1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_UTILS_H_ 18 #define ART_RUNTIME_UTILS_H_ 19 20 #include <pthread.h> 21 22 #include <limits> 23 #include <memory> 24 #include <string> 25 #include <vector> 26 27 #include "base/logging.h" 28 #include "base/mutex.h" 29 #include "globals.h" 30 #include "instruction_set.h" 31 #include "primitive.h" 32 33 #ifdef HAVE_ANDROID_OS 34 #include "cutils/properties.h" 35 #endif 36 37 namespace art { 38 39 class DexFile; 40 41 namespace mirror { 42 class ArtField; 43 class ArtMethod; 44 class Class; 45 class Object; 46 class String; 47 } // namespace mirror 48 49 enum TimeUnit { 50 kTimeUnitNanosecond, 51 kTimeUnitMicrosecond, 52 kTimeUnitMillisecond, 53 kTimeUnitSecond, 54 }; 55 56 template <typename T> ParseUint(const char * in,T * out)57 bool ParseUint(const char *in, T* out) { 58 char* end; 59 unsigned long long int result = strtoull(in, &end, 0); // NOLINT(runtime/int) 60 if (in == end || *end != '\0') { 61 return false; 62 } 63 if (std::numeric_limits<T>::max() < result) { 64 return false; 65 } 66 *out = static_cast<T>(result); 67 return true; 68 } 69 70 template <typename T> ParseInt(const char * in,T * out)71 bool ParseInt(const char* in, T* out) { 72 char* end; 73 long long int result = strtoll(in, &end, 0); // NOLINT(runtime/int) 74 if (in == end || *end != '\0') { 75 return false; 76 } 77 if (result < std::numeric_limits<T>::min() || std::numeric_limits<T>::max() < result) { 78 return false; 79 } 80 *out = static_cast<T>(result); 81 return true; 82 } 83 84 template<typename T> IsPowerOfTwo(T x)85 static constexpr bool IsPowerOfTwo(T x) { 86 return (x & (x - 1)) == 0; 87 } 88 89 template<int n, typename T> IsAligned(T x)90 static inline bool IsAligned(T x) { 91 COMPILE_ASSERT((n & (n - 1)) == 0, n_not_power_of_two); 92 return (x & (n - 1)) == 0; 93 } 94 95 template<int n, typename T> IsAligned(T * x)96 static inline bool IsAligned(T* x) { 97 return IsAligned<n>(reinterpret_cast<const uintptr_t>(x)); 98 } 99 100 template<typename T> IsAlignedParam(T x,int n)101 static inline bool IsAlignedParam(T x, int n) { 102 return (x & (n - 1)) == 0; 103 } 104 105 #define CHECK_ALIGNED(value, alignment) \ 106 CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) 107 108 #define DCHECK_ALIGNED(value, alignment) \ 109 DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) 110 111 #define DCHECK_ALIGNED_PARAM(value, alignment) \ 112 DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value) 113 114 // Check whether an N-bit two's-complement representation can hold value. IsInt(int N,word value)115 static inline bool IsInt(int N, word value) { 116 CHECK_LT(0, N); 117 CHECK_LT(N, kBitsPerWord); 118 word limit = static_cast<word>(1) << (N - 1); 119 return (-limit <= value) && (value < limit); 120 } 121 IsUint(int N,word value)122 static inline bool IsUint(int N, word value) { 123 CHECK_LT(0, N); 124 CHECK_LT(N, kBitsPerWord); 125 word limit = static_cast<word>(1) << N; 126 return (0 <= value) && (value < limit); 127 } 128 IsAbsoluteUint(int N,word value)129 static inline bool IsAbsoluteUint(int N, word value) { 130 CHECK_LT(0, N); 131 CHECK_LT(N, kBitsPerWord); 132 if (value < 0) value = -value; 133 return IsUint(N, value); 134 } 135 Low16Bits(uint32_t value)136 static inline uint16_t Low16Bits(uint32_t value) { 137 return static_cast<uint16_t>(value); 138 } 139 High16Bits(uint32_t value)140 static inline uint16_t High16Bits(uint32_t value) { 141 return static_cast<uint16_t>(value >> 16); 142 } 143 Low32Bits(uint64_t value)144 static inline uint32_t Low32Bits(uint64_t value) { 145 return static_cast<uint32_t>(value); 146 } 147 High32Bits(uint64_t value)148 static inline uint32_t High32Bits(uint64_t value) { 149 return static_cast<uint32_t>(value >> 32); 150 } 151 152 // A static if which determines whether to return type A or B based on the condition boolean. 153 template <bool condition, typename A, typename B> 154 struct TypeStaticIf { 155 typedef A type; 156 }; 157 158 // Specialization to handle the false case. 159 template <typename A, typename B> 160 struct TypeStaticIf<false, A, B> { 161 typedef B type; 162 }; 163 164 // Type identity. 165 template <typename T> 166 struct TypeIdentity { 167 typedef T type; 168 }; 169 170 // For rounding integers. 171 template<typename T> 172 static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) WARN_UNUSED; 173 174 template<typename T> 175 static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) { 176 return 177 DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0)) 178 (x & -n); 179 } 180 181 template<typename T> 182 static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) WARN_UNUSED; 183 184 template<typename T> 185 static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) { 186 return RoundDown(x + n - 1, n); 187 } 188 189 // For aligning pointers. 