1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "fault_handler.h"
18
19 #include <setjmp.h>
20 #include <sys/mman.h>
21 #include <sys/ucontext.h>
22 #include "mirror/art_method.h"
23 #include "mirror/class.h"
24 #include "sigchain.h"
25 #include "thread-inl.h"
26 #include "verify_object-inl.h"
27
28 // Note on nested signal support
29 // -----------------------------
30 //
31 // Typically a signal handler should not need to deal with signals that occur within it.
32 // However, when a SIGSEGV occurs that is in generated code and is not one of the
33 // handled signals (implicit checks), we call a function to try to dump the stack
34 // to the log. This enhances the debugging experience but may have the side effect
35 // that it may not work. If the cause of the original SIGSEGV is a corrupted stack or other
36 // memory region, the stack backtrace code may run into trouble and may either crash
37 // or fail with an abort (SIGABRT). In either case we don't want that (new) signal to
38 // mask the original signal and thus prevent useful debug output from being presented.
39 //
40 // In order to handle this situation, before we call the stack tracer we do the following:
41 //
42 // 1. shutdown the fault manager so that we are talking to the real signal management
43 // functions rather than those in sigchain.
44 // 2. use pthread_sigmask to allow SIGSEGV and SIGABRT signals to be delivered to the
45 // thread running the signal handler.
46 // 3. set the handler for SIGSEGV and SIGABRT to a secondary signal handler.
47 // 4. save the thread's state to the TLS of the current thread using 'setjmp'
48 //
49 // We then call the stack tracer and one of two things may happen:
50 // a. it completes successfully
51 // b. it crashes and a signal is raised.
52 //
53 // In the former case, we fall through and everything is fine. In the latter case
54 // our secondary signal handler gets called in a signal context. This results in
55 // a call to FaultManager::HandledNestedSignal(), an archirecture specific function
56 // whose purpose is to call 'longjmp' on the jmp_buf saved in the TLS of the current
57 // thread. This results in a return with a non-zero value from 'setjmp'. We detect this
58 // and write something to the log to tell the user that it happened.
59 //
60 // Regardless of how we got there, we reach the code after the stack tracer and we
61 // restore the signal states to their original values, reinstate the fault manager (thus
62 // reestablishing the signal chain) and continue.
63
64 // This is difficult to test with a runtime test. To invoke the nested signal code
65 // on any signal, uncomment the following line and run something that throws a
66 // NullPointerException.
67 // #define TEST_NESTED_SIGNAL
68
69 namespace art {
70 // Static fault manger object accessed by signal handler.
71 FaultManager fault_manager;
72
73 extern "C" {
art_sigsegv_fault()74 void art_sigsegv_fault() {
75 // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART.
76 VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler.";
77 }
78 }
79
80 // Signal handler called on SIGSEGV.
art_fault_handler(int sig,siginfo_t * info,void * context)81 static void art_fault_handler(int sig, siginfo_t* info, void* context) {
82 fault_manager.HandleFault(sig, info, context);
83 }
84
85 // Signal handler for dealing with a nested signal.
art_nested_signal_handler(int sig,siginfo_t * info,void * context)86 static void art_nested_signal_handler(int sig, siginfo_t* info, void* context) {
87 fault_manager.HandleNestedSignal(sig, info, context);
88 }
89
FaultManager()90 FaultManager::FaultManager() : initialized_(false) {
91 sigaction(SIGSEGV, nullptr, &oldaction_);
92 }
93
~FaultManager()94 FaultManager::~FaultManager() {
95 }
96
SetUpArtAction(struct sigaction * action)97 static void SetUpArtAction(struct sigaction* action) {
98 action->sa_sigaction = art_fault_handler;
99 sigemptyset(&action->sa_mask);
100 action->sa_flags = SA_SIGINFO | SA_ONSTACK;
101 #if !defined(__APPLE__) && !defined(__mips__)
102 action->sa_restorer = nullptr;
103 #endif
104 }
105
EnsureArtActionInFrontOfSignalChain()106 void FaultManager::EnsureArtActionInFrontOfSignalChain() {
107 if (initialized_) {
108 struct sigaction action;
109 SetUpArtAction(&action);
110 EnsureFrontOfChain(SIGSEGV, &action);
111 } else {
112 LOG(WARNING) << "Can't call " << __FUNCTION__ << " due to unitialized fault manager";
113 }
114 }
115
Init()116 void FaultManager::Init() {
117 CHECK(!initialized_);
118 struct sigaction action;
119 SetUpArtAction(&action);
120
121 // Set our signal handler now.
122 int e = sigaction(SIGSEGV, &action, &oldaction_);
123 if (e != 0) {
124 VLOG(signals) << "Failed to claim SEGV: " << strerror(errno);
125 }
126 // Make sure our signal handler is called before any user handlers.
127 ClaimSignalChain(SIGSEGV, &oldaction_);
128 initialized_ = true;
129 }
130
Shutdown()131 void FaultManager::Shutdown() {
132 if (initialized_) {
133 UnclaimSignalChain(SIGSEGV);
134 initialized_ = false;
135 }
136 }
137
HandleFault(int sig,siginfo_t * info,void * context)138 void FaultManager::HandleFault(int sig, siginfo_t* info, void* context) {
139 // BE CAREFUL ALLOCATING HERE INCLUDING USING LOG(...)
