1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: thadh@gmail.com (Thad Hughes)
30 // mierle@gmail.com (Keir Mierle)
31 // sameeragarwal@google.com (Sameer Agarwal)
32
33 #include <cstddef>
34
35 #include "ceres/dynamic_autodiff_cost_function.h"
36 #include "ceres/internal/scoped_ptr.h"
37 #include "gtest/gtest.h"
38
39 namespace ceres {
40 namespace internal {
41
42 // Takes 2 parameter blocks:
43 // parameters[0] is size 10.
44 // parameters[1] is size 5.
45 // Emits 21 residuals:
46 // A: i - parameters[0][i], for i in [0,10) -- this is 10 residuals
47 // B: parameters[0][i] - i, for i in [0,10) -- this is another 10.
48 // C: sum(parameters[0][i]^2 - 8*parameters[0][i]) + sum(parameters[1][i])
49 class MyCostFunctor {
50 public:
51 template <typename T>
operator ()(T const * const * parameters,T * residuals) const52 bool operator()(T const* const* parameters, T* residuals) const {
53 const T* params0 = parameters[0];
54 int r = 0;
55 for (int i = 0; i < 10; ++i) {
56 residuals[r++] = T(i) - params0[i];
57 residuals[r++] = params0[i] - T(i);
58 }
59
60 T c_residual(0.0);
61 for (int i = 0; i < 10; ++i) {
62 c_residual += pow(params0[i], 2) - T(8) * params0[i];
63 }
64
65 const T* params1 = parameters[1];
66 for (int i = 0; i < 5; ++i) {
67 c_residual += params1[i];
68 }
69 residuals[r++] = c_residual;
70 return true;
71 }
72 };
73
TEST(DynamicAutodiffCostFunctionTest,TestResiduals)74 TEST(DynamicAutodiffCostFunctionTest, TestResiduals) {
75 vector<double> param_block_0(10, 0.0);
76 vector<double> param_block_1(5, 0.0);
77 DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
78 new MyCostFunctor());
79 cost_function.AddParameterBlock(param_block_0.size());
80 cost_function.AddParameterBlock(param_block_1.size());
81 cost_function.SetNumResiduals(21);
82
83 // Test residual computation.
84 vector<double> residuals(21, -100000);
85 vector<double*> parameter_blocks(2);
86 parameter_blocks[0] = ¶m_block_0[0];
87 parameter_blocks[1] = ¶m_block_1[0];
88 EXPECT_TRUE(cost_function.Evaluate(¶meter_blocks[0],
89 residuals.data(),
90 NULL));
91 for (int r = 0; r < 10; ++r) {
92 EXPECT_EQ(1.0 * r, residuals.at(r * 2));
93 EXPECT_EQ(-1.0 * r, residuals.at(r * 2 + 1));
94 }
95 EXPECT_EQ(0, residuals.at(20));
96 }
97
TEST(DynamicAutodiffCostFunctionTest,TestJacobian)98 TEST(DynamicAutodiffCostFunctionTest, TestJacobian) {
99 // Test the residual counting.
100 vector<double> param_block_0(10, 0.0);
101 for (int i = 0; i < 10; ++i) {
102 param_block_0[i] = 2 * i;
103 }
104 vector<double> param_block_1(5, 0.0);
105 DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
106 new MyCostFunctor());
107 cost_function.AddParameterBlock(param_block_0.size());
108 cost_function.AddParameterBlock(param_block_1.size());
109 cost_function.SetNumResiduals(21);
110
111 // Prepare the residuals.
112 vector<double> residuals(21, -100000);
113
114 // Prepare the parameters.
115 vector<double*> parameter_blocks(2);
116 parameter_blocks[0] = ¶m_block_0[0];
117 parameter_blocks[1] = ¶m_block_1[0];
118
119 // Prepare the jacobian.
