1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_GC_HEAP_H_ 18 #define ART_RUNTIME_GC_HEAP_H_ 19 20 #include <iosfwd> 21 #include <string> 22 #include <vector> 23 24 #include "allocator_type.h" 25 #include "atomic.h" 26 #include "base/timing_logger.h" 27 #include "gc/accounting/atomic_stack.h" 28 #include "gc/accounting/card_table.h" 29 #include "gc/gc_cause.h" 30 #include "gc/collector/garbage_collector.h" 31 #include "gc/collector/gc_type.h" 32 #include "gc/collector_type.h" 33 #include "globals.h" 34 #include "gtest/gtest.h" 35 #include "instruction_set.h" 36 #include "jni.h" 37 #include "object_callbacks.h" 38 #include "offsets.h" 39 #include "reference_processor.h" 40 #include "safe_map.h" 41 #include "thread_pool.h" 42 #include "verify_object.h" 43 44 namespace art { 45 46 class ConditionVariable; 47 class Mutex; 48 class StackVisitor; 49 class Thread; 50 class TimingLogger; 51 52 namespace mirror { 53 class Class; 54 class Object; 55 } // namespace mirror 56 57 namespace gc { 58 59 class ReferenceProcessor; 60 61 namespace accounting { 62 class HeapBitmap; 63 class ModUnionTable; 64 class RememberedSet; 65 } // namespace accounting 66 67 namespace collector { 68 class ConcurrentCopying; 69 class GarbageCollector; 70 class MarkCompact; 71 class MarkSweep; 72 class SemiSpace; 73 } // namespace collector 74 75 namespace allocator { 76 class RosAlloc; 77 } // namespace allocator 78 79 namespace space { 80 class AllocSpace; 81 class BumpPointerSpace; 82 class DiscontinuousSpace; 83 class DlMallocSpace; 84 class ImageSpace; 85 class LargeObjectSpace; 86 class MallocSpace; 87 class RosAllocSpace; 88 class Space; 89 class SpaceTest; 90 class ContinuousMemMapAllocSpace; 91 } // namespace space 92 93 class AgeCardVisitor { 94 public: operator()95 byte operator()(byte card) const { 96 if (card == accounting::CardTable::kCardDirty) { 97 return card - 1; 98 } else { 99 return 0; 100 } 101 } 102 }; 103 104 enum HomogeneousSpaceCompactResult { 105 // Success. 106 kSuccess, 107 // Reject due to disabled moving GC. 108 kErrorReject, 109 // System is shutting down. 110 kErrorVMShuttingDown, 111 }; 112 113 // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace 114 static constexpr bool kUseRosAlloc = true; 115 116 // If true, use thread-local allocation stack. 117 static constexpr bool kUseThreadLocalAllocationStack = true; 118 119 // The process state passed in from the activity manager, used to determine when to do trimming 120 // and compaction. 121 enum ProcessState { 122 kProcessStateJankPerceptible = 0, 123 kProcessStateJankImperceptible = 1, 124 }; 125 std::ostream& operator<<(std::ostream& os, const ProcessState& process_state); 126 127 class Heap { 128 public: 129 // If true, measure the total allocation time. 130 static constexpr bool kMeasureAllocationTime = false; 131 // Primitive arrays larger than this size are put in the large object space. 132 static constexpr size_t kDefaultLargeObjectThreshold = 3 * kPageSize; 133 static constexpr size_t kDefaultStartingSize = kPageSize; 134 static constexpr size_t kDefaultInitialSize = 2 * MB; 135 static constexpr size_t kDefaultMaximumSize = 256 * MB; 136 static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB; 137 static constexpr size_t kDefaultMaxFree = 2 * MB; 138 static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4; 139 static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5); 140 static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100); 141 static constexpr size_t kDefaultTLABSize = 256 * KB; 142 static constexpr double kDefaultTargetUtilization = 0.5; 143 static constexpr double kDefaultHeapGrowthMultiplier = 2.0; 144 145 // Used so that we don't overflow the allocation time atomic integer. 146 static constexpr size_t kTimeAdjust = 1024; 147 148 // How often we allow heap trimming to happen (nanoseconds). 149 static constexpr uint64_t kHeapTrimWait = MsToNs(5000); 150 // How long we wait after a transition request to perform a collector transition (nanoseconds). 151 static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000); 152 153 // Create a heap with the requested sizes. The possible empty 154 // image_file_names names specify Spaces to load based on 155 // ImageWriter output. 156 explicit Heap(size_t initial_size, size_t growth_limit, size_t min_free, 157 size_t max_free, double target_utilization, 158 double foreground_heap_growth_multiplier, size_t capacity, 159 size_t non_moving_space_capacity, 160 const std::string& original_image_file_name, 161 InstructionSet image_instruction_set, 162 CollectorType foreground_collector_type, CollectorType background_collector_type, 163 size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode, 164 size_t long_pause_threshold, size_t long_gc_threshold, 165 bool ignore_max_footprint, bool use_tlab, 166 bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap, 167 bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc, 168 bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction, 169 uint64_t min_interval_homogeneous_space_compaction_by_oom); 170 171 ~Heap(); 172 173 // Allocates and initializes storage for an object instance. 