• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <algorithm>
6 
7 #include "base/logging.h"
8 #include "skia/ext/convolver.h"
9 #include "skia/ext/convolver_SSE2.h"
10 #include "skia/ext/convolver_mips_dspr2.h"
11 #include "third_party/skia/include/core/SkSize.h"
12 #include "third_party/skia/include/core/SkTypes.h"
13 
14 namespace skia {
15 
16 namespace {
17 
18 // Converts the argument to an 8-bit unsigned value by clamping to the range
19 // 0-255.
ClampTo8(int a)20 inline unsigned char ClampTo8(int a) {
21   if (static_cast<unsigned>(a) < 256)
22     return a;  // Avoid the extra check in the common case.
23   if (a < 0)
24     return 0;
25   return 255;
26 }
27 
28 // Takes the value produced by accumulating element-wise product of image with
29 // a kernel and brings it back into range.
30 // All of the filter scaling factors are in fixed point with kShiftBits bits of
31 // fractional part.
BringBackTo8(int a,bool take_absolute)32 inline unsigned char BringBackTo8(int a, bool take_absolute) {
33   a >>= ConvolutionFilter1D::kShiftBits;
34   if (take_absolute)
35     a = std::abs(a);
36   return ClampTo8(a);
37 }
38 
39 // Stores a list of rows in a circular buffer. The usage is you write into it
40 // by calling AdvanceRow. It will keep track of which row in the buffer it
41 // should use next, and the total number of rows added.
42 class CircularRowBuffer {
43  public:
44   // The number of pixels in each row is given in |source_row_pixel_width|.
45   // The maximum number of rows needed in the buffer is |max_y_filter_size|
46   // (we only need to store enough rows for the biggest filter).
47   //
48   // We use the |first_input_row| to compute the coordinates of all of the
49   // following rows returned by Advance().
CircularRowBuffer(int dest_row_pixel_width,int max_y_filter_size,int first_input_row)50   CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size,
51                     int first_input_row)
52       : row_byte_width_(dest_row_pixel_width * 4),
53         num_rows_(max_y_filter_size),
54         next_row_(0),
55         next_row_coordinate_(first_input_row) {
56     buffer_.resize(row_byte_width_ * max_y_filter_size);
57     row_addresses_.resize(num_rows_);
58   }
59 
60   // Moves to the next row in the buffer, returning a pointer to the beginning
61   // of it.
AdvanceRow()62   unsigned char* AdvanceRow() {
63     unsigned char* row = &buffer_[next_row_ * row_byte_width_];
64     next_row_coordinate_++;
65 
66     // Set the pointer to the next row to use, wrapping around if necessary.
67     next_row_++;
68     if (next_row_ == num_rows_)
69       next_row_ = 0;
70     return row;
71   }
72 
73   // Returns a pointer to an "unrolled" array of rows. These rows will start
74   // at the y coordinate placed into |*first_row_index| and will continue in
75   // order for the maximum number of rows in this circular buffer.
76   //
77   // The |first_row_index_| may be negative. This means the circular buffer
78   // starts before the top of the image (it hasn't been filled yet).
GetRowAddresses(int * first_row_index)79   unsigned char* const* GetRowAddresses(int* first_row_index) {
80     // Example for a 4-element circular buffer holding coords 6-9.
81     //   Row 0   Coord 8
82     //   Row 1   Coord 9
83     //   Row 2   Coord 6  <- next_row_ = 2, next_row_coordinate_ = 10.
84     //   Row 3   Coord 7
85     //
86     // The "next" row is also the first (lowest) coordinate. This computation
87     // may yield a negative value, but that's OK, the math will work out
88     // since the user of this buffer will compute the offset relative
89     // to the first_row_index and the negative rows will never be used.
90     *first_row_index = next_row_coordinate_ - num_rows_;
91 
92     int cur_row = next_row_;
93     for (int i = 0; i < num_rows_; i++) {
94       row_addresses_[i] = &buffer_[cur_row * row_byte_width_];
95 
96       // Advance to the next row, wrapping if necessary.
97       cur_row++;
98       if (cur_row == num_rows_)
99         cur_row = 0;
100     }
101     return &row_addresses_[0];
102   }
103 
104  private:
105   // The buffer storing the rows. They are packed, each one row_byte_width_.
106   std::vector<unsigned char> buffer_;
107 
108   // Number of bytes per row in the |buffer_|.