120 vector<vector<double> > jacobian_vect(2);
121 jacobian_vect[0].resize(21 * 10, -100000);
122 jacobian_vect[1].resize(21 * 5, -100000);
123 vector<double*> jacobian;
124 jacobian.push_back(jacobian_vect[0].data());
125 jacobian.push_back(jacobian_vect[1].data());
126
127 // Test jacobian computation.
128 EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(),
129 residuals.data(),
130 jacobian.data()));
131
132 for (int r = 0; r < 10; ++r) {
133 EXPECT_EQ(-1.0 * r, residuals.at(r * 2));
134 EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1));
135 }
136 EXPECT_EQ(420, residuals.at(20));
137 for (int p = 0; p < 10; ++p) {
138 // Check "A" Jacobian.
139 EXPECT_EQ(-1.0, jacobian_vect[0][2*p * 10 + p]);
140 // Check "B" Jacobian.
141 EXPECT_EQ(+1.0, jacobian_vect[0][(2*p+1) * 10 + p]);
142 jacobian_vect[0][2*p * 10 + p] = 0.0;
143 jacobian_vect[0][(2*p+1) * 10 + p] = 0.0;
144 }
145
146 // Check "C" Jacobian for first parameter block.
147 for (int p = 0; p < 10; ++p) {
148 EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]);
149 jacobian_vect[0][20 * 10 + p] = 0.0;
150 }
151 for (int i = 0; i < jacobian_vect[0].size(); ++i) {
152 EXPECT_EQ(0.0, jacobian_vect[0][i]);
153 }
154
155 // Check "C" Jacobian for second parameter block.
156 for (int p = 0; p < 5; ++p) {
157 EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]);
158 jacobian_vect[1][20 * 5 + p] = 0.0;
159 }
160 for (int i = 0; i < jacobian_vect[1].size(); ++i) {
161 EXPECT_EQ(0.0, jacobian_vect[1][i]);
162 }
163 }
164
TEST(DynamicAutodiffCostFunctionTest,JacobianWithFirstParameterBlockConstant)165 TEST(DynamicAutodiffCostFunctionTest, JacobianWithFirstParameterBlockConstant) {
166 // Test the residual counting.
167 vector<double> param_block_0(10, 0.0);
168 for (int i = 0; i < 10; ++i) {
169 param_block_0[i] = 2 * i;
170 }
171 vector<double> param_block_1(5, 0.0);
172 DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
173 new MyCostFunctor());
174 cost_function.AddParameterBlock(param_block_0.size());
175 cost_function.AddParameterBlock(param_block_1.size());
176 cost_function.SetNumResiduals(21);
177
178 // Prepare the residuals.
179 vector<double> residuals(21, -100000);
180
181 // Prepare the parameters.
182 vector<double*> parameter_blocks(2);
183 parameter_blocks[0] = ¶m_block_0[0];
184 parameter_blocks[1] = ¶m_block_1[0];
185
186 // Prepare the jacobian.
187 vector<vector<double> > jacobian_vect(2);
188 jacobian_vect[0].resize(21 * 10, -100000);
189 jacobian_vect[1].resize(21 * 5, -100000);
190 vector<double*> jacobian;
191 jacobian.push_back(NULL);
192 jacobian.push_back(jacobian_vect[1].data());
193
194 // Test jacobian computation.
195 EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(),
196 residuals.data(),
197 jacobian.data()));
198
199 for (int r = 0; r < 10; ++r) {
200 EXPECT_EQ(-1.0 * r, residuals.at(r * 2));
201 EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1));
202 }
203 EXPECT_EQ(420, residuals.at(20));
204
205 // Check "C" Jacobian for second parameter block.
206 for (int p = 0; p < 5; ++p) {
207 EXPECT_EQ(1.0, jacobian_vect[1][20 * 5 + p]);
208 jacobian_vect[1][20 * 5 + p] = 0.0;
209 }
210 for (int i = 0; i < jacobian_vect[1].size(); ++i) {
211 EXPECT_EQ(0.0, jacobian_vect[1][i]);
212 }
213 }
214
TEST(DynamicAutodiffCostFunctionTest,JacobianWithSecondParameterBlockConstant)215 TEST(DynamicAutodiffCostFunctionTest, JacobianWithSecondParameterBlockConstant) {
216 // Test the residual counting.