174 template <bool kInstrumented, typename PreFenceVisitor> AllocObject(Thread * self,mirror::Class * klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)175 mirror::Object* AllocObject(Thread* self, mirror::Class* klass, size_t num_bytes, 176 const PreFenceVisitor& pre_fence_visitor) 177 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 178 return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes, 179 GetCurrentAllocator(), 180 pre_fence_visitor); 181 } 182 183 template <bool kInstrumented, typename PreFenceVisitor> AllocNonMovableObject(Thread * self,mirror::Class * klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)184 mirror::Object* AllocNonMovableObject(Thread* self, mirror::Class* klass, size_t num_bytes, 185 const PreFenceVisitor& pre_fence_visitor) 186 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 187 return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes, 188 GetCurrentNonMovingAllocator(), 189 pre_fence_visitor); 190 } 191 192 template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor> 193 ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator( 194 Thread* self, mirror::Class* klass, size_t byte_count, AllocatorType allocator, 195 const PreFenceVisitor& pre_fence_visitor) 196 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 197 GetCurrentAllocator()198 AllocatorType GetCurrentAllocator() const { 199 return current_allocator_; 200 } 201 GetCurrentNonMovingAllocator()202 AllocatorType GetCurrentNonMovingAllocator() const { 203 return current_non_moving_allocator_; 204 } 205 206 // Visit all of the live objects in the heap. 207 void VisitObjects(ObjectCallback callback, void* arg) 208 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 209 210 void CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) 211 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 212 213 void RegisterNativeAllocation(JNIEnv* env, size_t bytes); 214 void RegisterNativeFree(JNIEnv* env, size_t bytes); 215 216 // Change the allocator, updates entrypoints. 217 void ChangeAllocator(AllocatorType allocator) 218 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) 219 LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_); 220 221 // Transition the garbage collector during runtime, may copy objects from one space to another. 222 void TransitionCollector(CollectorType collector_type); 223 224 // Change the collector to be one of the possible options (MS, CMS, SS). 225 void ChangeCollector(CollectorType collector_type) 226 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 227 228 // The given reference is believed to be to an object in the Java heap, check the soundness of it. 229 // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a 230 // proper lock ordering for it. 231 void VerifyObjectBody(mirror::Object* o) NO_THREAD_SAFETY_ANALYSIS; 232 233 // Check sanity of all live references. 234 void VerifyHeap() LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 235 // Returns how many failures occured. 236 size_t VerifyHeapReferences(bool verify_referents = true) 237 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 238 bool VerifyMissingCardMarks() 239 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 240 241 // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock, 242 // and doesn't abort on error, allowing the caller to report more 243 // meaningful diagnostics. 244 bool IsValidObjectAddress(const mirror::Object* obj) const 245 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 246 247 // Faster alternative to IsHeapAddress since finding if an object is in the large object space is 248 // very slow. 249 bool IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const 250 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 251 252 // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses). 253 // Requires the heap lock to be held. 254 bool IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack = true, 255 bool search_live_stack = true, bool sorted = false) 256 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 257 258 // Returns true if there is any chance that the object (obj) will move. 259 bool IsMovableObject(const mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 260 261 // Enables us to compacting GC until objects are released. 262 void IncrementDisableMovingGC(Thread* self); 263 void DecrementDisableMovingGC(Thread* self); 264 265 // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits. 266 void ClearMarkedObjects() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); 267 268 // Initiates an explicit garbage collection. 269 void CollectGarbage(bool clear_soft_references); 270 271 // Does a concurrent GC, should only be called by the GC daemon thread 272 // through runtime. 273 void ConcurrentGC(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_); 274 275 // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount. 276 // The boolean decides whether to use IsAssignableFrom or == when comparing classes. 277 void CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, 278 uint64_t* counts) 279 LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) 280 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 281 // Implements JDWP RT_Instances. 282 void GetInstances(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances) 283 LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) 284 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 285 // Implements JDWP OR_ReferringObjects. 286 void GetReferringObjects(mirror::Object* o, int32_t max_count, std::vector<mirror::Object*>& referring_objects) 287 LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) 288 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 289 290 // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to 291 // implement dalvik.system.VMRuntime.clearGrowthLimit. 292 void ClearGrowthLimit(); 293 294 // Target ideal heap utilization ratio, implements 295 // dalvik.system.VMRuntime.getTargetHeapUtilization. GetTargetHeapUtilization()296 double GetTargetHeapUtilization() const { 297 return target_utilization_; 298 } 299 300 // Data structure memory usage tracking. 