109   int row_byte_width_;
110 
111   // The number of rows available in the buffer.
112   int num_rows_;
113 
114   // The next row index we should write into. This wraps around as the
115   // circular buffer is used.
116   int next_row_;
117 
118   // The y coordinate of the |next_row_|. This is incremented each time a
119   // new row is appended and does not wrap.
120   int next_row_coordinate_;
121 
122   // Buffer used by GetRowAddresses().
123   std::vector<unsigned char*> row_addresses_;
124 };
125 
126 // Convolves horizontally along a single row. The row data is given in
127 // |src_data| and continues for the num_values() of the filter.
128 template<bool has_alpha>
ConvolveHorizontally(const unsigned char * src_data,const ConvolutionFilter1D & filter,unsigned char * out_row)129 void ConvolveHorizontally(const unsigned char* src_data,
130                           const ConvolutionFilter1D& filter,
131                           unsigned char* out_row) {
132   // Loop over each pixel on this row in the output image.
133   int num_values = filter.num_values();
134   for (int out_x = 0; out_x < num_values; out_x++) {
135     // Get the filter that determines the current output pixel.
136     int filter_offset, filter_length;
137     const ConvolutionFilter1D::Fixed* filter_values =
138         filter.FilterForValue(out_x, &filter_offset, &filter_length);
139 
140     // Compute the first pixel in this row that the filter affects. It will
141     // touch |filter_length| pixels (4 bytes each) after this.
142     const unsigned char* row_to_filter = &src_data[filter_offset * 4];
143 
144     // Apply the filter to the row to get the destination pixel in |accum|.
145     int accum[4] = {0};
146     for (int filter_x = 0; filter_x < filter_length; filter_x++) {
147       ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x];
148       accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0];
149       accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1];
150       accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2];
151       if (has_alpha)
152         accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3];
153     }
154 
155     // Bring this value back in range. All of the filter scaling factors
156     // are in fixed point with kShiftBits bits of fractional part.
157     accum[0] >>= ConvolutionFilter1D::kShiftBits;
158     accum[1] >>= ConvolutionFilter1D::kShiftBits;
159     accum[2] >>= ConvolutionFilter1D::kShiftBits;
160     if (has_alpha)
161       accum[3] >>= ConvolutionFilter1D::kShiftBits;
162 
163     // Store the new pixel.
164     out_row[out_x * 4 + 0] = ClampTo8(accum[0]);
165     out_row[out_x * 4 + 1] = ClampTo8(accum[1]);
166     out_row[out_x * 4 + 2] = ClampTo8(accum[2]);
167     if (has_alpha)
168       out_row[out_x * 4 + 3] = ClampTo8(accum[3]);
169   }
170 }
171 
172 // Does vertical convolution to produce one output row. The filter values and
173 // length are given in the first two parameters. These are applied to each
174 // of the rows pointed to in the |source_data_rows| array, with each row
175 // being |pixel_width| wide.
176 //
177 // The output must have room for |pixel_width * 4| bytes.
178 template<bool has_alpha>
ConvolveVertically(const ConvolutionFilter1D::Fixed * filter_values,int filter_length,unsigned char * const * source_data_rows,int pixel_width,unsigned char * out_row)179 void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
180                         int filter_length,
181                         unsigned char* const* source_data_rows,
182                         int pixel_width,
183                         unsigned char* out_row) {
184   // We go through each column in the output and do a vertical convolution,
185   // generating one output pixel each time.
186   for (int out_x = 0; out_x < pixel_width; out_x++) {
187     // Compute the number of bytes over in each row that the current column
188     // we're convolving starts at. The pixel will cover the next 4 bytes.
189     int byte_offset = out_x * 4;
190 
191     // Apply the filter to one column of pixels.
192     int accum[4] = {0};
193     for (int filter_y = 0; filter_y < filter_length; filter_y++) {
194       ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y];
195       accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0];
196       accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1];
197       accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2];
198       if (has_alpha)
199         accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3];
200     }
201 
202     // Bring this value back in range. All of the filter scaling factors
203     // are in fixed point with kShiftBits bits of precision.
204     accum[0] >>= ConvolutionFilter1D::kShiftBits;
205     accum[1] >>= ConvolutionFilter1D::kShiftBits;
206     accum[2] >>= ConvolutionFilter1D::kShiftBits;
207     if (has_alpha)
208       accum[3] >>= ConvolutionFilter1D::kShiftBits;
209 
210     // Store the new pixel.