217 vector<double> param_block_0(10, 0.0);
218 for (int i = 0; i < 10; ++i) {
219 param_block_0[i] = 2 * i;
220 }
221 vector<double> param_block_1(5, 0.0);
222 DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
223 new MyCostFunctor());
224 cost_function.AddParameterBlock(param_block_0.size());
225 cost_function.AddParameterBlock(param_block_1.size());
226 cost_function.SetNumResiduals(21);
227
228 // Prepare the residuals.
229 vector<double> residuals(21, -100000);
230
231 // Prepare the parameters.
232 vector<double*> parameter_blocks(2);
233 parameter_blocks[0] = ¶m_block_0[0];
234 parameter_blocks[1] = ¶m_block_1[0];
235
236 // Prepare the jacobian.
237 vector<vector<double> > jacobian_vect(2);
238 jacobian_vect[0].resize(21 * 10, -100000);
239 jacobian_vect[1].resize(21 * 5, -100000);
240 vector<double*> jacobian;
241 jacobian.push_back(jacobian_vect[0].data());
242 jacobian.push_back(NULL);
243
244 // Test jacobian computation.
245 EXPECT_TRUE(cost_function.Evaluate(parameter_blocks.data(),
246 residuals.data(),
247 jacobian.data()));
248
249 for (int r = 0; r < 10; ++r) {
250 EXPECT_EQ(-1.0 * r, residuals.at(r * 2));
251 EXPECT_EQ(+1.0 * r, residuals.at(r * 2 + 1));
252 }
253 EXPECT_EQ(420, residuals.at(20));
254 for (int p = 0; p < 10; ++p) {
255 // Check "A" Jacobian.
256 EXPECT_EQ(-1.0, jacobian_vect[0][2*p * 10 + p]);
257 // Check "B" Jacobian.
258 EXPECT_EQ(+1.0, jacobian_vect[0][(2*p+1) * 10 + p]);
259 jacobian_vect[0][2*p * 10 + p] = 0.0;
260 jacobian_vect[0][(2*p+1) * 10 + p] = 0.0;
261 }
262
263 // Check "C" Jacobian for first parameter block.
264 for (int p = 0; p < 10; ++p) {
265 EXPECT_EQ(4 * p - 8, jacobian_vect[0][20 * 10 + p]);
266 jacobian_vect[0][20 * 10 + p] = 0.0;
267 }
268 for (int i = 0; i < jacobian_vect[0].size(); ++i) {
269 EXPECT_EQ(0.0, jacobian_vect[0][i]);
270 }
271 }
272
273 // Takes 3 parameter blocks:
274 // parameters[0] (x) is size 1.
275 // parameters[1] (y) is size 2.
276 // parameters[2] (z) is size 3.
277 // Emits 7 residuals:
278 // A: x[0] (= sum_x)
279 // B: y[0] + 2.0 * y[1] (= sum_y)
280 // C: z[0] + 3.0 * z[1] + 6.0 * z[2] (= sum_z)
281 // D: sum_x * sum_y
282 // E: sum_y * sum_z
283 // F: sum_x * sum_z
284 // G: sum_x * sum_y * sum_z
285 class MyThreeParameterCostFunctor {
286 public:
287 template <typename T>
operator ()(T const * const * parameters,T * residuals) const288 bool operator()(T const* const* parameters, T* residuals) const {
289 const T* x = parameters[0];
290 const T* y = parameters[1];
291 const T* z = parameters[2];
292
293 T sum_x = x[0];
294 T sum_y = y[0] + 2.0 * y[1];
295 T sum_z = z[0] + 3.0 * z[1] + 6.0 * z[2];
296
297 residuals[0] = sum_x;
298 residuals[1] = sum_y;
299 residuals[2] = sum_z;
300 residuals[3] = sum_x * sum_y;
301 residuals[4] = sum_y * sum_z;
302 residuals[5] = sum_x * sum_z;
303 residuals[6] = sum_x * sum_y * sum_z;
304 return true;
305 }
306 };
307
308 class ThreeParameterCostFunctorTest : public ::testing::Test {
309 protected:
SetUp()310 virtual void SetUp() {
311 // Prepare the parameters.