190 template<typename T> 191 static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED; 192 193 template<typename T> 194 static inline T* AlignDown(T* x, uintptr_t n) { 195 return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n)); 196 } 197 198 template<typename T> 199 static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED; 200 201 template<typename T> 202 static inline T* AlignUp(T* x, uintptr_t n) { 203 return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n)); 204 } 205 206 // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr., 207 // figure 3-3, page 48, where the function is called clp2. 208 static inline uint32_t RoundUpToPowerOfTwo(uint32_t x) { 209 x = x - 1; 210 x = x | (x >> 1); 211 x = x | (x >> 2); 212 x = x | (x >> 4); 213 x = x | (x >> 8); 214 x = x | (x >> 16); 215 return x + 1; 216 } 217 218 template<typename T> 219 static constexpr int CLZ(T x) { 220 return (sizeof(T) == sizeof(uint32_t)) 221 ? __builtin_clz(x) 222 : __builtin_clzll(x); 223 } 224 225 template<typename T> 226 static constexpr int CTZ(T x) { 227 return (sizeof(T) == sizeof(uint32_t)) 228 ? __builtin_ctz(x) 229 : __builtin_ctzll(x); 230 } 231 232 template<typename T> 233 static constexpr int POPCOUNT(T x) { 234 return (sizeof(T) == sizeof(uint32_t)) 235 ? __builtin_popcount(x) 236 : __builtin_popcountll(x); 237 } 238 239 static inline uint32_t PointerToLowMemUInt32(const void* p) { 240 uintptr_t intp = reinterpret_cast<uintptr_t>(p); 241 DCHECK_LE(intp, 0xFFFFFFFFU); 242 return intp & 0xFFFFFFFFU; 243 } 244 245 static inline bool NeedsEscaping(uint16_t ch) { 246 return (ch < ' ' || ch > '~'); 247 } 248 249 // Interpret the bit pattern of input (type U) as type V. Requires the size 250 // of V >= size of U (compile-time checked). 251 template<typename U, typename V> 252 static inline V bit_cast(U in) { 253 COMPILE_ASSERT(sizeof(U) <= sizeof(V), size_of_u_not_le_size_of_v); 254 union { 255 U u; 256 V v; 257 } tmp; 258 tmp.u = in; 259 return tmp.v; 260 } 261 262 std::string PrintableChar(uint16_t ch); 263 264 // Returns an ASCII string corresponding to the given UTF-8 string. 265 // Java escapes are used for non-ASCII characters. 266 std::string PrintableString(const char* utf8); 267 268 // Tests whether 's' starts with 'prefix'. 269 bool StartsWith(const std::string& s, const char* prefix); 270 271 // Tests whether 's' starts with 'suffix'. 272 bool EndsWith(const std::string& s, const char* suffix); 273 274 // Used to implement PrettyClass, PrettyField, PrettyMethod, and PrettyTypeOf, 275 // one of which is probably more useful to you. 276 // Returns a human-readable equivalent of 'descriptor'. So "I" would be "int", 277 // "[[I" would be "int[][]", "[Ljava/lang/String;" would be 278 // "java.lang.String[]", and so forth. 279 std::string PrettyDescriptor(mirror::String* descriptor) 280 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 281 std::string PrettyDescriptor(const char* descriptor); 282 std::string PrettyDescriptor(mirror::Class* klass) 283 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 284 std::string PrettyDescriptor(Primitive::Type type); 285 286 // Returns a human-readable signature for 'f'. Something like "a.b.C.f" or 287 // "int a.b.C.f" (depending on the value of 'with_type'). 288 std::string PrettyField(mirror::ArtField* f, bool with_type = true) 289 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 290 std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type = true); 291 292 // Returns a human-readable signature for 'm'. Something like "a.b.C.m" or 293 // "a.b.C.m(II)V" (depending on the value of 'with_signature'). 294 std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature = true) 295 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 296 std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature = true); 297 298 // Returns a human-readable form of the name of the *class* of the given object. 299 // So given an instance of java.lang.String, the output would 300 // be "java.lang.String". Given an array of int, the output would be "int[]". 301 // Given String.class, the output would be "java.lang.Class<java.lang.String>". 302 std::string PrettyTypeOf(mirror::Object* obj) 303 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 304 305 // Returns a human-readable form of the type at an index in the specified dex file. 306 // Example outputs: char[], java.lang.String. 