211     out_row[byte_offset + 0] = ClampTo8(accum[0]);
212     out_row[byte_offset + 1] = ClampTo8(accum[1]);
213     out_row[byte_offset + 2] = ClampTo8(accum[2]);
214     if (has_alpha) {
215       unsigned char alpha = ClampTo8(accum[3]);
216 
217       // Make sure the alpha channel doesn't come out smaller than any of the
218       // color channels. We use premultipled alpha channels, so this should
219       // never happen, but rounding errors will cause this from time to time.
220       // These "impossible" colors will cause overflows (and hence random pixel
221       // values) when the resulting bitmap is drawn to the screen.
222       //
223       // We only need to do this when generating the final output row (here).
224       int max_color_channel = std::max(out_row[byte_offset + 0],
225           std::max(out_row[byte_offset + 1], out_row[byte_offset + 2]));
226       if (alpha < max_color_channel)
227         out_row[byte_offset + 3] = max_color_channel;
228       else
229         out_row[byte_offset + 3] = alpha;
230     } else {
231       // No alpha channel, the image is opaque.
232       out_row[byte_offset + 3] = 0xff;
233     }
234   }
235 }
236 
ConvolveVertically(const ConvolutionFilter1D::Fixed * filter_values,int filter_length,unsigned char * const * source_data_rows,int pixel_width,unsigned char * out_row,bool source_has_alpha)237 void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
238                         int filter_length,
239                         unsigned char* const* source_data_rows,
240                         int pixel_width,
241                         unsigned char* out_row,
242                         bool source_has_alpha) {
243   if (source_has_alpha) {
244     ConvolveVertically<true>(filter_values, filter_length,
245                              source_data_rows,
246                              pixel_width,
247                              out_row);
248   } else {
249     ConvolveVertically<false>(filter_values, filter_length,
250                               source_data_rows,
251                               pixel_width,
252                               out_row);
253   }
254 }
255 
256 }  // namespace
257 
258 // ConvolutionFilter1D ---------------------------------------------------------
259 
ConvolutionFilter1D()260 ConvolutionFilter1D::ConvolutionFilter1D()
261     : max_filter_(0) {
262 }
263 
~ConvolutionFilter1D()264 ConvolutionFilter1D::~ConvolutionFilter1D() {
265 }
266 
AddFilter(int filter_offset,const float * filter_values,int filter_length)267 void ConvolutionFilter1D::AddFilter(int filter_offset,
268                                     const float* filter_values,
269                                     int filter_length) {
270   SkASSERT(filter_length > 0);
271 
272   std::vector<Fixed> fixed_values;
273   fixed_values.reserve(filter_length);
274 
275   for (int i = 0; i < filter_length; ++i)
276     fixed_values.push_back(FloatToFixed(filter_values[i]));
277 
278   AddFilter(filter_offset, &fixed_values[0], filter_length);
279 }
280 
AddFilter(int filter_offset,const Fixed * filter_values,int filter_length)281 void ConvolutionFilter1D::AddFilter(int filter_offset,
282                                     const Fixed* filter_values,
283                                     int filter_length) {
284   // It is common for leading/trailing filter values to be zeros. In such
285   // cases it is beneficial to only store the central factors.
286   // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on
287   // a 1080p image this optimization gives a ~10% speed improvement.
288   int filter_size = filter_length;
289   int first_non_zero = 0;
290   while (first_non_zero < filter_length && filter_values[first_non_zero] == 0)
291     first_non_zero++;
292 
293   if (first_non_zero < filter_length) {
294     // Here we have at least one non-zero factor.
295     int last_non_zero = filter_length - 1;
296     while (last_non_zero >= 0 && filter_values[last_non_zero] == 0)
297       last_non_zero--;
298 
299     filter_offset += first_non_zero;
300     filter_length = last_non_zero + 1 - first_non_zero;
301     SkASSERT(filter_length > 0);
302 
303     for (int i = first_non_zero; i <= last_non_zero; i++)
304       filter_values_.push_back(filter_values[i]);
305   } else {
306     // Here all the factors were zeroes.