312 x_.resize(1);
313 x_[0] = 0.0;
314
315 y_.resize(2);
316 y_[0] = 1.0;
317 y_[1] = 3.0;
318
319 z_.resize(3);
320 z_[0] = 2.0;
321 z_[1] = 4.0;
322 z_[2] = 6.0;
323
324 parameter_blocks_.resize(3);
325 parameter_blocks_[0] = &x_[0];
326 parameter_blocks_[1] = &y_[0];
327 parameter_blocks_[2] = &z_[0];
328
329 // Prepare the cost function.
330 typedef DynamicAutoDiffCostFunction<MyThreeParameterCostFunctor, 3>
331 DynamicMyThreeParameterCostFunction;
332 DynamicMyThreeParameterCostFunction * cost_function =
333 new DynamicMyThreeParameterCostFunction(
334 new MyThreeParameterCostFunctor());
335 cost_function->AddParameterBlock(1);
336 cost_function->AddParameterBlock(2);
337 cost_function->AddParameterBlock(3);
338 cost_function->SetNumResiduals(7);
339
340 cost_function_.reset(cost_function);
341
342 // Setup jacobian data.
343 jacobian_vect_.resize(3);
344 jacobian_vect_[0].resize(7 * x_.size(), -100000);
345 jacobian_vect_[1].resize(7 * y_.size(), -100000);
346 jacobian_vect_[2].resize(7 * z_.size(), -100000);
347
348 // Prepare the expected residuals.
349 const double sum_x = x_[0];
350 const double sum_y = y_[0] + 2.0 * y_[1];
351 const double sum_z = z_[0] + 3.0 * z_[1] + 6.0 * z_[2];
352
353 expected_residuals_.resize(7);
354 expected_residuals_[0] = sum_x;
355 expected_residuals_[1] = sum_y;
356 expected_residuals_[2] = sum_z;
357 expected_residuals_[3] = sum_x * sum_y;
358 expected_residuals_[4] = sum_y * sum_z;
359 expected_residuals_[5] = sum_x * sum_z;
360 expected_residuals_[6] = sum_x * sum_y * sum_z;
361
362 // Prepare the expected jacobian entries.
363 expected_jacobian_x_.resize(7);
364 expected_jacobian_x_[0] = 1.0;
365 expected_jacobian_x_[1] = 0.0;
366 expected_jacobian_x_[2] = 0.0;
367 expected_jacobian_x_[3] = sum_y;
368 expected_jacobian_x_[4] = 0.0;
369 expected_jacobian_x_[5] = sum_z;
370 expected_jacobian_x_[6] = sum_y * sum_z;
371
372 expected_jacobian_y_.resize(14);
373 expected_jacobian_y_[0] = 0.0;
374 expected_jacobian_y_[1] = 0.0;
375 expected_jacobian_y_[2] = 1.0;
376 expected_jacobian_y_[3] = 2.0;
377 expected_jacobian_y_[4] = 0.0;
378 expected_jacobian_y_[5] = 0.0;
379 expected_jacobian_y_[6] = sum_x;
380 expected_jacobian_y_[7] = 2.0 * sum_x;
381 expected_jacobian_y_[8] = sum_z;
382 expected_jacobian_y_[9] = 2.0 * sum_z;
383 expected_jacobian_y_[10] = 0.0;
384 expected_jacobian_y_[11] = 0.0;
385 expected_jacobian_y_[12] = sum_x * sum_z;
386 expected_jacobian_y_[13] = 2.0 * sum_x * sum_z;
387
388 expected_jacobian_z_.resize(21);
389 expected_jacobian_z_[0] = 0.0;
390 expected_jacobian_z_[1] = 0.0;
391 expected_jacobian_z_[2] = 0.0;
392 expected_jacobian_z_[3] = 0.0;
393 expected_jacobian_z_[4] = 0.0;
394 expected_jacobian_z_[5] = 0.0;
395 expected_jacobian_z_[6] = 1.0;
396 expected_jacobian_z_[7] = 3.0;
397 expected_jacobian_z_[8] = 6.0;
398 expected_jacobian_z_[9] = 0.0;
