1
2 /* @(#)e_hypot.c 1.3 95/01/18 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 */
13
14 #include <sys/cdefs.h>
15 __FBSDID("$FreeBSD$");
16
17 /* __ieee754_hypot(x,y)
18 *
19 * Method :
20 * If (assume round-to-nearest) z=x*x+y*y
21 * has error less than sqrt(2)/2 ulp, than
22 * sqrt(z) has error less than 1 ulp (exercise).
23 *
24 * So, compute sqrt(x*x+y*y) with some care as
25 * follows to get the error below 1 ulp:
26 *
27 * Assume x>y>0;
28 * (if possible, set rounding to round-to-nearest)
29 * 1. if x > 2y use
30 * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
31 * where x1 = x with lower 32 bits cleared, x2 = x-x1; else
32 * 2. if x <= 2y use
33 * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
34 * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
35 * y1= y with lower 32 bits chopped, y2 = y-y1.
36 *
37 * NOTE: scaling may be necessary if some argument is too
38 * large or too tiny
39 *
40 * Special cases:
41 * hypot(x,y) is INF if x or y is +INF or -INF; else
42 * hypot(x,y) is NAN if x or y is NAN.
43 *
44 * Accuracy:
45 * hypot(x,y) returns sqrt(x^2+y^2) with error less
46 * than 1 ulps (units in the last place)
47 */
48
49 #include <float.h>
50
51 #include "math.h"
52 #include "math_private.h"
53
54 double
__ieee754_hypot(double x,double y)55 __ieee754_hypot(double x, double y)
56 {
57 double a,b,t1,t2,y1,y2,w;
58 int32_t j,k,ha,hb;
59
60 GET_HIGH_WORD(ha,x);
61 ha &= 0x7fffffff;
62 GET_HIGH_WORD(hb,y);
63 hb &= 0x7fffffff;
64 if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
65 a = fabs(a);
66 b = fabs(b);
67 if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
68 k=0;
69 if(ha > 0x5f300000) { /* a>2**500 */
70 if(ha >= 0x7ff00000) { /* Inf or NaN */
71 u_int32_t low;
72 /* Use original arg order iff result is NaN; quieten sNaNs. */
73 w = fabs(x+0.0)-fabs(y+0.0);
74 GET_LOW_WORD(low,a);
75 if(((ha&0xfffff)|low)==0) w = a;
76 GET_LOW_WORD(low,b);
77 if(((hb^0x7ff00000)|low)==0) w = b;
78 return w;
79 }
80 /* scale a and b by 2**-600 */
81 ha -= 0x25800000; hb -= 0x25800000; k += 600;
82 SET_HIGH_WORD(a,ha);
83 SET_HIGH_WORD(b,hb);
84 }
85 if(hb < 0x20b00000) { /* b < 2**-500 */
86 if(hb <= 0x000fffff) { /* subnormal b or 0 */
87 u_int32_t low;
88 GET_LOW_WORD(low,b);
89 if((hb|low)==0) return a;
90 t1=0;
91 SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */
92 b *= t1;
93 a *= t1;
94 k -= 1022;
95 } else { /* scale a and b by 2^600 */
96 ha += 0x25800000; /* a *= 2^600 */
97 hb += 0x25800000; /* b *= 2^600 */
98 k -= 600;
99 SET_HIGH_WORD(a,ha);
100 SET_HIGH_WORD(b,hb);
101 }
102 }
103 /* medium size a and b */
104 w = a-b;
105 if (w>b) {
106 t1 = 0;
107 SET_HIGH_WORD(t1,ha);
108 t2 = a-t1;
109 w = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
110 } else {
111 a = a+a;
112 y1 = 0;
113 SET_HIGH_WORD(y1,hb);
114 y2 = b - y1;
115 t1 = 0;
116 SET_HIGH_WORD(t1,ha+0x00100000);
117 t2 = a - t1;
118 w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
119 }
120 if(k!=0) {
121 u_int32_t high;
122 t1 = 1.0;
123 GET_HIGH_WORD(high,t1);
124 SET_HIGH_WORD(t1,high+(k<<20));
125 return t1*w;
126 } else return w;
127 }
128
129 #if LDBL_MANT_DIG == 53
130 __weak_reference(hypot, hypotl);
131 #endif
132