307     filter_length = 0;
308   }
309 
310   FilterInstance instance;
311 
312   // We pushed filter_length elements onto filter_values_
313   instance.data_location = (static_cast<int>(filter_values_.size()) -
314                             filter_length);
315   instance.offset = filter_offset;
316   instance.trimmed_length = filter_length;
317   instance.length = filter_size;
318   filters_.push_back(instance);
319 
320   max_filter_ = std::max(max_filter_, filter_length);
321 }
322 
GetSingleFilter(int * specified_filter_length,int * filter_offset,int * filter_length) const323 const ConvolutionFilter1D::Fixed* ConvolutionFilter1D::GetSingleFilter(
324     int* specified_filter_length,
325     int* filter_offset,
326     int* filter_length) const {
327   const FilterInstance& filter = filters_[0];
328   *filter_offset = filter.offset;
329   *filter_length = filter.trimmed_length;
330   *specified_filter_length = filter.length;
331   if (filter.trimmed_length == 0)
332     return NULL;
333 
334   return &filter_values_[filter.data_location];
335 }
336 
337 typedef void (*ConvolveVertically_pointer)(
338     const ConvolutionFilter1D::Fixed* filter_values,
339     int filter_length,
340     unsigned char* const* source_data_rows,
341     int pixel_width,
342     unsigned char* out_row,
343     bool has_alpha);
344 typedef void (*Convolve4RowsHorizontally_pointer)(
345     const unsigned char* src_data[4],
346     const ConvolutionFilter1D& filter,
347     unsigned char* out_row[4]);
348 typedef void (*ConvolveHorizontally_pointer)(
349     const unsigned char* src_data,
350     const ConvolutionFilter1D& filter,
351     unsigned char* out_row,
352     bool has_alpha);
353 
354 struct ConvolveProcs {
355   // This is how many extra pixels may be read by the
356   // conolve*horizontally functions.
357   int extra_horizontal_reads;
358   ConvolveVertically_pointer convolve_vertically;
359   Convolve4RowsHorizontally_pointer convolve_4rows_horizontally;
360   ConvolveHorizontally_pointer convolve_horizontally;
361 };
362 
SetupSIMD(ConvolveProcs * procs)363 void SetupSIMD(ConvolveProcs *procs) {
364 #ifdef SIMD_SSE2
365   base::CPU cpu;
366   if (cpu.has_sse2()) {
367     procs->extra_horizontal_reads = 3;
368     procs->convolve_vertically = &ConvolveVertically_SSE2;
369     procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2;
370     procs->convolve_horizontally = &ConvolveHorizontally_SSE2;
371   }
372 #elif defined SIMD_MIPS_DSPR2
373   procs->extra_horizontal_reads = 3;
374   procs->convolve_vertically = &ConvolveVertically_mips_dspr2;
375   procs->convolve_horizontally = &ConvolveHorizontally_mips_dspr2;
376 #endif
377 }
378 
BGRAConvolve2D(const unsigned char * source_data,int source_byte_row_stride,bool source_has_alpha,const ConvolutionFilter1D & filter_x,const ConvolutionFilter1D & filter_y,int output_byte_row_stride,unsigned char * output,bool use_simd_if_possible)379 void BGRAConvolve2D(const unsigned char* source_data,
380                     int source_byte_row_stride,
381                     bool source_has_alpha,
382                     const ConvolutionFilter1D& filter_x,
383                     const ConvolutionFilter1D& filter_y,
384                     int output_byte_row_stride,
385                     unsigned char* output,
386                     bool use_simd_if_possible) {
387   ConvolveProcs simd;
388   simd.extra_horizontal_reads = 0;
389   simd.convolve_vertically = NULL;
390   simd.convolve_4rows_horizontally = NULL;
391   simd.convolve_horizontally = NULL;
392   if (use_simd_if_possible) {
393     SetupSIMD(&simd);
394   }
395 
396   int max_y_filter_size = filter_y.max_filter();
397 
398   // The next row in the input that we will generate a horizontally
399   // convolved row for. If the filter doesn't start at the beginning of the
400   // image (this is the case when we are only resizing a subset), then we
401   // don't want to generate any output rows before that. Compute the starting
402   // row for convolution as the first pixel for the first vertical filter.
403   int filter_offset, filter_length;
404   const ConvolutionFilter1D::Fixed* filter_values =
405       filter_y.FilterForValue(0, &filter_offset, &filter_length);
406   int next_x_row = filter_offset;
407 
408   // We loop over each row in the input doing a horizontal convolution. This
409   // will result in a horizontally convolved image. We write the results into
410   // a circular buffer of convolved rows and do vertical convolution as rows
411   // are available. This prevents us from having to store the entire
412   // intermediate image and helps cache coherency.
