• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /* @(#)e_hypot.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 #include <sys/cdefs.h>
15 __FBSDID("$FreeBSD$");
16 
17 /* __ieee754_hypot(x,y)
18  *
19  * Method :
20  *	If (assume round-to-nearest) z=x*x+y*y
21  *	has error less than sqrt(2)/2 ulp, than
22  *	sqrt(z) has error less than 1 ulp (exercise).
23  *
24  *	So, compute sqrt(x*x+y*y) with some care as
25  *	follows to get the error below 1 ulp:
26  *
27  *	Assume x>y>0;
28  *	(if possible, set rounding to round-to-nearest)
29  *	1. if x > 2y  use
30  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
31  *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
32  *	2. if x <= 2y use
33  *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
34  *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
35  *	y1= y with lower 32 bits chopped, y2 = y-y1.
36  *
37  *	NOTE: scaling may be necessary if some argument is too
38  *	      large or too tiny
39  *
40  * Special cases:
41  *	hypot(x,y) is INF if x or y is +INF or -INF; else
42  *	hypot(x,y) is NAN if x or y is NAN.
43  *
44  * Accuracy:
45  * 	hypot(x,y) returns sqrt(x^2+y^2) with error less
46  * 	than 1 ulps (units in the last place)
47  */
48 
49 #include <float.h>
50 
51 #include "math.h"
52 #include "math_private.h"
53 
54 double
__ieee754_hypot(double x,double y)55 __ieee754_hypot(double x, double y)
56 {
57 	double a,b,t1,t2,y1,y2,w;
58 	int32_t j,k,ha,hb;
59 
60 	GET_HIGH_WORD(ha,x);
61 	ha &= 0x7fffffff;
62 	GET_HIGH_WORD(hb,y);
63 	hb &= 0x7fffffff;
64 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
65 	a = fabs(a);
66 	b = fabs(b);
67 	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
68 	k=0;
69 	if(ha > 0x5f300000) {	/* a>2**500 */
70 	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
71 	       u_int32_t low;
72 	       /* Use original arg order iff result is NaN; quieten sNaNs. */
73 	       w = fabs(x+0.0)-fabs(y+0.0);
74 	       GET_LOW_WORD(low,a);
75 	       if(((ha&0xfffff)|low)==0) w = a;
76 	       GET_LOW_WORD(low,b);
77 	       if(((hb^0x7ff00000)|low)==0) w = b;
78 	       return w;
79 	   }
80 	   /* scale a and b by 2**-600 */
81 	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
82 	   SET_HIGH_WORD(a,ha);
83 	   SET_HIGH_WORD(b,hb);
84 	}
85 	if(hb < 0x20b00000) {	/* b < 2**-500 */
86 	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */
87 	        u_int32_t low;
88 		GET_LOW_WORD(low,b);
89 		if((hb|low)==0) return a;
90 		t1=0;
91 		SET_HIGH_WORD(t1,0x7fd00000);	/* t1=2^1022 */
92 		b *= t1;
93 		a *= t1;
94 		k -= 1022;
95 	    } else {		/* scale a and b by 2^600 */
96 	        ha += 0x25800000; 	/* a *= 2^600 */
97 		hb += 0x25800000;	/* b *= 2^600 */
98 		k -= 600;
99 		SET_HIGH_WORD(a,ha);
100 		SET_HIGH_WORD(b,hb);
101 	    }
102 	}
103     /* medium size a and b */
104 	w = a-b;
105 	if (w>b) {
106 	    t1 = 0;
107 	    SET_HIGH_WORD(t1,ha);
108 	    t2 = a-t1;
109 	    w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
110 	} else {
111 	    a  = a+a;
112 	    y1 = 0;
113 	    SET_HIGH_WORD(y1,hb);
114 	    y2 = b - y1;
115 	    t1 = 0;
116 	    SET_HIGH_WORD(t1,ha+0x00100000);
117 	    t2 = a - t1;
118 	    w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
119 	}
120 	if(k!=0) {
121 	    u_int32_t high;
122 	    t1 = 1.0;
123 	    GET_HIGH_WORD(high,t1);
124 	    SET_HIGH_WORD(t1,high+(k<<20));
125 	    return t1*w;
126 	} else return w;
127 }
128 
129 #if LDBL_MANT_DIG == 53
130 __weak_reference(hypot, hypotl);
131 #endif
132