307 std::string PrettyType(uint32_t type_idx, const DexFile& dex_file); 308 309 // Returns a human-readable form of the name of the given class. 310 // Given String.class, the output would be "java.lang.Class<java.lang.String>". 311 std::string PrettyClass(mirror::Class* c) 312 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 313 314 // Returns a human-readable form of the name of the given class with its class loader. 315 std::string PrettyClassAndClassLoader(mirror::Class* c) 316 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 317 318 // Returns a human-readable size string such as "1MB". 319 std::string PrettySize(int64_t size_in_bytes); 320 321 // Returns a human-readable time string which prints every nanosecond while trying to limit the 322 // number of trailing zeros. Prints using the largest human readable unit up to a second. 323 // e.g. "1ms", "1.000000001s", "1.001us" 324 std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits = 3); 325 326 // Format a nanosecond time to specified units. 327 std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit, 328 size_t max_fraction_digits); 329 330 // Get the appropriate unit for a nanosecond duration. 331 TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration); 332 333 // Get the divisor to convert from a nanoseconds to a time unit. 334 uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit); 335 336 // Performs JNI name mangling as described in section 11.3 "Linking Native Methods" 337 // of the JNI spec. 338 std::string MangleForJni(const std::string& s); 339 340 // Turn "java.lang.String" into "Ljava/lang/String;". 341 std::string DotToDescriptor(const char* class_name); 342 343 // Turn "Ljava/lang/String;" into "java.lang.String" using the conventions of 344 // java.lang.Class.getName(). 345 std::string DescriptorToDot(const char* descriptor); 346 347 // Turn "Ljava/lang/String;" into "java/lang/String" using the opposite conventions of 348 // java.lang.Class.getName(). 349 std::string DescriptorToName(const char* descriptor); 350 351 // Tests for whether 's' is a valid class name in the three common forms: 352 bool IsValidBinaryClassName(const char* s); // "java.lang.String" 353 bool IsValidJniClassName(const char* s); // "java/lang/String" 354 bool IsValidDescriptor(const char* s); // "Ljava/lang/String;" 355 356 // Returns whether the given string is a valid field or method name, 357 // additionally allowing names that begin with '<' and end with '>'. 358 bool IsValidMemberName(const char* s); 359 360 // Returns the JNI native function name for the non-overloaded method 'm'. 361 std::string JniShortName(mirror::ArtMethod* m) 362 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 363 // Returns the JNI native function name for the overloaded method 'm'. 364 std::string JniLongName(mirror::ArtMethod* m) 365 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 366 367 bool ReadFileToString(const std::string& file_name, std::string* result); 368 369 // Returns the current date in ISO yyyy-mm-dd hh:mm:ss format. 370 std::string GetIsoDate(); 371 372 // Returns the monotonic time since some unspecified starting point in milliseconds. 373 uint64_t MilliTime(); 374 375 // Returns the monotonic time since some unspecified starting point in microseconds. 376 uint64_t MicroTime(); 377 378 // Returns the monotonic time since some unspecified starting point in nanoseconds. 379 uint64_t NanoTime(); 380 381 // Returns the thread-specific CPU-time clock in nanoseconds or -1 if unavailable. 382 uint64_t ThreadCpuNanoTime(); 383 384 // Converts the given number of nanoseconds to milliseconds. 385 static constexpr inline uint64_t NsToMs(uint64_t ns) { 386 return ns / 1000 / 1000; 387 } 388 389 // Converts the given number of milliseconds to nanoseconds 390 static constexpr inline uint64_t MsToNs(uint64_t ns) { 391 return ns * 1000 * 1000; 392 } 393 394 #if defined(__APPLE__) 395 // No clocks to specify on OS/X, fake value to pass to routines that require a clock. 396 #define CLOCK_REALTIME 0xebadf00d 397 #endif 398 399 // Sleep for the given number of nanoseconds, a bad way to handle contention. 400 void NanoSleep(uint64_t ns); 401 402 // Initialize a timespec to either an absolute or relative time. 403 void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts); 404 405 // Splits a string using the given separator character into a vector of 406 // strings. Empty strings will be omitted. 407 void Split(const std::string& s, char separator, std::vector<std::string>& result); 408 409 // Trims whitespace off both ends of the given string. 