• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "semi_space-inl.h"
18 
19 #include <functional>
20 #include <numeric>
21 #include <climits>
22 #include <vector>
23 
24 #include "base/logging.h"
25 #include "base/macros.h"
26 #include "base/mutex-inl.h"
27 #include "base/timing_logger.h"
28 #include "gc/accounting/heap_bitmap-inl.h"
29 #include "gc/accounting/mod_union_table.h"
30 #include "gc/accounting/remembered_set.h"
31 #include "gc/accounting/space_bitmap-inl.h"
32 #include "gc/heap.h"
33 #include "gc/reference_processor.h"
34 #include "gc/space/bump_pointer_space.h"
35 #include "gc/space/bump_pointer_space-inl.h"
36 #include "gc/space/image_space.h"
37 #include "gc/space/large_object_space.h"
38 #include "gc/space/space-inl.h"
39 #include "indirect_reference_table.h"
40 #include "intern_table.h"
41 #include "jni_internal.h"
42 #include "mark_sweep-inl.h"
43 #include "monitor.h"
44 #include "mirror/reference-inl.h"
45 #include "mirror/object-inl.h"
46 #include "runtime.h"
47 #include "thread-inl.h"
48 #include "thread_list.h"
49 
50 using ::art::mirror::Object;
51 
52 namespace art {
53 namespace gc {
54 namespace collector {
55 
56 static constexpr bool kProtectFromSpace = true;
57 static constexpr bool kStoreStackTraces = false;
58 static constexpr size_t kBytesPromotedThreshold = 4 * MB;
59 static constexpr size_t kLargeObjectBytesAllocatedThreshold = 16 * MB;
60 
BindBitmaps()61 void SemiSpace::BindBitmaps() {
62   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
63   WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
64   // Mark all of the spaces we never collect as immune.
65   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
66     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
67         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
68       CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
69     } else if (space->GetLiveBitmap() != nullptr) {
70       if (space == to_space_ || collect_from_space_only_) {
71         if (collect_from_space_only_) {
72           // Bind the bitmaps of the main free list space and the non-moving space we are doing a
73           // bump pointer space only collection.
74           CHECK(space == GetHeap()->GetPrimaryFreeListSpace() ||
75                 space == GetHeap()->GetNonMovingSpace());
76         }
77         CHECK(space->IsContinuousMemMapAllocSpace());
78         space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
79       }
80     }
81   }
82   if (collect_from_space_only_) {
83     // We won't collect the large object space if a bump pointer space only collection.
84     is_large_object_space_immune_ = true;
85   }
86 }
87 
SemiSpace(Heap * heap,bool generational,const std::string & name_prefix)88 SemiSpace::SemiSpace(Heap* heap, bool generational, const std::string& name_prefix)
89     : GarbageCollector(heap,
90                        name_prefix + (name_prefix.empty() ? "" : " ") + "marksweep + semispace"),
91       to_space_(nullptr),
92       from_space_(nullptr),
93       generational_(generational),
94       last_gc_to_space_end_(nullptr),
95       bytes_promoted_(0),
96       bytes_promoted_since_last_whole_heap_collection_(0),
97       large_object_bytes_allocated_at_last_whole_heap_collection_(0),
98       collect_from_space_only_(generational),
99       collector_name_(name_),
100       swap_semi_spaces_(true) {
101 }
102 
RunPhases()103 void SemiSpace::RunPhases() {
104   Thread* self = Thread::Current();
105   InitializePhase();
106   // Semi-space collector is special since it is sometimes called with the mutators suspended
107   // during the zygote creation and collector transitions. If we already exclusively hold the
108   // mutator lock, then we can't lock it again since it will cause a deadlock.