301 void RegisterGCAllocation(size_t bytes); 302 void RegisterGCDeAllocation(size_t bytes); 303 304 // Set the heap's private space pointers to be the same as the space based on it's type. Public 305 // due to usage by tests. 306 void SetSpaceAsDefault(space::ContinuousSpace* continuous_space) 307 LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 308 void AddSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 309 void RemoveSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 310 311 // Set target ideal heap utilization ratio, implements 312 // dalvik.system.VMRuntime.setTargetHeapUtilization. 313 void SetTargetHeapUtilization(float target); 314 315 // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate 316 // from the system. Doesn't allow the space to exceed its growth limit. 317 void SetIdealFootprint(size_t max_allowed_footprint); 318 319 // Blocks the caller until the garbage collector becomes idle and returns the type of GC we 320 // waited for. 321 collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) 322 LOCKS_EXCLUDED(gc_complete_lock_); 323 324 // Update the heap's process state to a new value, may cause compaction to occur. 325 void UpdateProcessState(ProcessState process_state); 326 GetContinuousSpaces()327 const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const { 328 return continuous_spaces_; 329 } 330 GetDiscontinuousSpaces()331 const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const { 332 return discontinuous_spaces_; 333 } 334 GetCurrentGcIteration()335 const collector::Iteration* GetCurrentGcIteration() const { 336 return ¤t_gc_iteration_; 337 } GetCurrentGcIteration()338 collector::Iteration* GetCurrentGcIteration() { 339 return ¤t_gc_iteration_; 340 } 341 342 // Enable verification of object references when the runtime is sufficiently initialized. EnableObjectValidation()343 void EnableObjectValidation() { 344 verify_object_mode_ = kVerifyObjectSupport; 345 if (verify_object_mode_ > kVerifyObjectModeDisabled) { 346 VerifyHeap(); 347 } 348 } 349 350 // Disable object reference verification for image writing. DisableObjectValidation()351 void DisableObjectValidation() { 352 verify_object_mode_ = kVerifyObjectModeDisabled; 353 } 354 355 // Other checks may be performed if we know the heap should be in a sane state. IsObjectValidationEnabled()356 bool IsObjectValidationEnabled() const { 357 return verify_object_mode_ > kVerifyObjectModeDisabled; 358 } 359 360 // Returns true if low memory mode is enabled. IsLowMemoryMode()361 bool IsLowMemoryMode() const { 362 return low_memory_mode_; 363 } 364 365 // Returns the heap growth multiplier, this affects how much we grow the heap after a GC. 366 // Scales heap growth, min free, and max free. 367 double HeapGrowthMultiplier() const; 368 369 // Freed bytes can be negative in cases where we copy objects from a compacted space to a 370 // free-list backed space. 371 void RecordFree(uint64_t freed_objects, int64_t freed_bytes); 372 373 // Must be called if a field of an Object in the heap changes, and before any GC safe-point. 374 // The call is not needed if NULL is stored in the field. WriteBarrierField(const mirror::Object * dst,MemberOffset,const mirror::Object *)375 void WriteBarrierField(const mirror::Object* dst, MemberOffset /*offset*/, 376 const mirror::Object* /*new_value*/) { 377 card_table_->MarkCard(dst); 378 } 379 380 // Write barrier for array operations that update many field positions WriteBarrierArray(const mirror::Object * dst,int,size_t)381 void WriteBarrierArray(const mirror::Object* dst, int /*start_offset*/, 382 size_t /*length TODO: element_count or byte_count?*/) { 383 card_table_->MarkCard(dst); 384 } 385 WriteBarrierEveryFieldOf(const mirror::Object * obj)386 void WriteBarrierEveryFieldOf(const mirror::Object* obj) { 387 card_table_->MarkCard(obj); 388 } 389 GetCardTable()390 accounting::CardTable* GetCardTable() const { 391 return card_table_.get(); 392 } 393 394 void AddFinalizerReference(Thread* self, mirror::Object** object); 395 396 // Returns the number of bytes currently allocated. GetBytesAllocated()397 size_t GetBytesAllocated() const { 398 return num_bytes_allocated_.LoadSequentiallyConsistent(); 399 } 400 401 // Returns the number of objects currently allocated. 402 size_t GetObjectsAllocated() const LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 403 404 // Returns the total number of objects allocated since the heap was created. 405 uint64_t GetObjectsAllocatedEver() const; 406 407 // Returns the total number of bytes allocated since the heap was created. 408 uint64_t GetBytesAllocatedEver() const; 409 410 // Returns the total number of objects freed since the heap was created. GetObjectsFreedEver()411 uint64_t GetObjectsFreedEver() const { 412 return total_objects_freed_ever_; 413 } 414 415 // Returns the total number of bytes freed since the heap was created. GetBytesFreedEver()416 uint64_t GetBytesFreedEver() const { 417 return total_bytes_freed_ever_; 418 } 419 420 // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can 421 // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx 422 // were specified. Android apps start with a growth limit (small heap size) which is 423 // cleared/extended for large apps. GetMaxMemory()424 size_t GetMaxMemory() const { 425 // There is some race conditions in the allocation code that can cause bytes allocated to 426 // become larger than growth_limit_ in rare cases. 427 return std::max(GetBytesAllocated(), growth_limit_); 428 } 429 430 // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently 431 // consumed by an application. 