410 std::string Trim(std::string s); 411 412 // Joins a vector of strings into a single string, using the given separator. 413 template <typename StringT> std::string Join(std::vector<StringT>& strings, char separator); 414 415 // Returns the calling thread's tid. (The C libraries don't expose this.) 416 pid_t GetTid(); 417 418 // Returns the given thread's name. 419 std::string GetThreadName(pid_t tid); 420 421 // Returns details of the given thread's stack. 422 void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size); 423 424 // Reads data from "/proc/self/task/${tid}/stat". 425 void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu); 426 427 // Returns the name of the scheduler group for the given thread the current process, or the empty string. 428 std::string GetSchedulerGroupName(pid_t tid); 429 430 // Sets the name of the current thread. The name may be truncated to an 431 // implementation-defined limit. 432 void SetThreadName(const char* thread_name); 433 434 // Dumps the native stack for thread 'tid' to 'os'. 435 void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix = "", 436 mirror::ArtMethod* current_method = nullptr) 437 NO_THREAD_SAFETY_ANALYSIS; 438 439 // Dumps the kernel stack for thread 'tid' to 'os'. Note that this is only available on linux-x86. 440 void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix = "", bool include_count = true); 441 442 // Find $ANDROID_ROOT, /system, or abort. 443 const char* GetAndroidRoot(); 444 445 // Find $ANDROID_DATA, /data, or abort. 446 const char* GetAndroidData(); 447 // Find $ANDROID_DATA, /data, or return nullptr. 448 const char* GetAndroidDataSafe(std::string* error_msg); 449 450 // Returns the dalvik-cache location, or dies trying. subdir will be 451 // appended to the cache location. 452 std::string GetDalvikCacheOrDie(const char* subdir, bool create_if_absent = true); 453 // Return true if we found the dalvik cache and stored it in the dalvik_cache argument. 454 // have_android_data will be set to true if we have an ANDROID_DATA that exists, 455 // dalvik_cache_exists will be true if there is a dalvik-cache directory that is present. 456 // The flag is_global_cache tells whether this cache is /data/dalvik-cache. 457 void GetDalvikCache(const char* subdir, bool create_if_absent, std::string* dalvik_cache, 458 bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache); 459 460 // Returns the absolute dalvik-cache path for a DexFile or OatFile. The path returned will be 461 // rooted at cache_location. 462 bool GetDalvikCacheFilename(const char* file_location, const char* cache_location, 463 std::string* filename, std::string* error_msg); 464 // Returns the absolute dalvik-cache path for a DexFile or OatFile, or 465 // dies trying. The path returned will be rooted at cache_location. 466 std::string GetDalvikCacheFilenameOrDie(const char* file_location, 467 const char* cache_location); 468 469 // Returns the system location for an image 470 std::string GetSystemImageFilename(const char* location, InstructionSet isa); 471 472 // Returns an .odex file name next adjacent to the dex location. 473 // For example, for "/foo/bar/baz.jar", return "/foo/bar/<isa>/baz.odex". 474 // Note: does not support multidex location strings. 475 std::string DexFilenameToOdexFilename(const std::string& location, InstructionSet isa); 476 477 // Check whether the given magic matches a known file type. 478 bool IsZipMagic(uint32_t magic); 479 bool IsDexMagic(uint32_t magic); 480 bool IsOatMagic(uint32_t magic); 481 482 // Wrapper on fork/execv to run a command in a subprocess. 483 bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg); 484 485 class VoidFunctor { 486 public: 487 template <typename A> 488 inline void operator() (A a) const { 489 UNUSED(a); 490 } 491 492 template <typename A, typename B> 493 inline void operator() (A a, B b) const { 494 UNUSED(a); 495 UNUSED(b); 496 } 497 498 template <typename A, typename B, typename C> 499 inline void operator() (A a, B b, C c) const { 500 UNUSED(a); 501 UNUSED(b); 502 UNUSED(c); 503 } 504 }; 505 506 // Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below. 507 struct FreeDelete { 508 // NOTE: Deleting a const object is valid but free() takes a non-const pointer. 509 void operator()(const void* ptr) const { 510 free(const_cast<void*>(ptr)); 511 } 512 }; 513 514 // Alias for std::unique_ptr<> that uses the C function free() to delete objects. 515 template <typename T> 516 using UniqueCPtr = std::unique_ptr<T, FreeDelete>; 517 518 } // namespace art 519 520 #endif // ART_RUNTIME_UTILS_H_ 521