413   // We will need four extra rows to allow horizontal convolution could be done
414   // simultaneously. We also padding each row in row buffer to be aligned-up to
415   // 16 bytes.
416   // TODO(jiesun): We do not use aligned load from row buffer in vertical
417   // convolution pass yet. Somehow Windows does not like it.
418   int row_buffer_width = (filter_x.num_values() + 15) & ~0xF;
419   int row_buffer_height = max_y_filter_size +
420       (simd.convolve_4rows_horizontally ? 4 : 0);
421   CircularRowBuffer row_buffer(row_buffer_width,
422                                row_buffer_height,
423                                filter_offset);
424 
425   // Loop over every possible output row, processing just enough horizontal
426   // convolutions to run each subsequent vertical convolution.
427   SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4);
428   int num_output_rows = filter_y.num_values();
429 
430   // We need to check which is the last line to convolve before we advance 4
431   // lines in one iteration.
432   int last_filter_offset, last_filter_length;
433 
434   // SSE2 can access up to 3 extra pixels past the end of the
435   // buffer. At the bottom of the image, we have to be careful
436   // not to access data past the end of the buffer. Normally
437   // we fall back to the C++ implementation for the last row.
438   // If the last row is less than 3 pixels wide, we may have to fall
439   // back to the C++ version for more rows. Compute how many
440   // rows we need to avoid the SSE implementation for here.
441   filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset,
442                           &last_filter_length);
443   int avoid_simd_rows = 1 + simd.extra_horizontal_reads /
444       (last_filter_offset + last_filter_length);
445 
446   filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset,
447                           &last_filter_length);
448 
449   for (int out_y = 0; out_y < num_output_rows; out_y++) {
450     filter_values = filter_y.FilterForValue(out_y,
451                                             &filter_offset, &filter_length);
452 
453     // Generate output rows until we have enough to run the current filter.
454     while (next_x_row < filter_offset + filter_length) {
455       if (simd.convolve_4rows_horizontally &&
456           next_x_row + 3 < last_filter_offset + last_filter_length -
457           avoid_simd_rows) {
458         const unsigned char* src[4];
459         unsigned char* out_row[4];
460         for (int i = 0; i < 4; ++i) {
461           src[i] = &source_data[(next_x_row + i) * source_byte_row_stride];
462           out_row[i] = row_buffer.AdvanceRow();
463         }
464         simd.convolve_4rows_horizontally(src, filter_x, out_row);
465         next_x_row += 4;
466       } else {
467         // Check if we need to avoid SSE2 for this row.
468         if (simd.convolve_horizontally &&
469             next_x_row < last_filter_offset + last_filter_length -
470             avoid_simd_rows) {
471           simd.convolve_horizontally(
472               &source_data[next_x_row * source_byte_row_stride],
473               filter_x, row_buffer.AdvanceRow(), source_has_alpha);
474         } else {
475           if (source_has_alpha) {
476             ConvolveHorizontally<true>(
477                 &source_data[next_x_row * source_byte_row_stride],
478                 filter_x, row_buffer.AdvanceRow());
479           } else {
480             ConvolveHorizontally<false>(
481                 &source_data[next_x_row * source_byte_row_stride],
482                 filter_x, row_buffer.AdvanceRow());
483           }
484         }
485         next_x_row++;
486       }
487     }
488 
489     // Compute where in the output image this row of final data will go.
490     unsigned char* cur_output_row = &output[out_y * output_byte_row_stride];
491 
492     // Get the list of rows that the circular buffer has, in order.
493     int first_row_in_circular_buffer;
494     unsigned char* const* rows_to_convolve =
495         row_buffer.GetRowAddresses(&first_row_in_circular_buffer);
496 
497     // Now compute the start of the subset of those rows that the filter
498     // needs.