140 //
141 // If malloc calls abort, it will be holding its lock.
142 // If the handler tries to call malloc, it will deadlock.
143 VLOG(signals) << "Handling fault";
144 if (IsInGeneratedCode(info, context, true)) {
145 VLOG(signals) << "in generated code, looking for handler";
146 for (const auto& handler : generated_code_handlers_) {
147 VLOG(signals) << "invoking Action on handler " << handler;
148 if (handler->Action(sig, info, context)) {
149 #ifdef TEST_NESTED_SIGNAL
150 // In test mode we want to fall through to stack trace handler
151 // on every signal (in reality this will cause a crash on the first
152 // signal).
153 break;
154 #else
155 // We have handled a signal so it's time to return from the
156 // signal handler to the appropriate place.
157 return;
158 #endif
159 }
160 }
161 }
162
163 // We hit a signal we didn't handle. This might be something for which
164 // we can give more information about so call all registered handlers to see
165 // if it is.
166 for (const auto& handler : other_handlers_) {
167 if (handler->Action(sig, info, context)) {
168 return;
169 }
170 }
171
172 // Set a breakpoint in this function to catch unhandled signals.
173 art_sigsegv_fault();
174
175 // Pass this on to the next handler in the chain, or the default if none.
176 InvokeUserSignalHandler(sig, info, context);
177 }
178
AddHandler(FaultHandler * handler,bool generated_code)179 void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) {
180 if (generated_code) {
181 generated_code_handlers_.push_back(handler);
182 } else {
183 other_handlers_.push_back(handler);
184 }
185 }
186
RemoveHandler(FaultHandler * handler)187 void FaultManager::RemoveHandler(FaultHandler* handler) {
188 auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler);
189 if (it != generated_code_handlers_.end()) {
190 generated_code_handlers_.erase(it);
191 return;
192 }
193 auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler);
194 if (it2 != other_handlers_.end()) {
195 other_handlers_.erase(it);
196 return;
197 }
198 LOG(FATAL) << "Attempted to remove non existent handler " << handler;
199 }
200
201 // This function is called within the signal handler. It checks that
202 // the mutator_lock is held (shared). No annotalysis is done.
IsInGeneratedCode(siginfo_t * siginfo,void * context,bool check_dex_pc)203 bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool check_dex_pc) {
204 // We can only be running Java code in the current thread if it
205 // is in Runnable state.
206 VLOG(signals) << "Checking for generated code";
207 Thread* thread = Thread::Current();
208 if (thread == nullptr) {
209 VLOG(signals) << "no current thread";
210 return false;
211 }
212
213 ThreadState state = thread->GetState();
214 if (state != kRunnable) {
215 VLOG(signals) << "not runnable";
216 return false;
217 }
218
219 // Current thread is runnable.
220 // Make sure it has the mutator lock.
221 if (!Locks::mutator_lock_->IsSharedHeld(thread)) {
222 VLOG(signals) << "no lock";
223 return false;
224 }
225
226 mirror::ArtMethod* method_obj = 0;
227 uintptr_t return_pc = 0;
228 uintptr_t sp = 0;
229
230 // Get the architecture specific method address and return address. These
231 // are in architecture specific files in arch/<arch>/fault_handler_<arch>.
232 GetMethodAndReturnPcAndSp(siginfo, context, &method_obj, &return_pc, &sp);
233
234 // If we don't have a potential method, we're outta here.
235 VLOG(signals) << "potential method: " << method_obj;
236 if (method_obj == 0 || !IsAligned<kObjectAlignment>(method_obj)) {
237 VLOG(signals) << "no method";
238 return false;
239 }
240
241 // Verify that the potential method is indeed a method.
242 // TODO: check the GC maps to make sure it's an object.
243 // Check that the class pointer inside the object is not null and is aligned.
244 // TODO: Method might be not a heap address, and GetClass could fault.
245 mirror::Class* cls = method_obj->GetClass<kVerifyNone>();
246 if (cls == nullptr) {
247 VLOG(signals) << "not a class";
248 return false;
249 }
250 if (!IsAligned<kObjectAlignment>(cls)) {
251 VLOG(signals) << "not aligned";
252 return false;
253 }
254
255
256 if (!VerifyClassClass(cls)) {
257 VLOG(signals) << "not a class class";
258 return false;
259 }
260
261 // Now make sure the class is a mirror::ArtMethod.
262 if (!cls->IsArtMethodClass()) {
263 VLOG(signals) << "not a method";
264 return false;
265 }
266
267 // We can be certain that this is a method now. Check if we have a GC map
268 // at the return PC address.