432 size_t GetTotalMemory() const; 433 434 // Returns approximately how much free memory we have until the next GC happens. GetFreeMemoryUntilGC()435 size_t GetFreeMemoryUntilGC() const { 436 return max_allowed_footprint_ - GetBytesAllocated(); 437 } 438 439 // Returns approximately how much free memory we have until the next OOME happens. GetFreeMemoryUntilOOME()440 size_t GetFreeMemoryUntilOOME() const { 441 return growth_limit_ - GetBytesAllocated(); 442 } 443 444 // Returns how much free memory we have until we need to grow the heap to perform an allocation. 445 // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory. GetFreeMemory()446 size_t GetFreeMemory() const { 447 size_t byte_allocated = num_bytes_allocated_.LoadSequentiallyConsistent(); 448 size_t total_memory = GetTotalMemory(); 449 // Make sure we don't get a negative number. 450 return total_memory - std::min(total_memory, byte_allocated); 451 } 452 453 // get the space that corresponds to an object's address. Current implementation searches all 454 // spaces in turn. If fail_ok is false then failing to find a space will cause an abort. 455 // TODO: consider using faster data structure like binary tree. 456 space::ContinuousSpace* FindContinuousSpaceFromObject(const mirror::Object*, bool fail_ok) const; 457 space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(const mirror::Object*, 458 bool fail_ok) const; 459 space::Space* FindSpaceFromObject(const mirror::Object*, bool fail_ok) const; 460 461 void DumpForSigQuit(std::ostream& os) EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 462 463 // Do a pending heap transition or trim. 464 void DoPendingTransitionOrTrim() LOCKS_EXCLUDED(heap_trim_request_lock_); 465 466 // Trim the managed and native heaps by releasing unused memory back to the OS. 467 void Trim() LOCKS_EXCLUDED(heap_trim_request_lock_); 468 469 void RevokeThreadLocalBuffers(Thread* thread); 470 void RevokeRosAllocThreadLocalBuffers(Thread* thread); 471 void RevokeAllThreadLocalBuffers(); 472 void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); 473 void RosAllocVerification(TimingLogger* timings, const char* name) 474 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 475 GetLiveBitmap()476 accounting::HeapBitmap* GetLiveBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 477 return live_bitmap_.get(); 478 } 479 GetMarkBitmap()480 accounting::HeapBitmap* GetMarkBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 481 return mark_bitmap_.get(); 482 } 483 GetLiveStack()484 accounting::ObjectStack* GetLiveStack() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 485 return live_stack_.get(); 486 } 487 488 void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS; 489 490 // Mark and empty stack. 491 void FlushAllocStack() 492 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); 493 494 // Revoke all the thread-local allocation stacks. 495 void RevokeAllThreadLocalAllocationStacks(Thread* self) 496 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) 497 LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_, Locks::thread_list_lock_); 498 499 // Mark all the objects in the allocation stack in the specified bitmap. 500 // TODO: Refactor? 501 void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1, 502 accounting::SpaceBitmap<kObjectAlignment>* bitmap2, 503 accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects, 504 accounting::ObjectStack* stack) 505 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); 506 507 // Mark the specified allocation stack as live. 508 void MarkAllocStackAsLive(accounting::ObjectStack* stack) 509 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); 510 511 // Unbind any bound bitmaps. 512 void UnBindBitmaps() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); 513 514 // DEPRECATED: Should remove in "near" future when support for multiple image spaces is added. 515 // Assumes there is only one image space. 516 space::ImageSpace* GetImageSpace() const; 517 518 // Permenantly disable moving garbage collection. 519 void DisableMovingGc(); 520 GetDlMallocSpace()521 space::DlMallocSpace* GetDlMallocSpace() const { 522 return dlmalloc_space_; 523 } 524 GetRosAllocSpace()525 space::RosAllocSpace* GetRosAllocSpace() const { 526 return rosalloc_space_; 527 } 528 529 // Return the corresponding rosalloc space. 530 space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const; 531 GetNonMovingSpace()532 space::MallocSpace* GetNonMovingSpace() const { 533 return non_moving_space_; 534 } 535 GetLargeObjectsSpace()536 space::LargeObjectSpace* GetLargeObjectsSpace() const { 537 return large_object_space_; 538 } 539 540 // Returns the free list space that may contain movable objects (the 541 // one that's not the non-moving space), either rosalloc_space_ or 542 // dlmalloc_space_. GetPrimaryFreeListSpace()543 space::MallocSpace* GetPrimaryFreeListSpace() { 544 if (kUseRosAlloc) { 545 DCHECK(rosalloc_space_ != nullptr); 546 // reinterpret_cast is necessary as the space class hierarchy 547 // isn't known (#included) yet here. 548 return reinterpret_cast<space::MallocSpace*>(rosalloc_space_); 549 } else { 550 DCHECK(dlmalloc_space_ != nullptr); 551 return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_); 552 } 553 } 554 555 std::string DumpSpaces() const WARN_UNUSED; 556 void DumpSpaces(std::ostream& stream) const; 557 558 // Dump object should only be used by the signal handler. 559 void DumpObject(std::ostream& stream, mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS; 560 // Safe version of pretty type of which check to make sure objects are heap addresses. 