1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "media/base/vector_math.h"
6 #include "media/base/vector_math_testing.h"
7
8 #include <algorithm>
9
10 #include "base/logging.h"
11 #include "build/build_config.h"
12
13 // NaCl does not allow intrinsics.
14 #if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL)
15 #include <xmmintrin.h>
16 #define FMAC_FUNC FMAC_SSE
17 #define FMUL_FUNC FMUL_SSE
18 #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_SSE
19 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
20 #include <arm_neon.h>
21 #define FMAC_FUNC FMAC_NEON
22 #define FMUL_FUNC FMUL_NEON
23 #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_NEON
24 #else
25 #define FMAC_FUNC FMAC_C
26 #define FMUL_FUNC FMUL_C
27 #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_C
28 #endif
29
30 namespace media {
31 namespace vector_math {
32
FMAC(const float src[],float scale,int len,float dest[])33 void FMAC(const float src[], float scale, int len, float dest[]) {
34 // Ensure |src| and |dest| are 16-byte aligned.
35 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1));
36 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(dest) & (kRequiredAlignment - 1));
37 return FMAC_FUNC(src, scale, len, dest);
38 }
39
FMAC_C(const float src[],float scale,int len,float dest[])40 void FMAC_C(const float src[], float scale, int len, float dest[]) {
41 for (int i = 0; i < len; ++i)
42 dest[i] += src[i] * scale;
43 }
44
FMUL(const float src[],float scale,int len,float dest[])45 void FMUL(const float src[], float scale, int len, float dest[]) {
46 // Ensure |src| and |dest| are 16-byte aligned.
47 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1));
48 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(dest) & (kRequiredAlignment - 1));
49 return FMUL_FUNC(src, scale, len, dest);
50 }
51
FMUL_C(const float src[],float scale,int len,float dest[])52 void FMUL_C(const float src[], float scale, int len, float dest[]) {
53 for (int i = 0; i < len; ++i)
54 dest[i] = src[i] * scale;
55 }
56
Crossfade(const float src[],int len,float dest[])57 void Crossfade(const float src[], int len, float dest[]) {
58 float cf_ratio = 0;
59 const float cf_increment = 1.0f / len;
60 for (int i = 0; i < len; ++i, cf_ratio += cf_increment)
61 dest[i] = (1.0f - cf_ratio) * src[i] + cf_ratio * dest[i];
62 }
63
EWMAAndMaxPower(float initial_value,const float src[],int len,float smoothing_factor)64 std::pair<float, float> EWMAAndMaxPower(
65 float initial_value, const float src[], int len, float smoothing_factor) {
66 // Ensure |src| is 16-byte aligned.
67 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1));
68 return EWMAAndMaxPower_FUNC(initial_value, src, len, smoothing_factor);
69 }
70
EWMAAndMaxPower_C(float initial_value,const float src[],int len,float smoothing_factor)71 std::pair<float, float> EWMAAndMaxPower_C(
72 float initial_value, const float src[], int len, float smoothing_factor) {
73 std::pair<float, float> result(initial_value, 0.0f);
74 const float weight_prev = 1.0f - smoothing_factor;
75 for (int i = 0; i < len; ++i) {
76 result.first *= weight_prev;
77 const float sample = src[i];
78 const float sample_squared = sample * sample;
79 result.first += sample_squared * smoothing_factor;
80 result.second = std::max(result.second, sample_squared);
81 }
82 return result;
83 }
84
85 #if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL)
FMUL_SSE(const float src[],float scale,int len,float dest[])86 void FMUL_SSE(const float src[], float scale, int len, float dest[]) {
87 const int rem = len % 4;
88 const int last_index = len - rem;
89 __m128 m_scale = _mm_set_ps1(scale);
90 for (int i = 0; i < last_index; i += 4)
91 _mm_store_ps(dest + i, _mm_mul_ps(_mm_load_ps(src + i), m_scale));
92
93 // Handle any remaining values that wouldn't fit in an SSE pass.