109   if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
110     GetHeap()->PreGcVerificationPaused(this);
111     GetHeap()->PrePauseRosAllocVerification(this);
112     MarkingPhase();
113     ReclaimPhase();
114     GetHeap()->PostGcVerificationPaused(this);
115   } else {
116     Locks::mutator_lock_->AssertNotHeld(self);
117     {
118       ScopedPause pause(this);
119       GetHeap()->PreGcVerificationPaused(this);
120       GetHeap()->PrePauseRosAllocVerification(this);
121       MarkingPhase();
122     }
123     {
124       ReaderMutexLock mu(self, *Locks::mutator_lock_);
125       ReclaimPhase();
126     }
127     GetHeap()->PostGcVerification(this);
128   }
129   FinishPhase();
130 }
131 
InitializePhase()132 void SemiSpace::InitializePhase() {
133   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
134   mark_stack_ = heap_->GetMarkStack();
135   DCHECK(mark_stack_ != nullptr);
136   immune_region_.Reset();
137   is_large_object_space_immune_ = false;
138   saved_bytes_ = 0;
139   bytes_moved_ = 0;
140   objects_moved_ = 0;
141   self_ = Thread::Current();
142   CHECK(from_space_->CanMoveObjects()) << "Attempting to move from " << *from_space_;
143   // Set the initial bitmap.
144   to_space_live_bitmap_ = to_space_->GetLiveBitmap();
145   {
146     // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
147     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
148     mark_bitmap_ = heap_->GetMarkBitmap();
149   }
150   if (generational_) {
151     promo_dest_space_ = GetHeap()->GetPrimaryFreeListSpace();
152   }
153   fallback_space_ = GetHeap()->GetNonMovingSpace();
154 }
155 
ProcessReferences(Thread * self)156 void SemiSpace::ProcessReferences(Thread* self) {
157   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
158   GetHeap()->GetReferenceProcessor()->ProcessReferences(
159       false, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
160       &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this);
161 }
162 
MarkingPhase()163 void SemiSpace::MarkingPhase() {
164   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
165   CHECK(Locks::mutator_lock_->IsExclusiveHeld(self_));
166   if (kStoreStackTraces) {
167     Locks::mutator_lock_->AssertExclusiveHeld(self_);
168     // Store the stack traces into the runtime fault string in case we Get a heap corruption
169     // related crash later.
170     ThreadState old_state = self_->SetStateUnsafe(kRunnable);
171     std::ostringstream oss;
172     Runtime* runtime = Runtime::Current();
173     runtime->GetThreadList()->DumpForSigQuit(oss);
174     runtime->GetThreadList()->DumpNativeStacks(oss);
175     runtime->SetFaultMessage(oss.str());
176     CHECK_EQ(self_->SetStateUnsafe(old_state), kRunnable);
177   }
178   // Revoke the thread local buffers since the GC may allocate into a RosAllocSpace and this helps
179   // to prevent fragmentation.
180   RevokeAllThreadLocalBuffers();
181   if (generational_) {
182     if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
183         GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
184         GetCurrentIteration()->GetClearSoftReferences()) {
185       // If an explicit, native allocation-triggered, or last attempt
186       // collection, collect the whole heap.
187       collect_from_space_only_ = false;
188     }
189     if (!collect_from_space_only_) {
190       VLOG(heap) << "Whole heap collection";
191       name_ = collector_name_ + " whole";
192     } else {
193       VLOG(heap) << "Bump pointer space only collection";
194       name_ = collector_name_ + " bps";
195     }
196   }
197 
198   if (!collect_from_space_only_) {
199     // If non-generational, always clear soft references.
200     // If generational, clear soft references if a whole heap collection.
201     GetCurrentIteration()->SetClearSoftReferences(true);
202   }
203   Locks::mutator_lock_->AssertExclusiveHeld(self_);
204   if (generational_) {
205     // If last_gc_to_space_end_ is out of the bounds of the from-space
206     // (the to-space from last GC), then point it to the beginning of
207     // the from-space. For example, the very first GC or the
208     // pre-zygote compaction.
209     if (!from_space_->HasAddress(reinterpret_cast<mirror::Object*>(last_gc_to_space_end_))) {
210       last_gc_to_space_end_ = from_space_->Begin();
211     }
212     // Reset this before the marking starts below.
213     bytes_promoted_ = 0;
214   }
215   // Assume the cleared space is already empty.
216   BindBitmaps();
217   // Process dirty cards and add dirty cards to mod-union tables.
218   heap_->ProcessCards(GetTimings(), kUseRememberedSet && generational_);
219   // Clear the whole card table since we can not Get any additional dirty cards during the
220   // paused GC. This saves memory but only works for pause the world collectors.
221   t.NewTiming("ClearCardTable");
222   heap_->GetCardTable()->ClearCardTable();
223   // Need to do this before the checkpoint since we don't want any threads to add references to
224   // the live stack during the recursive mark.