561 std::string SafeGetClassDescriptor(mirror::Class* klass) NO_THREAD_SAFETY_ANALYSIS; 562 std::string SafePrettyTypeOf(mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS; 563 564 // GC performance measuring 565 void DumpGcPerformanceInfo(std::ostream& os); 566 567 // Returns true if we currently care about pause times. CareAboutPauseTimes()568 bool CareAboutPauseTimes() const { 569 return process_state_ == kProcessStateJankPerceptible; 570 } 571 572 // Thread pool. 573 void CreateThreadPool(); 574 void DeleteThreadPool(); GetThreadPool()575 ThreadPool* GetThreadPool() { 576 return thread_pool_.get(); 577 } GetParallelGCThreadCount()578 size_t GetParallelGCThreadCount() const { 579 return parallel_gc_threads_; 580 } GetConcGCThreadCount()581 size_t GetConcGCThreadCount() const { 582 return conc_gc_threads_; 583 } 584 accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space); 585 void AddModUnionTable(accounting::ModUnionTable* mod_union_table); 586 587 accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space); 588 void AddRememberedSet(accounting::RememberedSet* remembered_set); 589 // Also deletes the remebered set. 590 void RemoveRememberedSet(space::Space* space); 591 592 bool IsCompilingBoot() const; RunningOnValgrind()593 bool RunningOnValgrind() const { 594 return running_on_valgrind_; 595 } 596 bool HasImageSpace() const; 597 GetReferenceProcessor()598 ReferenceProcessor* GetReferenceProcessor() { 599 return &reference_processor_; 600 } 601 602 private: 603 // Compact source space to target space. 604 void Compact(space::ContinuousMemMapAllocSpace* target_space, 605 space::ContinuousMemMapAllocSpace* source_space, 606 GcCause gc_cause) 607 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 608 609 void FinishGC(Thread* self, collector::GcType gc_type) LOCKS_EXCLUDED(gc_complete_lock_); 610 611 // Create a mem map with a preferred base address. 612 static MemMap* MapAnonymousPreferredAddress(const char* name, byte* request_begin, 613 size_t capacity, int prot_flags, 614 std::string* out_error_str); 615 SupportHSpaceCompaction()616 bool SupportHSpaceCompaction() const { 617 // Returns true if we can do hspace compaction 618 return main_space_backup_ != nullptr; 619 } 620 AllocatorHasAllocationStack(AllocatorType allocator_type)621 static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) { 622 return 623 allocator_type != kAllocatorTypeBumpPointer && 624 allocator_type != kAllocatorTypeTLAB; 625 } AllocatorMayHaveConcurrentGC(AllocatorType allocator_type)626 static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) { 627 return AllocatorHasAllocationStack(allocator_type); 628 } IsMovingGc(CollectorType collector_type)629 static bool IsMovingGc(CollectorType collector_type) { 630 return collector_type == kCollectorTypeSS || collector_type == kCollectorTypeGSS || 631 collector_type == kCollectorTypeCC || collector_type == kCollectorTypeMC || 632 collector_type == kCollectorTypeHomogeneousSpaceCompact; 633 } 634 bool ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const 635 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 636 ALWAYS_INLINE void CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated, 637 mirror::Object** obj) 638 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 639 GetMarkStack()640 accounting::ObjectStack* GetMarkStack() { 641 return mark_stack_.get(); 642 } 643 644 // We don't force this to be inlined since it is a slow path. 645 template <bool kInstrumented, typename PreFenceVisitor> 646 mirror::Object* AllocLargeObject(Thread* self, mirror::Class* klass, size_t byte_count, 647 const PreFenceVisitor& pre_fence_visitor) 648 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 649 650 // Handles Allocate()'s slow allocation path with GC involved after 651 // an initial allocation attempt failed. 652 mirror::Object* AllocateInternalWithGc(Thread* self, AllocatorType allocator, size_t num_bytes, 653 size_t* bytes_allocated, size_t* usable_size, 654 mirror::Class** klass) 655 LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_) 656 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 657 658 // Allocate into a specific space. 659 mirror::Object* AllocateInto(Thread* self, space::AllocSpace* space, mirror::Class* c, 660 size_t bytes) 661 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 662 663 // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the 664 // wrong space. 665 void SwapSemiSpaces() EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 666 667 // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so 668 // that the switch statement is constant optimized in the entrypoints. 669 template <const bool kInstrumented, const bool kGrow> 670 ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, AllocatorType allocator_type, 671 size_t alloc_size, size_t* bytes_allocated, 672 size_t* usable_size) 673 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 674 675 void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) 676 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 677 678 template <bool kGrow> 679 bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size); 680 681 // Returns true if the address passed in is within the address range of a continuous space. 682 bool IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const 683 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 684 685 // Run the finalizers. 