94 for (int i = last_index; i < len; ++i)
95 dest[i] = src[i] * scale;
96 }
97
FMAC_SSE(const float src[],float scale,int len,float dest[])98 void FMAC_SSE(const float src[], float scale, int len, float dest[]) {
99 const int rem = len % 4;
100 const int last_index = len - rem;
101 __m128 m_scale = _mm_set_ps1(scale);
102 for (int i = 0; i < last_index; i += 4) {
103 _mm_store_ps(dest + i, _mm_add_ps(_mm_load_ps(dest + i),
104 _mm_mul_ps(_mm_load_ps(src + i), m_scale)));
105 }
106
107 // Handle any remaining values that wouldn't fit in an SSE pass.
108 for (int i = last_index; i < len; ++i)
109 dest[i] += src[i] * scale;
110 }
111
112 // Convenience macro to extract float 0 through 3 from the vector |a|. This is
113 // needed because compilers other than clang don't support access via
114 // operator[]().
115 #define EXTRACT_FLOAT(a, i) \
116 (i == 0 ? \
117 _mm_cvtss_f32(a) : \
118 _mm_cvtss_f32(_mm_shuffle_ps(a, a, i)))
119
EWMAAndMaxPower_SSE(float initial_value,const float src[],int len,float smoothing_factor)120 std::pair<float, float> EWMAAndMaxPower_SSE(
121 float initial_value, const float src[], int len, float smoothing_factor) {
122 // When the recurrence is unrolled, we see that we can split it into 4
123 // separate lanes of evaluation:
124 //
125 // y[n] = a(S[n]^2) + (1-a)(y[n-1])
126 // = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ...
127 // = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
128 //
129 // where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ...
130 //
131 // Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in
132 // each of the 4 lanes, and then combine them to give y[n].
133
134 const int rem = len % 4;
135 const int last_index = len - rem;
136
137 const __m128 smoothing_factor_x4 = _mm_set_ps1(smoothing_factor);
138 const float weight_prev = 1.0f - smoothing_factor;
139 const __m128 weight_prev_x4 = _mm_set_ps1(weight_prev);
140 const __m128 weight_prev_squared_x4 =
141 _mm_mul_ps(weight_prev_x4, weight_prev_x4);
142 const __m128 weight_prev_4th_x4 =
143 _mm_mul_ps(weight_prev_squared_x4, weight_prev_squared_x4);
144
145 // Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and
146 // 0, respectively.
147 __m128 max_x4 = _mm_setzero_ps();
148 __m128 ewma_x4 = _mm_setr_ps(0.0f, 0.0f, 0.0f, initial_value);
149 int i;
150 for (i = 0; i < last_index; i += 4) {
151 ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_4th_x4);
152 const __m128 sample_x4 = _mm_load_ps(src + i);
153 const __m128 sample_squared_x4 = _mm_mul_ps(sample_x4, sample_x4);
154 max_x4 = _mm_max_ps(max_x4, sample_squared_x4);
155 // Note: The compiler optimizes this to a single multiply-and-accumulate
156 // instruction:
157 ewma_x4 = _mm_add_ps(ewma_x4,
158 _mm_mul_ps(sample_squared_x4, smoothing_factor_x4));
159 }
160
161 // y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
162 float ewma = EXTRACT_FLOAT(ewma_x4, 3);
163 ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4);
164 ewma += EXTRACT_FLOAT(ewma_x4, 2);
165 ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4);
166 ewma += EXTRACT_FLOAT(ewma_x4, 1);
167 ewma_x4 = _mm_mul_ss(ewma_x4, weight_prev_x4);
168 ewma += EXTRACT_FLOAT(ewma_x4, 0);
169
170 // Fold the maximums together to get the overall maximum.
171 max_x4 = _mm_max_ps(max_x4,
172 _mm_shuffle_ps(max_x4, max_x4, _MM_SHUFFLE(3, 3, 1, 1)));
173 max_x4 = _mm_max_ss(max_x4, _mm_shuffle_ps(max_x4, max_x4, 2));
174
175 std::pair<float, float> result(ewma, EXTRACT_FLOAT(max_x4, 0));
176
177 // Handle remaining values at the end of |src|.