225   if (kUseThreadLocalAllocationStack) {
226     TimingLogger::ScopedTiming t("RevokeAllThreadLocalAllocationStacks", GetTimings());
227     heap_->RevokeAllThreadLocalAllocationStacks(self_);
228   }
229   heap_->SwapStacks(self_);
230   {
231     WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
232     MarkRoots();
233     // Recursively mark remaining objects.
234     MarkReachableObjects();
235   }
236   ProcessReferences(self_);
237   {
238     ReaderMutexLock mu(self_, *Locks::heap_bitmap_lock_);
239     SweepSystemWeaks();
240   }
241   // Revoke buffers before measuring how many objects were moved since the TLABs need to be revoked
242   // before they are properly counted.
243   RevokeAllThreadLocalBuffers();
244   // Record freed memory.
245   const int64_t from_bytes = from_space_->GetBytesAllocated();
246   const int64_t to_bytes = bytes_moved_;
247   const uint64_t from_objects = from_space_->GetObjectsAllocated();
248   const uint64_t to_objects = objects_moved_;
249   CHECK_LE(to_objects, from_objects);
250   // Note: Freed bytes can be negative if we copy form a compacted space to a free-list backed
251   // space.
252   RecordFree(ObjectBytePair(from_objects - to_objects, from_bytes - to_bytes));
253   // Clear and protect the from space.
254   from_space_->Clear();
255   VLOG(heap) << "Protecting from_space_: " << *from_space_;
256   from_space_->GetMemMap()->Protect(kProtectFromSpace ? PROT_NONE : PROT_READ);
257   heap_->PreSweepingGcVerification(this);
258   if (swap_semi_spaces_) {
259     heap_->SwapSemiSpaces();
260   }
261 }
262 
263 class SemiSpaceScanObjectVisitor {
264  public:
SemiSpaceScanObjectVisitor(SemiSpace * ss)265   explicit SemiSpaceScanObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
operator ()(Object * obj) const266   void operator()(Object* obj) const EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_,
267                                                               Locks::heap_bitmap_lock_) {
268     DCHECK(obj != nullptr);
269     semi_space_->ScanObject(obj);
270   }
271  private:
272   SemiSpace* const semi_space_;
273 };
274 
275 // Used to verify that there's no references to the from-space.
276 class SemiSpaceVerifyNoFromSpaceReferencesVisitor {
277  public:
SemiSpaceVerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace * from_space)278   explicit SemiSpaceVerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace* from_space) :
279       from_space_(from_space) {}
280 
operator ()(Object * obj,MemberOffset offset,bool) const281   void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
282       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
283     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
284     if (from_space_->HasAddress(ref)) {
285       Runtime::Current()->GetHeap()->DumpObject(LOG(INFO), obj);
286       LOG(FATAL) << ref << " found in from space";
287     }
288   }
289  private:
290   space::ContinuousMemMapAllocSpace* from_space_;
291 };
292 
VerifyNoFromSpaceReferences(Object * obj)293 void SemiSpace::VerifyNoFromSpaceReferences(Object* obj) {
294   DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
295   SemiSpaceVerifyNoFromSpaceReferencesVisitor visitor(from_space_);
296   obj->VisitReferences<kMovingClasses>(visitor, VoidFunctor());
297 }
298 
299 class SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor {
300  public:
SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor(SemiSpace * ss)301   explicit SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
operator ()(Object * obj) const302   void operator()(Object* obj) const
303       SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
304     DCHECK(obj != nullptr);
305     semi_space_->VerifyNoFromSpaceReferences(obj);
306   }
307  private:
308   SemiSpace* const semi_space_;
309 };
310 
MarkReachableObjects()311 void SemiSpace::MarkReachableObjects() {
312   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
313   {
314     TimingLogger::ScopedTiming t2("MarkStackAsLive", GetTimings());
315     accounting::ObjectStack* live_stack = heap_->GetLiveStack();
316     heap_->MarkAllocStackAsLive(live_stack);
317     live_stack->Reset();
318   }
319   for (auto& space : heap_->GetContinuousSpaces()) {
320     // If the space is immune then we need to mark the references to other spaces.
321     accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
322     if (table != nullptr) {
323       // TODO: Improve naming.