686 void RunFinalization(JNIEnv* env); 687 688 // Blocks the caller until the garbage collector becomes idle and returns the type of GC we 689 // waited for. 690 collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self) 691 EXCLUSIVE_LOCKS_REQUIRED(gc_complete_lock_); 692 693 void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) 694 LOCKS_EXCLUDED(heap_trim_request_lock_); 695 void RequestHeapTrim() LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_); 696 void RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) 697 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 698 void RequestConcurrentGC(Thread* self) 699 LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_); 700 bool IsGCRequestPending() const; 701 702 // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns 703 // which type of Gc was actually ran. 704 collector::GcType CollectGarbageInternal(collector::GcType gc_plan, GcCause gc_cause, 705 bool clear_soft_references) 706 LOCKS_EXCLUDED(gc_complete_lock_, 707 Locks::heap_bitmap_lock_, 708 Locks::thread_suspend_count_lock_); 709 710 void PreGcVerification(collector::GarbageCollector* gc) 711 LOCKS_EXCLUDED(Locks::mutator_lock_); 712 void PreGcVerificationPaused(collector::GarbageCollector* gc) 713 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 714 void PrePauseRosAllocVerification(collector::GarbageCollector* gc) 715 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 716 void PreSweepingGcVerification(collector::GarbageCollector* gc) 717 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 718 void PostGcVerification(collector::GarbageCollector* gc) 719 LOCKS_EXCLUDED(Locks::mutator_lock_); 720 void PostGcVerificationPaused(collector::GarbageCollector* gc) 721 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 722 723 // Update the watermark for the native allocated bytes based on the current number of native 724 // bytes allocated and the target utilization ratio. 725 void UpdateMaxNativeFootprint(); 726 727 // Find a collector based on GC type. 728 collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type); 729 730 // Create a new alloc space and compact default alloc space to it. 731 HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact(); 732 733 // Create the main free list malloc space, either a RosAlloc space or DlMalloc space. 734 void CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit, 735 size_t capacity); 736 737 // Create a malloc space based on a mem map. Does not set the space as default. 738 space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size, 739 size_t growth_limit, size_t capacity, 740 const char* name, bool can_move_objects); 741 742 // Given the current contents of the alloc space, increase the allowed heap footprint to match 743 // the target utilization ratio. This should only be called immediately after a full garbage 744 // collection. 745 void GrowForUtilization(collector::GarbageCollector* collector_ran); 746 747 size_t GetPercentFree(); 748 749 static void VerificationCallback(mirror::Object* obj, void* arg) 750 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); 751 752 // Swap the allocation stack with the live stack. 753 void SwapStacks(Thread* self); 754 755 // Clear cards and update the mod union table. 756 void ProcessCards(TimingLogger* timings, bool use_rem_sets); 757 758 // Signal the heap trim daemon that there is something to do, either a heap transition or heap 759 // trim. 760 void SignalHeapTrimDaemon(Thread* self); 761 762 // Push an object onto the allocation stack. 763 void PushOnAllocationStack(Thread* self, mirror::Object** obj) 764 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 765 void PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) 766 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 767 void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, mirror::Object** obj) 768 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 769 770 // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark 771 // sweep GC, false for other GC types. IsGcConcurrent()772 bool IsGcConcurrent() const ALWAYS_INLINE { 773 return collector_type_ == kCollectorTypeCMS || collector_type_ == kCollectorTypeCC; 774 } 775 776 // All-known continuous spaces, where objects lie within fixed bounds. 777 std::vector<space::ContinuousSpace*> continuous_spaces_; 778 779 // All-known discontinuous spaces, where objects may be placed throughout virtual memory. 780 std::vector<space::DiscontinuousSpace*> discontinuous_spaces_; 781 782 // All-known alloc spaces, where objects may be or have been allocated. 783 std::vector<space::AllocSpace*> alloc_spaces_; 784 785 // A space where non-movable objects are allocated, when compaction is enabled it contains 786 // Classes, ArtMethods, ArtFields, and non moving objects. 787 space::MallocSpace* non_moving_space_; 788 789 // Space which we use for the kAllocatorTypeROSAlloc. 790 space::RosAllocSpace* rosalloc_space_; 791 792 // Space which we use for the kAllocatorTypeDlMalloc. 793 space::DlMallocSpace* dlmalloc_space_; 794 795 // The main space is the space which the GC copies to and from on process state updates. This 796 // space is typically either the dlmalloc_space_ or the rosalloc_space_. 797 space::MallocSpace* main_space_; 798 799 // The large object space we are currently allocating into. 800 space::LargeObjectSpace* large_object_space_; 801 802 // The card table, dirtied by the write barrier. 803 std::unique_ptr<accounting::CardTable> card_table_; 804 805 // A mod-union table remembers all of the references from the it's space to other spaces. 806 AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap> 807 mod_union_tables_; 808 809 // A remembered set remembers all of the references from the it's space to the target space. 