicBlockID(BB);
551 }
552
553 } // end llvm_2_9 namespace
554