324       TimingLogger::ScopedTiming t2(
325           space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
326                                    "UpdateAndMarkImageModUnionTable",
327                                    GetTimings());
328       table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
329       DCHECK(GetHeap()->FindRememberedSetFromSpace(space) == nullptr);
330     } else if (collect_from_space_only_ && space->GetLiveBitmap() != nullptr) {
331       // If the space has no mod union table (the non-moving space and main spaces when the bump
332       // pointer space only collection is enabled,) then we need to scan its live bitmap or dirty
333       // cards as roots (including the objects on the live stack which have just marked in the live
334       // bitmap above in MarkAllocStackAsLive().)
335       DCHECK(space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace())
336           << "Space " << space->GetName() << " "
337           << "generational_=" << generational_ << " "
338           << "collect_from_space_only_=" << collect_from_space_only_;
339       accounting::RememberedSet* rem_set = GetHeap()->FindRememberedSetFromSpace(space);
340       CHECK_EQ(rem_set != nullptr, kUseRememberedSet);
341       if (rem_set != nullptr) {
342         TimingLogger::ScopedTiming t2("UpdateAndMarkRememberedSet", GetTimings());
343         rem_set->UpdateAndMarkReferences(MarkHeapReferenceCallback, DelayReferenceReferentCallback,
344                                          from_space_, this);
345         if (kIsDebugBuild) {
346           // Verify that there are no from-space references that
347           // remain in the space, that is, the remembered set (and the
348           // card table) didn't miss any from-space references in the
349           // space.
350           accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
351           SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor visitor(this);
352           live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
353                                         reinterpret_cast<uintptr_t>(space->End()),
354                                         visitor);
355         }
356       } else {
357         TimingLogger::ScopedTiming t2("VisitLiveBits", GetTimings());
358         accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
359         SemiSpaceScanObjectVisitor visitor(this);
360         live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
361                                       reinterpret_cast<uintptr_t>(space->End()),
362                                       visitor);
363       }
364     }
365   }
366 
367   CHECK_EQ(is_large_object_space_immune_, collect_from_space_only_);
368   if (is_large_object_space_immune_) {
369     TimingLogger::ScopedTiming t("VisitLargeObjects", GetTimings());
370     DCHECK(collect_from_space_only_);
371     // Delay copying the live set to the marked set until here from
372     // BindBitmaps() as the large objects on the allocation stack may
373     // be newly added to the live set above in MarkAllocStackAsLive().
374     GetHeap()->GetLargeObjectsSpace()->CopyLiveToMarked();
375 
376     // When the large object space is immune, we need to scan the
377     // large object space as roots as they contain references to their
378     // classes (primitive array classes) that could move though they
379     // don't contain any other references.
380     space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
381     accounting::LargeObjectBitmap* large_live_bitmap = large_object_space->GetLiveBitmap();
382     SemiSpaceScanObjectVisitor visitor(this);
383     large_live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(large_object_space->Begin()),
384                                         reinterpret_cast<uintptr_t>(large_object_space->End()),
385                                         visitor);
386   }
387   // Recursively process the mark stack.
388   ProcessMarkStack();
389 }
390 
ReclaimPhase()391 void SemiSpace::ReclaimPhase() {
392   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
393   WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
394   // Reclaim unmarked objects.
395   Sweep(false);
396   // Swap the live and mark bitmaps for each space which we modified space. This is an
397   // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
398   // bitmaps.
399   SwapBitmaps();
400   // Unbind the live and mark bitmaps.
401   GetHeap()->UnBindBitmaps();
402   if (saved_bytes_ > 0) {
403     VLOG(heap) << "Avoided dirtying " << PrettySize(saved_bytes_);
404   }
405   if (generational_) {
406     // Record the end (top) of the to space so we can distinguish
407     // between objects that were allocated since the last GC and the
408     // older objects.
409     last_gc_to_space_end_ = to_space_->End();
410   }
411 }
412 
ResizeMarkStack(size_t new_size)413 void SemiSpace::ResizeMarkStack(size_t new_size) {
414   std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
415   CHECK_LE(mark_stack_->Size(), new_size);
416   mark_stack_->Resize(new_size);
417   for (const auto& obj : temp) {
418     mark_stack_->PushBack(obj);
419   }
420 }
421 
MarkStackPush(Object * obj)422 inline void SemiSpace::MarkStackPush(Object* obj) {
423   if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
424     ResizeMarkStack(mark_stack_->Capacity() * 2);
425   }
426   // The object must be pushed on to the mark stack.