399 expected_jacobian_z_[10] = 0.0;
400 expected_jacobian_z_[11] = 0.0;
401 expected_jacobian_z_[12] = sum_y;
402 expected_jacobian_z_[13] = 3.0 * sum_y;
403 expected_jacobian_z_[14] = 6.0 * sum_y;
404 expected_jacobian_z_[15] = sum_x;
405 expected_jacobian_z_[16] = 3.0 * sum_x;
406 expected_jacobian_z_[17] = 6.0 * sum_x;
407 expected_jacobian_z_[18] = sum_x * sum_y;
408 expected_jacobian_z_[19] = 3.0 * sum_x * sum_y;
409 expected_jacobian_z_[20] = 6.0 * sum_x * sum_y;
410 }
411
412 protected:
413 vector<double> x_;
414 vector<double> y_;
415 vector<double> z_;
416
417 vector<double*> parameter_blocks_;
418
419 scoped_ptr<CostFunction> cost_function_;
420
421 vector<vector<double> > jacobian_vect_;
422
423 vector<double> expected_residuals_;
424
425 vector<double> expected_jacobian_x_;
426 vector<double> expected_jacobian_y_;
427 vector<double> expected_jacobian_z_;
428 };
429
TEST_F(ThreeParameterCostFunctorTest,TestThreeParameterResiduals)430 TEST_F(ThreeParameterCostFunctorTest, TestThreeParameterResiduals) {
431 vector<double> residuals(7, -100000);
432 EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(),
433 residuals.data(),
434 NULL));
435 for (int i = 0; i < 7; ++i) {
436 EXPECT_EQ(expected_residuals_[i], residuals[i]);
437 }
438 }
439
TEST_F(ThreeParameterCostFunctorTest,TestThreeParameterJacobian)440 TEST_F(ThreeParameterCostFunctorTest, TestThreeParameterJacobian) {
441 vector<double> residuals(7, -100000);
442
443 vector<double*> jacobian;
444 jacobian.push_back(jacobian_vect_[0].data());
445 jacobian.push_back(jacobian_vect_[1].data());
446 jacobian.push_back(jacobian_vect_[2].data());
447
448 EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(),
449 residuals.data(),
450 jacobian.data()));
451
452 for (int i = 0; i < 7; ++i) {
453 EXPECT_EQ(expected_residuals_[i], residuals[i]);
454 }
455
456 for (int i = 0; i < 7; ++i) {
457 EXPECT_EQ(expected_jacobian_x_[i], jacobian[0][i]);
458 }
459
460 for (int i = 0; i < 14; ++i) {
461 EXPECT_EQ(expected_jacobian_y_[i], jacobian[1][i]);
462 }
463
464 for (int i = 0; i < 21; ++i) {
465 EXPECT_EQ(expected_jacobian_z_[i], jacobian[2][i]);
466 }
467 }
468
TEST_F(ThreeParameterCostFunctorTest,ThreeParameterJacobianWithFirstAndLastParameterBlockConstant)469 TEST_F(ThreeParameterCostFunctorTest,
470 ThreeParameterJacobianWithFirstAndLastParameterBlockConstant) {
471 vector<double> residuals(7, -100000);
472
473 vector<double*> jacobian;
474 jacobian.push_back(NULL);
475 jacobian.push_back(jacobian_vect_[1].data());
476 jacobian.push_back(NULL);
477
478 EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(),
479 residuals.data(),
480 jacobian.data()));
481
482 for (int i = 0; i < 7; ++i) {
483 EXPECT_EQ(expected_residuals_[i], residuals[i]);
484 }
485
486 for (int i = 0; i < 14; ++i) {
487 EXPECT_EQ(expected_jacobian_y_[i], jacobian[1][i]);
488 }
489 }
490