499     unsigned char* const* first_row_for_filter =
500         &rows_to_convolve[filter_offset - first_row_in_circular_buffer];
501 
502     if (simd.convolve_vertically) {
503       simd.convolve_vertically(filter_values, filter_length,
504                                first_row_for_filter,
505                                filter_x.num_values(), cur_output_row,
506                                source_has_alpha);
507     } else {
508       ConvolveVertically(filter_values, filter_length,
509                          first_row_for_filter,
510                          filter_x.num_values(), cur_output_row,
511                          source_has_alpha);
512     }
513   }
514 }
515 
SingleChannelConvolveX1D(const unsigned char * source_data,int source_byte_row_stride,int input_channel_index,int input_channel_count,const ConvolutionFilter1D & filter,const SkISize & image_size,unsigned char * output,int output_byte_row_stride,int output_channel_index,int output_channel_count,bool absolute_values)516 void SingleChannelConvolveX1D(const unsigned char* source_data,
517                               int source_byte_row_stride,
518                               int input_channel_index,
519                               int input_channel_count,
520                               const ConvolutionFilter1D& filter,
521                               const SkISize& image_size,
522                               unsigned char* output,
523                               int output_byte_row_stride,
524                               int output_channel_index,
525                               int output_channel_count,
526                               bool absolute_values) {
527   int filter_offset, filter_length, filter_size;
528   // Very much unlike BGRAConvolve2D, here we expect to have the same filter
529   // for all pixels.
530   const ConvolutionFilter1D::Fixed* filter_values =
531       filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length);
532 
533   if (filter_values == NULL || image_size.width() < filter_size) {
534     NOTREACHED();
535     return;
536   }
537 
538   int centrepoint = filter_length / 2;
539   if (filter_size - filter_offset != 2 * filter_offset) {
540     // This means the original filter was not symmetrical AND
541     // got clipped from one side more than from the other.
542     centrepoint = filter_size / 2 - filter_offset;
543   }
544 
545   const unsigned char* source_data_row = source_data;
546   unsigned char* output_row = output;
547 
548   for (int r = 0; r < image_size.height(); ++r) {
549     unsigned char* target_byte = output_row + output_channel_index;
550     // Process the lead part, padding image to the left with the first pixel.
551     int c = 0;
552     for (; c < centrepoint; ++c, target_byte += output_channel_count) {
553       int accval = 0;
554       int i = 0;
555       int pixel_byte_index = input_channel_index;
556       for (; i < centrepoint - c; ++i)  // Padding part.
557         accval += filter_values[i] * source_data_row[pixel_byte_index];
558 
559       for (; i < filter_length; ++i, pixel_byte_index += input_channel_count)
560         accval += filter_values[i] * source_data_row[pixel_byte_index];
561 
562       *target_byte = BringBackTo8(accval, absolute_values);
563     }
564 
565     // Now for the main event.
566     for (; c < image_size.width() - centrepoint;
567          ++c, target_byte += output_channel_count) {
568       int accval = 0;
569       int pixel_byte_index = (c - centrepoint) * input_channel_count +
570           input_channel_index;
571 
572       for (int i = 0; i < filter_length;
573            ++i, pixel_byte_index += input_channel_count) {
574         accval += filter_values[i] * source_data_row[pixel_byte_index];
575       }
576 
577       *target_byte = BringBackTo8(accval, absolute_values);
578     }
579 
580     for (; c < image_size.width(); ++c, target_byte += output_channel_count) {
581       int accval = 0;
582       int overlap_taps = image_size.width() - c + centrepoint;
583       int pixel_byte_index = (c - centrepoint) * input_channel_count +
584           input_channel_index;
585       int i = 0;
586       for (; i < overlap_taps - 1; ++i, pixel_byte_index += input_channel_count)
587         accval += filter_values[i] * source_data_row[pixel_byte_index];
588 
589       for (; i < filter_length; ++i)
590         accval += filter_values[i] * source_data_row[pixel_byte_index];
591 
592       *target_byte = BringBackTo8(accval, absolute_values);
593     }
594 
595     source_data_row += source_byte_row_stride;
596     output_row += output_byte_row_stride;
597   }
598 }
599 
SingleChannelConvolveY1D(const unsigned char * source_data,int source_byte_row_stride,int input_channel_index,int input_channel_count,const ConvolutionFilter1D & filter,const SkISize & image_size,unsigned char * output,int output_byte_row_stride,int output_channel_index,int output_channel_count,bool absolute_values)600 void SingleChannelConvolveY1D(const unsigned char* source_data,
601                               int source_byte_row_stride,
602                               int input_channel_index,
603                               int input_channel_count,
604                               const ConvolutionFilter1D& filter,
605                               const SkISize& image_size,
606                               unsigned char* output,
607                               int output_byte_row_stride,
608                               int output_channel_index,
609                               int output_channel_count,
610                               bool absolute_values) {
611   int filter_offset, filter_length, filter_size;
612   // Very much unlike BGRAConvolve2D, here we expect to have the same filter
613   // for all pixels.