427   mark_stack_->PushBack(obj);
428 }
429 
CopyAvoidingDirtyingPages(void * dest,const void * src,size_t size)430 static inline size_t CopyAvoidingDirtyingPages(void* dest, const void* src, size_t size) {
431   if (LIKELY(size <= static_cast<size_t>(kPageSize))) {
432     // We will dirty the current page and somewhere in the middle of the next page. This means
433     // that the next object copied will also dirty that page.
434     // TODO: Worth considering the last object copied? We may end up dirtying one page which is
435     // not necessary per GC.
436     memcpy(dest, src, size);
437     return 0;
438   }
439   size_t saved_bytes = 0;
440   byte* byte_dest = reinterpret_cast<byte*>(dest);
441   if (kIsDebugBuild) {
442     for (size_t i = 0; i < size; ++i) {
443       CHECK_EQ(byte_dest[i], 0U);
444     }
445   }
446   // Process the start of the page. The page must already be dirty, don't bother with checking.
447   const byte* byte_src = reinterpret_cast<const byte*>(src);
448   const byte* limit = byte_src + size;
449   size_t page_remain = AlignUp(byte_dest, kPageSize) - byte_dest;
450   // Copy the bytes until the start of the next page.
451   memcpy(dest, src, page_remain);
452   byte_src += page_remain;
453   byte_dest += page_remain;
454   DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), kPageSize);
455   DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), sizeof(uintptr_t));
456   DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_src), sizeof(uintptr_t));
457   while (byte_src + kPageSize < limit) {
458     bool all_zero = true;
459     uintptr_t* word_dest = reinterpret_cast<uintptr_t*>(byte_dest);
460     const uintptr_t* word_src = reinterpret_cast<const uintptr_t*>(byte_src);
461     for (size_t i = 0; i < kPageSize / sizeof(*word_src); ++i) {
462       // Assumes the destination of the copy is all zeros.
463       if (word_src[i] != 0) {
464         all_zero = false;
465         word_dest[i] = word_src[i];
466       }
467     }
468     if (all_zero) {
469       // Avoided copying into the page since it was all zeros.
470       saved_bytes += kPageSize;
471     }
472     byte_src += kPageSize;
473     byte_dest += kPageSize;
474   }
475   // Handle the part of the page at the end.
476   memcpy(byte_dest, byte_src, limit - byte_src);
477   return saved_bytes;
478 }
479 
MarkNonForwardedObject(mirror::Object * obj)480 mirror::Object* SemiSpace::MarkNonForwardedObject(mirror::Object* obj) {
481   const size_t object_size = obj->SizeOf();
482   size_t bytes_allocated;
483   mirror::Object* forward_address = nullptr;
484   if (generational_ && reinterpret_cast<byte*>(obj) < last_gc_to_space_end_) {
485     // If it's allocated before the last GC (older), move
486     // (pseudo-promote) it to the main free list space (as sort
487     // of an old generation.)
488     forward_address = promo_dest_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated,
489                                                            nullptr);
490     if (UNLIKELY(forward_address == nullptr)) {
491       // If out of space, fall back to the to-space.
492       forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr);
493       // No logic for marking the bitmap, so it must be null.
494       DCHECK(to_space_live_bitmap_ == nullptr);
495     } else {
496       bytes_promoted_ += bytes_allocated;
497       // Dirty the card at the destionation as it may contain
498       // references (including the class pointer) to the bump pointer
499       // space.
500       GetHeap()->WriteBarrierEveryFieldOf(forward_address);
501       // Handle the bitmaps marking.
502       accounting::ContinuousSpaceBitmap* live_bitmap = promo_dest_space_->GetLiveBitmap();
503       DCHECK(live_bitmap != nullptr);
504       accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space_->GetMarkBitmap();
505       DCHECK(mark_bitmap != nullptr);
506       DCHECK(!live_bitmap->Test(forward_address));
507       if (collect_from_space_only_) {
508         // If collecting the bump pointer spaces only, live_bitmap == mark_bitmap.