TEST_F(ThreeParameterCostFunctorTest,ThreeParameterJacobianWithSecondParameterBlockConstant)491 TEST_F(ThreeParameterCostFunctorTest,
492 ThreeParameterJacobianWithSecondParameterBlockConstant) {
493 vector<double> residuals(7, -100000);
494
495 vector<double*> jacobian;
496 jacobian.push_back(jacobian_vect_[0].data());
497 jacobian.push_back(NULL);
498 jacobian.push_back(jacobian_vect_[2].data());
499
500 EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(),
501 residuals.data(),
502 jacobian.data()));
503
504 for (int i = 0; i < 7; ++i) {
505 EXPECT_EQ(expected_residuals_[i], residuals[i]);
506 }
507
508 for (int i = 0; i < 7; ++i) {
509 EXPECT_EQ(expected_jacobian_x_[i], jacobian[0][i]);
510 }
511
512 for (int i = 0; i < 21; ++i) {
513 EXPECT_EQ(expected_jacobian_z_[i], jacobian[2][i]);
514 }
515 }
516
517 // Takes 6 parameter blocks all of size 1:
518 // x0, y0, y1, z0, z1, z2
519 // Same 7 residuals as MyThreeParameterCostFunctor.
520 // Naming convention for tests is (V)ariable and (C)onstant.
521 class MySixParameterCostFunctor {
522 public:
523 template <typename T>
operator ()(T const * const * parameters,T * residuals) const524 bool operator()(T const* const* parameters, T* residuals) const {
525 const T* x0 = parameters[0];
526 const T* y0 = parameters[1];
527 const T* y1 = parameters[2];
528 const T* z0 = parameters[3];
529 const T* z1 = parameters[4];
530 const T* z2 = parameters[5];
531
532 T sum_x = x0[0];
533 T sum_y = y0[0] + 2.0 * y1[0];
534 T sum_z = z0[0] + 3.0 * z1[0] + 6.0 * z2[0];
535
536 residuals[0] = sum_x;
537 residuals[1] = sum_y;
538 residuals[2] = sum_z;
539 residuals[3] = sum_x * sum_y;
540 residuals[4] = sum_y * sum_z;
541 residuals[5] = sum_x * sum_z;
542 residuals[6] = sum_x * sum_y * sum_z;
543 return true;
544 }
545 };
546
547 class SixParameterCostFunctorTest : public ::testing::Test {
548 protected:
SetUp()549 virtual void SetUp() {
550 // Prepare the parameters.
551 x0_ = 0.0;
552 y0_ = 1.0;
553 y1_ = 3.0;
554 z0_ = 2.0;
555 z1_ = 4.0;
556 z2_ = 6.0;
557
558 parameter_blocks_.resize(6);
559 parameter_blocks_[0] = &x0_;
560 parameter_blocks_[1] = &y0_;
561 parameter_blocks_[2] = &y1_;
562 parameter_blocks_[3] = &z0_;
563 parameter_blocks_[4] = &z1_;
564 parameter_blocks_[5] = &z2_;
565
566 // Prepare the cost function.
567 typedef DynamicAutoDiffCostFunction<MySixParameterCostFunctor, 3>
568 DynamicMySixParameterCostFunction;
569 DynamicMySixParameterCostFunction * cost_function =
570 new DynamicMySixParameterCostFunction(
571 new MySixParameterCostFunctor());
572 for (int i = 0; i < 6; ++i) {
573 cost_function->AddParameterBlock(1);
574 }
575 cost_function->SetNumResiduals(7);
576
577 cost_function_.reset(cost_function);
578
579 // Setup jacobian data.
580 jacobian_vect_.resize(6);
581 for (int i = 0; i < 6; ++i) {
582 jacobian_vect_[i].resize(7, -100000);
583 }
584
585 // Prepare the expected residuals.