178 for (; i < len; ++i) {
179 result.first *= weight_prev;
180 const float sample = src[i];
181 const float sample_squared = sample * sample;
182 result.first += sample_squared * smoothing_factor;
183 result.second = std::max(result.second, sample_squared);
184 }
185
186 return result;
187 }
188 #endif
189
190 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
FMAC_NEON(const float src[],float scale,int len,float dest[])191 void FMAC_NEON(const float src[], float scale, int len, float dest[]) {
192 const int rem = len % 4;
193 const int last_index = len - rem;
194 float32x4_t m_scale = vmovq_n_f32(scale);
195 for (int i = 0; i < last_index; i += 4) {
196 vst1q_f32(dest + i, vmlaq_f32(
197 vld1q_f32(dest + i), vld1q_f32(src + i), m_scale));
198 }
199
200 // Handle any remaining values that wouldn't fit in an NEON pass.
201 for (int i = last_index; i < len; ++i)
202 dest[i] += src[i] * scale;
203 }
204
FMUL_NEON(const float src[],float scale,int len,float dest[])205 void FMUL_NEON(const float src[], float scale, int len, float dest[]) {
206 const int rem = len % 4;
207 const int last_index = len - rem;
208 float32x4_t m_scale = vmovq_n_f32(scale);
209 for (int i = 0; i < last_index; i += 4)
210 vst1q_f32(dest + i, vmulq_f32(vld1q_f32(src + i), m_scale));
211
212 // Handle any remaining values that wouldn't fit in an NEON pass.
213 for (int i = last_index; i < len; ++i)
214 dest[i] = src[i] * scale;
215 }
216
EWMAAndMaxPower_NEON(float initial_value,const float src[],int len,float smoothing_factor)217 std::pair<float, float> EWMAAndMaxPower_NEON(
218 float initial_value, const float src[], int len, float smoothing_factor) {
219 // When the recurrence is unrolled, we see that we can split it into 4
220 // separate lanes of evaluation:
221 //
222 // y[n] = a(S[n]^2) + (1-a)(y[n-1])
223 // = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ...
224 // = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
225 //
226 // where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ...
227 //
228 // Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in
229 // each of the 4 lanes, and then combine them to give y[n].
230
231 const int rem = len % 4;
232 const int last_index = len - rem;
233
234 const float32x4_t smoothing_factor_x4 = vdupq_n_f32(smoothing_factor);
235 const float weight_prev = 1.0f - smoothing_factor;
236 const float32x4_t weight_prev_x4 = vdupq_n_f32(weight_prev);
237 const float32x4_t weight_prev_squared_x4 =
238 vmulq_f32(weight_prev_x4, weight_prev_x4);
239 const float32x4_t weight_prev_4th_x4 =
240 vmulq_f32(weight_prev_squared_x4, weight_prev_squared_x4);
241
242 // Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and
243 // 0, respectively.
244 float32x4_t max_x4 = vdupq_n_f32(0.0f);
245 float32x4_t ewma_x4 = vsetq_lane_f32(initial_value, vdupq_n_f32(0.0f), 3);
246 int i;
247 for (i = 0; i < last_index; i += 4) {
248 ewma_x4 = vmulq_f32(ewma_x4, weight_prev_4th_x4);
249 const float32x4_t sample_x4 = vld1q_f32(src + i);
250 const float32x4_t sample_squared_x4 = vmulq_f32(sample_x4, sample_x4);
251 max_x4 = vmaxq_f32(max_x4, sample_squared_x4);
252 ewma_x4 = vmlaq_f32(ewma_x4, sample_squared_x4, smoothing_factor_x4);
253 }
254
255 // y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
256 float ewma = vgetq_lane_f32(ewma_x4, 3);
257 ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
258 ewma += vgetq_lane_f32(ewma_x4, 2);
259 ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
260 ewma += vgetq_lane_f32(ewma_x4, 1);
261 ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4);
262 ewma += vgetq_lane_f32(ewma_x4, 0);
263
264 // Fold the maximums together to get the overall maximum.
265 float32x2_t max_x2 = vpmax_f32(vget_low_f32(max_x4), vget_high_f32(max_x4));
266 max_x2 = vpmax_f32(max_x2, max_x2);
267
268 std::pair<float, float> result(ewma, vget_lane_f32(max_x2, 0));
269
270 // Handle remaining values at the end of |src|.
271 for (; i < len; ++i) {
272 result.first *= weight_prev;
273 const float sample = src[i];
274 const float sample_squared = sample * sample;
275 result.first += sample_squared * smoothing_factor;
276 result.second = std::max(result.second, sample_squared);
277 }
278
279 return result;
280 }
281 #endif
282
283 } // namespace vector_math
284 } // namespace media
285