509         DCHECK_EQ(live_bitmap, mark_bitmap);
510 
511         // If a bump pointer space only collection, delay the live
512         // bitmap marking of the promoted object until it's popped off
513         // the mark stack (ProcessMarkStack()). The rationale: we may
514         // be in the middle of scanning the objects in the promo
515         // destination space for
516         // non-moving-space-to-bump-pointer-space references by
517         // iterating over the marked bits of the live bitmap
518         // (MarkReachableObjects()). If we don't delay it (and instead
519         // mark the promoted object here), the above promo destination
520         // space scan could encounter the just-promoted object and
521         // forward the references in the promoted object's fields even
522         // through it is pushed onto the mark stack. If this happens,
523         // the promoted object would be in an inconsistent state, that
524         // is, it's on the mark stack (gray) but its fields are
525         // already forwarded (black), which would cause a
526         // DCHECK(!to_space_->HasAddress(obj)) failure below.
527       } else {
528         // Mark forward_address on the live bit map.
529         live_bitmap->Set(forward_address);
530         // Mark forward_address on the mark bit map.
531         DCHECK(!mark_bitmap->Test(forward_address));
532         mark_bitmap->Set(forward_address);
533       }
534     }
535   } else {
536     // If it's allocated after the last GC (younger), copy it to the to-space.
537     forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr);
538     if (forward_address != nullptr && to_space_live_bitmap_ != nullptr) {
539       to_space_live_bitmap_->Set(forward_address);
540     }
541   }
542   // If it's still null, attempt to use the fallback space.
543   if (UNLIKELY(forward_address == nullptr)) {
544     forward_address = fallback_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated,
545                                                          nullptr);
546     CHECK(forward_address != nullptr) << "Out of memory in the to-space and fallback space.";
547     accounting::ContinuousSpaceBitmap* bitmap = fallback_space_->GetLiveBitmap();
548     if (bitmap != nullptr) {
549       bitmap->Set(forward_address);
550     }
551   }
552   ++objects_moved_;
553   bytes_moved_ += bytes_allocated;
554   // Copy over the object and add it to the mark stack since we still need to update its
555   // references.
556   saved_bytes_ +=
557       CopyAvoidingDirtyingPages(reinterpret_cast<void*>(forward_address), obj, object_size);
558   if (kUseBakerOrBrooksReadBarrier) {
559     obj->AssertReadBarrierPointer();
560     if (kUseBrooksReadBarrier) {
561       DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
562       forward_address->SetReadBarrierPointer(forward_address);
563     }
564     forward_address->AssertReadBarrierPointer();
565   }
566   DCHECK(to_space_->HasAddress(forward_address) ||
567          fallback_space_->HasAddress(forward_address) ||
568          (generational_ && promo_dest_space_->HasAddress(forward_address)))
569       << forward_address << "\n" << GetHeap()->DumpSpaces();
570   return forward_address;
571 }
572 
ProcessMarkStackCallback(void * arg)573 void SemiSpace::ProcessMarkStackCallback(void* arg) {
574   reinterpret_cast<SemiSpace*>(arg)->ProcessMarkStack();
575 }
576 
MarkObjectCallback(mirror::Object * root,void * arg)577 mirror::Object* SemiSpace::MarkObjectCallback(mirror::Object* root, void* arg) {
578   auto ref = StackReference<mirror::Object>::FromMirrorPtr(root);
579   reinterpret_cast<SemiSpace*>(arg)->MarkObject(&ref);
580   return ref.AsMirrorPtr();
581 }
582 
MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object> * obj_ptr,void * arg)583 void SemiSpace::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* obj_ptr,
584                                           void* arg) {
585   reinterpret_cast<SemiSpace*>(arg)->MarkObject(obj_ptr);
586 }
587 
DelayReferenceReferentCallback(mirror::Class * klass,mirror::Reference * ref,void * arg)588 void SemiSpace::DelayReferenceReferentCallback(mirror::Class* klass, mirror::Reference* ref,
589                                                void* arg) {
590   reinterpret_cast<SemiSpace*>(arg)->DelayReferenceReferent(klass, ref);
591 }
592 
MarkRootCallback(Object ** root,void * arg,uint32_t,RootType)593 void SemiSpace::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
594                                  RootType /*root_type*/) {
595   auto ref = StackReference<mirror::Object>::FromMirrorPtr(*root);
596   reinterpret_cast<SemiSpace*>(arg)->MarkObject(&ref);
597   if (*root != ref.AsMirrorPtr()) {
598     *root = ref.AsMirrorPtr();
599   }
600 }
601 
602 // Marks all objects in the root set.