810 AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap> 811 remembered_sets_; 812 813 // The current collector type. 814 CollectorType collector_type_; 815 // Which collector we use when the app is in the foreground. 816 CollectorType foreground_collector_type_; 817 // Which collector we will use when the app is notified of a transition to background. 818 CollectorType background_collector_type_; 819 // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_. 820 CollectorType desired_collector_type_; 821 822 // Lock which guards heap trim requests. 823 Mutex* heap_trim_request_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 824 // When we want to perform the next heap trim (nano seconds). 825 uint64_t last_trim_time_ GUARDED_BY(heap_trim_request_lock_); 826 // When we want to perform the next heap transition (nano seconds) or heap trim. 827 uint64_t heap_transition_or_trim_target_time_ GUARDED_BY(heap_trim_request_lock_); 828 // If we have a heap trim request pending. 829 bool heap_trim_request_pending_ GUARDED_BY(heap_trim_request_lock_); 830 831 // How many GC threads we may use for paused parts of garbage collection. 832 const size_t parallel_gc_threads_; 833 834 // How many GC threads we may use for unpaused parts of garbage collection. 835 const size_t conc_gc_threads_; 836 837 // Boolean for if we are in low memory mode. 838 const bool low_memory_mode_; 839 840 // If we get a pause longer than long pause log threshold, then we print out the GC after it 841 // finishes. 842 const size_t long_pause_log_threshold_; 843 844 // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes. 845 const size_t long_gc_log_threshold_; 846 847 // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is 848 // useful for benchmarking since it reduces time spent in GC to a low %. 849 const bool ignore_max_footprint_; 850 851 // Lock which guards zygote space creation. 852 Mutex zygote_creation_lock_; 853 854 // If we have a zygote space. 855 bool have_zygote_space_; 856 857 // Minimum allocation size of large object. 858 size_t large_object_threshold_; 859 860 // Guards access to the state of GC, associated conditional variable is used to signal when a GC 861 // completes. 862 Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 863 std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_); 864 865 // Reference processor; 866 ReferenceProcessor reference_processor_; 867 868 // True while the garbage collector is running. 869 volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_); 870 871 // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on. 872 volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_); 873 collector::GcType next_gc_type_; 874 875 // Maximum size that the heap can reach. 876 const size_t capacity_; 877 878 // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap 879 // programs it is "cleared" making it the same as capacity. 880 size_t growth_limit_; 881 882 // When the number of bytes allocated exceeds the footprint TryAllocate returns NULL indicating 883 // a GC should be triggered. 884 size_t max_allowed_footprint_; 885 886 // The watermark at which a concurrent GC is requested by registerNativeAllocation. 887 size_t native_footprint_gc_watermark_; 888 889 // Whether or not we need to run finalizers in the next native allocation. 890 bool native_need_to_run_finalization_; 891 892 // Whether or not we currently care about pause times. 893 ProcessState process_state_; 894 895 // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that 896 // it completes ahead of an allocation failing. 897 size_t concurrent_start_bytes_; 898 899 // Since the heap was created, how many bytes have been freed. 900 uint64_t total_bytes_freed_ever_; 901 902 // Since the heap was created, how many objects have been freed. 903 uint64_t total_objects_freed_ever_; 904 905 // Number of bytes allocated. Adjusted after each allocation and free. 906 Atomic<size_t> num_bytes_allocated_; 907 908 // Bytes which are allocated and managed by native code but still need to be accounted for. 909 Atomic<size_t> native_bytes_allocated_; 910 911 // Info related to the current or previous GC iteration. 912 collector::Iteration current_gc_iteration_; 913 914 // Heap verification flags. 915 const bool verify_missing_card_marks_; 916 const bool verify_system_weaks_; 917 const bool verify_pre_gc_heap_; 918 const bool verify_pre_sweeping_heap_; 919 const bool verify_post_gc_heap_; 920 const bool verify_mod_union_table_; 921 bool verify_pre_gc_rosalloc_; 922 bool verify_pre_sweeping_rosalloc_; 923 bool verify_post_gc_rosalloc_; 924 925 // RAII that temporarily disables the rosalloc verification during 926 // the zygote fork. 927 class ScopedDisableRosAllocVerification { 928 private: 929 Heap* const heap_; 930 const bool orig_verify_pre_gc_; 931 const bool orig_verify_pre_sweeping_; 932 const bool orig_verify_post_gc_; 933 934 public: ScopedDisableRosAllocVerification(Heap * heap)935 explicit ScopedDisableRosAllocVerification(Heap* heap) 936 : heap_(heap), 937 orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_), 938 orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_), 939 orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) { 940 heap_->verify_pre_gc_rosalloc_ = false; 941 heap_->verify_pre_sweeping_rosalloc_ = false; 942 heap_->verify_post_gc_rosalloc_ = false; 943 } ~ScopedDisableRosAllocVerification()944 ~ScopedDisableRosAllocVerification() { 945 heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_; 946 heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_; 947 heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_; 948 } 949 }; 950 951 // Parallel GC data structures. 