586 const double sum_x = x0_;
587 const double sum_y = y0_ + 2.0 * y1_;
588 const double sum_z = z0_ + 3.0 * z1_ + 6.0 * z2_;
589
590 expected_residuals_.resize(7);
591 expected_residuals_[0] = sum_x;
592 expected_residuals_[1] = sum_y;
593 expected_residuals_[2] = sum_z;
594 expected_residuals_[3] = sum_x * sum_y;
595 expected_residuals_[4] = sum_y * sum_z;
596 expected_residuals_[5] = sum_x * sum_z;
597 expected_residuals_[6] = sum_x * sum_y * sum_z;
598
599 // Prepare the expected jacobian entries.
600 expected_jacobians_.resize(6);
601 expected_jacobians_[0].resize(7);
602 expected_jacobians_[0][0] = 1.0;
603 expected_jacobians_[0][1] = 0.0;
604 expected_jacobians_[0][2] = 0.0;
605 expected_jacobians_[0][3] = sum_y;
606 expected_jacobians_[0][4] = 0.0;
607 expected_jacobians_[0][5] = sum_z;
608 expected_jacobians_[0][6] = sum_y * sum_z;
609
610 expected_jacobians_[1].resize(7);
611 expected_jacobians_[1][0] = 0.0;
612 expected_jacobians_[1][1] = 1.0;
613 expected_jacobians_[1][2] = 0.0;
614 expected_jacobians_[1][3] = sum_x;
615 expected_jacobians_[1][4] = sum_z;
616 expected_jacobians_[1][5] = 0.0;
617 expected_jacobians_[1][6] = sum_x * sum_z;
618
619 expected_jacobians_[2].resize(7);
620 expected_jacobians_[2][0] = 0.0;
621 expected_jacobians_[2][1] = 2.0;
622 expected_jacobians_[2][2] = 0.0;
623 expected_jacobians_[2][3] = 2.0 * sum_x;
624 expected_jacobians_[2][4] = 2.0 * sum_z;
625 expected_jacobians_[2][5] = 0.0;
626 expected_jacobians_[2][6] = 2.0 * sum_x * sum_z;
627
628 expected_jacobians_[3].resize(7);
629 expected_jacobians_[3][0] = 0.0;
630 expected_jacobians_[3][1] = 0.0;
631 expected_jacobians_[3][2] = 1.0;
632 expected_jacobians_[3][3] = 0.0;
633 expected_jacobians_[3][4] = sum_y;
634 expected_jacobians_[3][5] = sum_x;
635 expected_jacobians_[3][6] = sum_x * sum_y;
636
637 expected_jacobians_[4].resize(7);
638 expected_jacobians_[4][0] = 0.0;
639 expected_jacobians_[4][1] = 0.0;
640 expected_jacobians_[4][2] = 3.0;
641 expected_jacobians_[4][3] = 0.0;
642 expected_jacobians_[4][4] = 3.0 * sum_y;
643 expected_jacobians_[4][5] = 3.0 * sum_x;
644 expected_jacobians_[4][6] = 3.0 * sum_x * sum_y;
645
646 expected_jacobians_[5].resize(7);
647 expected_jacobians_[5][0] = 0.0;
648 expected_jacobians_[5][1] = 0.0;
649 expected_jacobians_[5][2] = 6.0;
650 expected_jacobians_[5][3] = 0.0;
651 expected_jacobians_[5][4] = 6.0 * sum_y;
652 expected_jacobians_[5][5] = 6.0 * sum_x;
653 expected_jacobians_[5][6] = 6.0 * sum_x * sum_y;
654 }
655
656 protected:
657 double x0_;
658 double y0_;
659 double y1_;
660 double z0_;
661 double z1_;
662 double z2_;
663
664 vector<double*> parameter_blocks_;
665
666 scoped_ptr<CostFunction> cost_function_;
667
668 vector<vector<double> > jacobian_vect_;
669
670 vector<double> expected_residuals_;
671 vector<vector<double> > expected_jacobians_;
672 };
673
TEST_F(SixParameterCostFunctorTest,TestSixParameterResiduals)674 TEST_F(SixParameterCostFunctorTest, TestSixParameterResiduals) {