MarkRoots()603 void SemiSpace::MarkRoots() {
604   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
605   Runtime::Current()->VisitRoots(MarkRootCallback, this);
606 }
607 
HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object> * object,void * arg)608 bool SemiSpace::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* object,
609                                             void* arg) {
610   mirror::Object* obj = object->AsMirrorPtr();
611   mirror::Object* new_obj =
612       reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(obj);
613   if (new_obj == nullptr) {
614     return false;
615   }
616   if (new_obj != obj) {
617     // Write barrier is not necessary since it still points to the same object, just at a different
618     // address.
619     object->Assign(new_obj);
620   }
621   return true;
622 }
623 
MarkedForwardingAddressCallback(mirror::Object * object,void * arg)624 mirror::Object* SemiSpace::MarkedForwardingAddressCallback(mirror::Object* object, void* arg) {
625   return reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(object);
626 }
627 
SweepSystemWeaks()628 void SemiSpace::SweepSystemWeaks() {
629   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
630   Runtime::Current()->SweepSystemWeaks(MarkedForwardingAddressCallback, this);
631 }
632 
ShouldSweepSpace(space::ContinuousSpace * space) const633 bool SemiSpace::ShouldSweepSpace(space::ContinuousSpace* space) const {
634   return space != from_space_ && space != to_space_;
635 }
636 
Sweep(bool swap_bitmaps)637 void SemiSpace::Sweep(bool swap_bitmaps) {
638   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
639   DCHECK(mark_stack_->IsEmpty());
640   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
641     if (space->IsContinuousMemMapAllocSpace()) {
642       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
643       if (!ShouldSweepSpace(alloc_space)) {
644         continue;
645       }
646       TimingLogger::ScopedTiming split(
647           alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
648       RecordFree(alloc_space->Sweep(swap_bitmaps));
649     }
650   }
651   if (!is_large_object_space_immune_) {
652     SweepLargeObjects(swap_bitmaps);
653   }
654 }
655 
SweepLargeObjects(bool swap_bitmaps)656 void SemiSpace::SweepLargeObjects(bool swap_bitmaps) {
657   DCHECK(!is_large_object_space_immune_);
658   TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
659   RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
660 }
661 
662 // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
663 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * reference)664 void SemiSpace::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
665   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference,
666                                                          &HeapReferenceMarkedCallback, this);
667 }
668 
669 class SemiSpaceMarkObjectVisitor {
670  public:
SemiSpaceMarkObjectVisitor(SemiSpace * collector)671   explicit SemiSpaceMarkObjectVisitor(SemiSpace* collector) : collector_(collector) {
672   }
673 
operator ()(Object * obj,MemberOffset offset,bool) const674   void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE
675       EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
676     // Object was already verified when we scanned it.
677     collector_->MarkObject(obj->GetFieldObjectReferenceAddr<kVerifyNone>(offset));
678   }
679 
operator ()(mirror::Class * klass,mirror::Reference * ref) const680   void operator()(mirror::Class* klass, mirror::Reference* ref) const
681       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
682       EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
683     collector_->DelayReferenceReferent(klass, ref);
684   }
685 
686  private:
687   SemiSpace* const collector_;
688 };
689 
690 // Visit all of the references of an object and update.
ScanObject(Object * obj)691 void SemiSpace::ScanObject(Object* obj) {
692   DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
693   SemiSpaceMarkObjectVisitor visitor(this);
694   obj->VisitReferences<kMovingClasses>(visitor, visitor);
695 }
696 
697 // Scan anything that's on the mark stack.
ProcessMarkStack()698 void SemiSpace::ProcessMarkStack() {
699   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
700   accounting::ContinuousSpaceBitmap* live_bitmap = nullptr;
701   if (collect_from_space_only_) {
702     // If a bump pointer space only collection (and the promotion is
703     // enabled,) we delay the live-bitmap marking of promoted objects
704     // from MarkObject() until this function.