952 std::unique_ptr<ThreadPool> thread_pool_; 953 954 // The nanosecond time at which the last GC ended. 955 uint64_t last_gc_time_ns_; 956 957 // How many bytes were allocated at the end of the last GC. 958 uint64_t last_gc_size_; 959 960 // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle 961 // and the start of the current one. 962 uint64_t allocation_rate_; 963 964 // For a GC cycle, a bitmap that is set corresponding to the 965 std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); 966 std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); 967 968 // Mark stack that we reuse to avoid re-allocating the mark stack. 969 std::unique_ptr<accounting::ObjectStack> mark_stack_; 970 971 // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us 972 // to use the live bitmap as the old mark bitmap. 973 const size_t max_allocation_stack_size_; 974 std::unique_ptr<accounting::ObjectStack> allocation_stack_; 975 976 // Second allocation stack so that we can process allocation with the heap unlocked. 977 std::unique_ptr<accounting::ObjectStack> live_stack_; 978 979 // Allocator type. 980 AllocatorType current_allocator_; 981 const AllocatorType current_non_moving_allocator_; 982 983 // Which GCs we run in order when we an allocation fails. 984 std::vector<collector::GcType> gc_plan_; 985 986 // Bump pointer spaces. 987 space::BumpPointerSpace* bump_pointer_space_; 988 // Temp space is the space which the semispace collector copies to. 989 space::BumpPointerSpace* temp_space_; 990 991 // Minimum free guarantees that you always have at least min_free_ free bytes after growing for 992 // utilization, regardless of target utilization ratio. 993 size_t min_free_; 994 995 // The ideal maximum free size, when we grow the heap for utilization. 996 size_t max_free_; 997 998 // Target ideal heap utilization ratio 999 double target_utilization_; 1000 1001 // How much more we grow the heap when we are a foreground app instead of background. 1002 double foreground_heap_growth_multiplier_; 1003 1004 // Total time which mutators are paused or waiting for GC to complete. 1005 uint64_t total_wait_time_; 1006 1007 // Total number of objects allocated in microseconds. 1008 AtomicInteger total_allocation_time_; 1009 1010 // The current state of heap verification, may be enabled or disabled. 1011 VerifyObjectMode verify_object_mode_; 1012 1013 // Compacting GC disable count, prevents compacting GC from running iff > 0. 1014 size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_); 1015 1016 std::vector<collector::GarbageCollector*> garbage_collectors_; 1017 collector::SemiSpace* semi_space_collector_; 1018 collector::MarkCompact* mark_compact_collector_; 1019 collector::ConcurrentCopying* concurrent_copying_collector_; 1020 1021 const bool running_on_valgrind_; 1022 const bool use_tlab_; 1023 1024 // Pointer to the space which becomes the new main space when we do homogeneous space compaction. 1025 // Use unique_ptr since the space is only added during the homogeneous compaction phase. 1026 std::unique_ptr<space::MallocSpace> main_space_backup_; 1027 1028 // Minimal interval allowed between two homogeneous space compactions caused by OOM. 1029 uint64_t min_interval_homogeneous_space_compaction_by_oom_; 1030 1031 // Times of the last homogeneous space compaction caused by OOM. 1032 uint64_t last_time_homogeneous_space_compaction_by_oom_; 1033 1034 // Saved OOMs by homogeneous space compaction. 1035 Atomic<size_t> count_delayed_oom_; 1036 1037 // Count for requested homogeneous space compaction. 1038 Atomic<size_t> count_requested_homogeneous_space_compaction_; 1039 1040 // Count for ignored homogeneous space compaction. 1041 Atomic<size_t> count_ignored_homogeneous_space_compaction_; 1042 1043 // Count for performed homogeneous space compaction. 1044 Atomic<size_t> count_performed_homogeneous_space_compaction_; 1045 1046 // Whether or not we use homogeneous space compaction to avoid OOM errors. 1047 bool use_homogeneous_space_compaction_for_oom_; 1048 1049 friend class collector::GarbageCollector; 1050 friend class collector::MarkCompact; 1051 friend class collector::MarkSweep; 1052 friend class collector::SemiSpace; 1053 friend class ReferenceQueue; 1054 friend class VerifyReferenceCardVisitor; 1055 friend class VerifyReferenceVisitor; 1056 friend class VerifyObjectVisitor; 1057 friend class ScopedHeapFill; 1058 friend class ScopedHeapLock; 1059 friend class space::SpaceTest; 1060 1061 class AllocationTimer { 1062 private: 1063 Heap* heap_; 1064 mirror::Object** allocated_obj_ptr_; 1065 uint64_t allocation_start_time_; 1066 public: 1067 AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr); 1068 ~AllocationTimer(); 1069 }; 1070 1071 DISALLOW_IMPLICIT_CONSTRUCTORS(Heap); 1072 }; 1073 1074 // ScopedHeapFill changes the bytes allocated counter to be equal to the growth limit. This 1075 // causes the next allocation to perform a GC and possibly an OOM. It can be used to ensure that a 1076 // GC happens in specific methods such as ThrowIllegalMonitorStateExceptionF in Monitor::Wait. 1077 class ScopedHeapFill { 1078 public: ScopedHeapFill(Heap * heap)1079 explicit ScopedHeapFill(Heap* heap) 1080 : heap_(heap), 1081 delta_(heap_->GetMaxMemory() - heap_->GetBytesAllocated()) { 1082 heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(delta_); 1083 } ~ScopedHeapFill()1084 ~ScopedHeapFill() { 1085 heap_->num_bytes_allocated_.FetchAndSubSequentiallyConsistent(delta_); 1086 } 1087 1088 private: 1089 Heap* const heap_; 1090 const int64_t delta_; 1091 }; 1092 1093 } // namespace gc 1094 } // namespace art 1095 1096 #endif // ART_RUNTIME_GC_HEAP_H_ 1097