675 vector<double> residuals(7, -100000);
676 EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(),
677 residuals.data(),
678 NULL));
679 for (int i = 0; i < 7; ++i) {
680 EXPECT_EQ(expected_residuals_[i], residuals[i]);
681 }
682 }
683
TEST_F(SixParameterCostFunctorTest,TestSixParameterJacobian)684 TEST_F(SixParameterCostFunctorTest, TestSixParameterJacobian) {
685 vector<double> residuals(7, -100000);
686
687 vector<double*> jacobian;
688 jacobian.push_back(jacobian_vect_[0].data());
689 jacobian.push_back(jacobian_vect_[1].data());
690 jacobian.push_back(jacobian_vect_[2].data());
691 jacobian.push_back(jacobian_vect_[3].data());
692 jacobian.push_back(jacobian_vect_[4].data());
693 jacobian.push_back(jacobian_vect_[5].data());
694
695 EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(),
696 residuals.data(),
697 jacobian.data()));
698
699 for (int i = 0; i < 7; ++i) {
700 EXPECT_EQ(expected_residuals_[i], residuals[i]);
701 }
702
703 for (int i = 0; i < 6; ++i) {
704 for (int j = 0; j < 7; ++j) {
705 EXPECT_EQ(expected_jacobians_[i][j], jacobian[i][j]);
706 }
707 }
708 }
709
TEST_F(SixParameterCostFunctorTest,TestSixParameterJacobianVVCVVC)710 TEST_F(SixParameterCostFunctorTest, TestSixParameterJacobianVVCVVC) {
711 vector<double> residuals(7, -100000);
712
713 vector<double*> jacobian;
714 jacobian.push_back(jacobian_vect_[0].data());
715 jacobian.push_back(jacobian_vect_[1].data());
716 jacobian.push_back(NULL);
717 jacobian.push_back(jacobian_vect_[3].data());
718 jacobian.push_back(jacobian_vect_[4].data());
719 jacobian.push_back(NULL);
720
721 EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(),
722 residuals.data(),
723 jacobian.data()));
724
725 for (int i = 0; i < 7; ++i) {
726 EXPECT_EQ(expected_residuals_[i], residuals[i]);
727 }
728
729 for (int i = 0; i < 6; ++i) {
730 // Skip the constant variables.
731 if (i == 2 || i == 5) {
732 continue;
733 }
734
735 for (int j = 0; j < 7; ++j) {
736 EXPECT_EQ(expected_jacobians_[i][j], jacobian[i][j]);
737 }
738 }
739 }
740
TEST_F(SixParameterCostFunctorTest,TestSixParameterJacobianVCCVCV)741 TEST_F(SixParameterCostFunctorTest, TestSixParameterJacobianVCCVCV) {
742 vector<double> residuals(7, -100000);
743
744 vector<double*> jacobian;
745 jacobian.push_back(jacobian_vect_[0].data());
746 jacobian.push_back(NULL);
747 jacobian.push_back(NULL);
748 jacobian.push_back(jacobian_vect_[3].data());
749 jacobian.push_back(NULL);
750 jacobian.push_back(jacobian_vect_[5].data());
751
752 EXPECT_TRUE(cost_function_->Evaluate(parameter_blocks_.data(),
753 residuals.data(),
754 jacobian.data()));
755
756 for (int i = 0; i < 7; ++i) {
757 EXPECT_EQ(expected_residuals_[i], residuals[i]);
758 }
759
760 for (int i = 0; i < 6; ++i) {
761 // Skip the constant variables.
762 if (i == 1 || i == 2 || i == 4) {
763 continue;
764 }
765
766 for (int j = 0; j < 7; ++j) {
767 EXPECT_EQ(expected_jacobians_[i][j], jacobian[i][j]);
768 }
769 }
770 }
771
772 } // namespace internal
773 } // namespace ceres
774