705     live_bitmap = promo_dest_space_->GetLiveBitmap();
706     DCHECK(live_bitmap != nullptr);
707     accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space_->GetMarkBitmap();
708     DCHECK(mark_bitmap != nullptr);
709     DCHECK_EQ(live_bitmap, mark_bitmap);
710   }
711   while (!mark_stack_->IsEmpty()) {
712     Object* obj = mark_stack_->PopBack();
713     if (collect_from_space_only_ && promo_dest_space_->HasAddress(obj)) {
714       // obj has just been promoted. Mark the live bitmap for it,
715       // which is delayed from MarkObject().
716       DCHECK(!live_bitmap->Test(obj));
717       live_bitmap->Set(obj);
718     }
719     ScanObject(obj);
720   }
721 }
722 
GetMarkedForwardAddress(mirror::Object * obj) const723 inline Object* SemiSpace::GetMarkedForwardAddress(mirror::Object* obj) const
724     SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
725   // All immune objects are assumed marked.
726   if (from_space_->HasAddress(obj)) {
727     // Returns either the forwarding address or nullptr.
728     return GetForwardingAddressInFromSpace(obj);
729   } else if (collect_from_space_only_ || immune_region_.ContainsObject(obj) ||
730              to_space_->HasAddress(obj)) {
731     return obj;  // Already forwarded, must be marked.
732   }
733   return mark_bitmap_->Test(obj) ? obj : nullptr;
734 }
735 
SetToSpace(space::ContinuousMemMapAllocSpace * to_space)736 void SemiSpace::SetToSpace(space::ContinuousMemMapAllocSpace* to_space) {
737   DCHECK(to_space != nullptr);
738   to_space_ = to_space;
739 }
740 
SetFromSpace(space::ContinuousMemMapAllocSpace * from_space)741 void SemiSpace::SetFromSpace(space::ContinuousMemMapAllocSpace* from_space) {
742   DCHECK(from_space != nullptr);
743   from_space_ = from_space;
744 }
745 
FinishPhase()746 void SemiSpace::FinishPhase() {
747   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
748   // Null the "to" and "from" spaces since compacting from one to the other isn't valid until
749   // further action is done by the heap.
750   to_space_ = nullptr;
751   from_space_ = nullptr;
752   CHECK(mark_stack_->IsEmpty());
753   mark_stack_->Reset();
754   if (generational_) {
755     // Decide whether to do a whole heap collection or a bump pointer
756     // only space collection at the next collection by updating
757     // collect_from_space_only_.
758     if (collect_from_space_only_) {
759       // Disable collect_from_space_only_ if the bytes promoted since the
760       // last whole heap collection or the large object bytes
761       // allocated exceeds a threshold.
762       bytes_promoted_since_last_whole_heap_collection_ += bytes_promoted_;
763       bool bytes_promoted_threshold_exceeded =
764           bytes_promoted_since_last_whole_heap_collection_ >= kBytesPromotedThreshold;
765       uint64_t current_los_bytes_allocated = GetHeap()->GetLargeObjectsSpace()->GetBytesAllocated();
766       uint64_t last_los_bytes_allocated =
767           large_object_bytes_allocated_at_last_whole_heap_collection_;
768       bool large_object_bytes_threshold_exceeded =
769           current_los_bytes_allocated >=
770           last_los_bytes_allocated + kLargeObjectBytesAllocatedThreshold;
771       if (bytes_promoted_threshold_exceeded || large_object_bytes_threshold_exceeded) {
772         collect_from_space_only_ = false;
773       }
774     } else {
775       // Reset the counters.
776       bytes_promoted_since_last_whole_heap_collection_ = bytes_promoted_;
777       large_object_bytes_allocated_at_last_whole_heap_collection_ =
778           GetHeap()->GetLargeObjectsSpace()->GetBytesAllocated();
779       collect_from_space_only_ = true;
780     }
781   }
782   // Clear all of the spaces' mark bitmaps.
783   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
784   heap_->ClearMarkedObjects();
785 }
786 
RevokeAllThreadLocalBuffers()787 void SemiSpace::RevokeAllThreadLocalBuffers() {
788   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
789   GetHeap()->RevokeAllThreadLocalBuffers();
790 }
791 
792 }  // namespace collector
793 }  // namespace gc
794 }  // namespace art
795