614   const ConvolutionFilter1D::Fixed* filter_values =
615       filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length);
616 
617   if (filter_values == NULL || image_size.height() < filter_size) {
618     NOTREACHED();
619     return;
620   }
621 
622   int centrepoint = filter_length / 2;
623   if (filter_size - filter_offset != 2 * filter_offset) {
624     // This means the original filter was not symmetrical AND
625     // got clipped from one side more than from the other.
626     centrepoint = filter_size / 2 - filter_offset;
627   }
628 
629   for (int c = 0; c < image_size.width(); ++c) {
630     unsigned char* target_byte = output + c * output_channel_count +
631         output_channel_index;
632     int r = 0;
633 
634     for (; r < centrepoint; ++r, target_byte += output_byte_row_stride) {
635       int accval = 0;
636       int i = 0;
637       int pixel_byte_index = c * input_channel_count + input_channel_index;
638 
639       for (; i < centrepoint - r; ++i)  // Padding part.
640         accval += filter_values[i] * source_data[pixel_byte_index];
641 
642       for (; i < filter_length; ++i, pixel_byte_index += source_byte_row_stride)
643         accval += filter_values[i] * source_data[pixel_byte_index];
644 
645       *target_byte = BringBackTo8(accval, absolute_values);
646     }
647 
648     for (; r < image_size.height() - centrepoint;
649          ++r, target_byte += output_byte_row_stride) {
650       int accval = 0;
651       int pixel_byte_index = (r - centrepoint) * source_byte_row_stride +
652           c * input_channel_count + input_channel_index;
653       for (int i = 0; i < filter_length;
654            ++i, pixel_byte_index += source_byte_row_stride) {
655         accval += filter_values[i] * source_data[pixel_byte_index];
656       }
657 
658       *target_byte = BringBackTo8(accval, absolute_values);
659     }
660 
661     for (; r < image_size.height();
662          ++r, target_byte += output_byte_row_stride) {
663       int accval = 0;
664       int overlap_taps = image_size.height() - r + centrepoint;
665       int pixel_byte_index = (r - centrepoint) * source_byte_row_stride +
666           c * input_channel_count + input_channel_index;
667       int i = 0;
668       for (; i < overlap_taps - 1;
669            ++i, pixel_byte_index += source_byte_row_stride) {
670         accval += filter_values[i] * source_data[pixel_byte_index];
671       }
672 
673       for (; i < filter_length; ++i)
674         accval += filter_values[i] * source_data[pixel_byte_index];
675 
676       *target_byte = BringBackTo8(accval, absolute_values);
677     }
678   }
679 }
680 
SetUpGaussianConvolutionKernel(ConvolutionFilter1D * filter,float kernel_sigma,bool derivative)681 void SetUpGaussianConvolutionKernel(ConvolutionFilter1D* filter,
682                                     float kernel_sigma,
683                                     bool derivative) {
684   DCHECK(filter != NULL);
685   DCHECK_GT(kernel_sigma, 0.0);
686   const int tail_length = static_cast<int>(4.0f * kernel_sigma + 0.5f);
687   const int kernel_size = tail_length * 2 + 1;
688   const float sigmasq = kernel_sigma * kernel_sigma;
689   std::vector<float> kernel_weights(kernel_size, 0.0);
690   float kernel_sum = 1.0f;
691 
692   kernel_weights[tail_length] = 1.0f;
693 
694   for (int ii = 1; ii <= tail_length; ++ii) {
695     float v = std::exp(-0.5f * ii * ii / sigmasq);
696     kernel_weights[tail_length + ii] = v;
697     kernel_weights[tail_length - ii] = v;
698     kernel_sum += 2.0f * v;
699   }
700 
701   for (int i = 0; i < kernel_size; ++i)
702     kernel_weights[i] /= kernel_sum;
703 
704   if (derivative) {
705     kernel_weights[tail_length] = 0.0;
706     for (int ii = 1; ii <= tail_length; ++ii) {
707       float v = sigmasq * kernel_weights[tail_length + ii] / ii;
708       kernel_weights[tail_length + ii] = v;
709       kernel_weights[tail_length - ii] = -v;
710     }
711   }
712 
713   filter->AddFilter(0, &kernel_weights[0], kernel_weights.size());
714 }
715 
716 }  // namespace skia
717