269 if (true || kIsDebugBuild) {
270 VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc;
271 const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(method_obj);
272 uint32_t sought_offset = return_pc - reinterpret_cast<uintptr_t>(code);
273 VLOG(signals) << "pc offset: " << std::hex << sought_offset;
274 }
275 uint32_t dexpc = method_obj->ToDexPc(return_pc, false);
276 VLOG(signals) << "dexpc: " << dexpc;
277 return !check_dex_pc || dexpc != DexFile::kDexNoIndex;
278 }
279
FaultHandler(FaultManager * manager)280 FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) {
281 }
282
283 //
284 // Null pointer fault handler
285 //
NullPointerHandler(FaultManager * manager)286 NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) {
287 manager_->AddHandler(this, true);
288 }
289
290 //
291 // Suspension fault handler
292 //
SuspensionHandler(FaultManager * manager)293 SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) {
294 manager_->AddHandler(this, true);
295 }
296
297 //
298 // Stack overflow fault handler
299 //
StackOverflowHandler(FaultManager * manager)300 StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) {
301 manager_->AddHandler(this, true);
302 }
303
304 //
305 // Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code.
306 //
JavaStackTraceHandler(FaultManager * manager)307 JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) {
308 manager_->AddHandler(this, false);
309 }
310
Action(int sig,siginfo_t * siginfo,void * context)311 bool JavaStackTraceHandler::Action(int sig, siginfo_t* siginfo, void* context) {
312 // Make sure that we are in the generated code, but we may not have a dex pc.
313
314 #ifdef TEST_NESTED_SIGNAL
315 bool in_generated_code = true;
316 #else
317 bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context, false);
318 #endif
319 if (in_generated_code) {
320 LOG(ERROR) << "Dumping java stack trace for crash in generated code";
321 mirror::ArtMethod* method = nullptr;
322 uintptr_t return_pc = 0;
323 uintptr_t sp = 0;
324 Thread* self = Thread::Current();
325
326 // Shutdown the fault manager so that it will remove the signal chain for
327 // SIGSEGV and we call the real sigaction.
328 fault_manager.Shutdown();
329
330 // The action for SIGSEGV should be the default handler now.
331
332 // Unblock the signals we allow so that they can be delivered in the signal handler.
333 sigset_t sigset;
334 sigemptyset(&sigset);
335 sigaddset(&sigset, SIGSEGV);
336 sigaddset(&sigset, SIGABRT);
337 pthread_sigmask(SIG_UNBLOCK, &sigset, nullptr);
338
339 // If we get a signal in this code we want to invoke our nested signal
340 // handler.
341 struct sigaction action, oldsegvaction, oldabortaction;
342 action.sa_sigaction = art_nested_signal_handler;
343
344 // Explictly mask out SIGSEGV and SIGABRT from the nested signal handler. This
345 // should be the default but we definitely don't want these happening in our
346 // nested signal handler.
347 sigemptyset(&action.sa_mask);
348 sigaddset(&action.sa_mask, SIGSEGV);
349 sigaddset(&action.sa_mask, SIGABRT);
350
351 action.sa_flags = SA_SIGINFO | SA_ONSTACK;
352 #if !defined(__APPLE__) && !defined(__mips__)
353 action.sa_restorer = nullptr;
354 #endif
355
356 // Catch SIGSEGV and SIGABRT to invoke our nested handler
357 int e1 = sigaction(SIGSEGV, &action, &oldsegvaction);
358 int e2 = sigaction(SIGABRT, &action, &oldabortaction);
359 if (e1 != 0 || e2 != 0) {
360 LOG(ERROR) << "Unable to register nested signal handler - no stack trace possible";
361 // If sigaction failed we have a serious problem. We cannot catch
362 // any failures in the stack tracer and it's likely to occur since
363 // the program state is bad. Therefore we don't even try to give
364 // a stack trace.
365 } else {
366 // Save the current state and try to dump the stack. If this causes a signal
367 // our nested signal handler will be invoked and this will longjmp to the saved
368 // state.
369 if (setjmp(*self->GetNestedSignalState()) == 0) {
370 manager_->GetMethodAndReturnPcAndSp(siginfo, context, &method, &return_pc, &sp);
371 // Inside of generated code, sp[0] is the method, so sp is the frame.
372 StackReference<mirror::ArtMethod>* frame =
373 reinterpret_cast<StackReference<mirror::ArtMethod>*>(sp);
374 self->SetTopOfStack(frame, 0); // Since we don't necessarily have a dex pc, pass in 0.
375 #ifdef TEST_NESTED_SIGNAL
376 // To test the nested signal handler we raise a signal here. This will cause the
377 // nested signal handler to be called and perform a longjmp back to the setjmp
378 // above.
379 abort();
380 #endif
381 self->DumpJavaStack(LOG(ERROR));
382 } else {
383 LOG(ERROR) << "Stack trace aborted due to nested signal - original signal being reported";
384 }
385
386 // Restore the signal handlers.
387 sigaction(SIGSEGV, &oldsegvaction, nullptr);
388 sigaction(SIGABRT, &oldabortaction, nullptr);
389 }
390
391 // Now put the fault manager back in place.
392 fault_manager.Init();
393
394 // And we're done.
395 }
396
397 return false; // Return false since we want to propagate the fault to the main signal handler.
398 }
399
400 } // namespace art
401
402