• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2013 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/incomplete_lq_factorization.h"
32 
33 #include <vector>
34 #include <utility>
35 #include <cmath>
36 #include "ceres/compressed_row_sparse_matrix.h"
37 #include "ceres/internal/eigen.h"
38 #include "ceres/internal/port.h"
39 #include "glog/logging.h"
40 
41 namespace ceres {
42 namespace internal {
43 
44 // Normalize a row and return it's norm.
NormalizeRow(const int row,CompressedRowSparseMatrix * matrix)45 inline double NormalizeRow(const int row, CompressedRowSparseMatrix* matrix) {
46   const int row_begin =  matrix->rows()[row];
47   const int row_end = matrix->rows()[row + 1];
48 
49   double* values = matrix->mutable_values();
50   double norm = 0.0;
51   for (int i =  row_begin; i < row_end; ++i) {
52     norm += values[i] * values[i];
53   }
54 
55   norm = sqrt(norm);
56   const double inverse_norm = 1.0 / norm;
57   for (int i = row_begin; i < row_end; ++i) {
58     values[i] *= inverse_norm;
59   }
60 
61   return norm;
62 }
63 
64 // Compute a(row_a,:) * b(row_b, :)'
RowDotProduct(const CompressedRowSparseMatrix & a,const int row_a,const CompressedRowSparseMatrix & b,const int row_b)65 inline double RowDotProduct(const CompressedRowSparseMatrix& a,
66                             const int row_a,
67                             const CompressedRowSparseMatrix& b,
68                             const int row_b) {
69   const int* a_rows = a.rows();
70   const int* a_cols = a.cols();
71   const double* a_values = a.values();
72 
73   const int* b_rows = b.rows();
74   const int* b_cols = b.cols();
75   const double* b_values = b.values();
76 
77   const int row_a_end = a_rows[row_a + 1];
78   const int row_b_end = b_rows[row_b + 1];
79 
80   int idx_a = a_rows[row_a];
81   int idx_b = b_rows[row_b];
82   double dot_product = 0.0;
83   while (idx_a < row_a_end && idx_b < row_b_end) {
84     if (a_cols[idx_a] == b_cols[idx_b]) {
85       dot_product += a_values[idx_a++] * b_values[idx_b++];
86     }
87 
88     while (a_cols[idx_a] < b_cols[idx_b] && idx_a < row_a_end) {
89       ++idx_a;
90     }
91 
92     while (a_cols[idx_a] > b_cols[idx_b] && idx_b < row_b_end) {
93       ++idx_b;
94     }
95   }
96 
97   return dot_product;
98 }
99 
100 struct SecondGreaterThan {
101  public:
operator ()ceres::internal::SecondGreaterThan102   bool operator()(const pair<int, double>& lhs,
103                   const pair<int, double>& rhs) const {
104     return (fabs(lhs.second) > fabs(rhs.second));
105   }
106 };
107 
108 // In the row vector dense_row(0:num_cols), drop values smaller than
109 // the max_value * drop_tolerance. Of the remaining non-zero values,
110 // choose at most level_of_fill values and then add the resulting row
111 // vector to matrix.
112 
DropEntriesAndAddRow(const Vector & dense_row,const int num_entries,const int level_of_fill,const double drop_tolerance,vector<pair<int,double>> * scratch,CompressedRowSparseMatrix * matrix)113 void DropEntriesAndAddRow(const Vector& dense_row,
114                           const int num_entries,
115                           const int level_of_fill,
116                           const double drop_tolerance,
117                           vector<pair<int, double> >* scratch,
118                           CompressedRowSparseMatrix* matrix) {
119   int* rows = matrix->mutable_rows();
120   int* cols = matrix->mutable_cols();
121   double* values = matrix->mutable_values();
122   int num_nonzeros = rows[matrix->num_rows()];
123 
124   if (num_entries == 0) {
125     matrix->set_num_rows(matrix->num_rows() + 1);
126     rows[matrix->num_rows()] = num_nonzeros;
127     return;
128   }
129 
130   const double max_value = dense_row.head(num_entries).cwiseAbs().maxCoeff();
131   const double threshold = drop_tolerance * max_value;
132 
133   int scratch_count = 0;
134   for (int i = 0; i < num_entries; ++i) {
135     if (fabs(dense_row[i]) > threshold) {
136       pair<int, double>& entry = (*scratch)[scratch_count];
137       entry.first = i;
138       entry.second = dense_row[i];
139       ++scratch_count;
140     }
141   }
142 
143   if (scratch_count > level_of_fill) {
144     nth_element(scratch->begin(),
145                 scratch->begin() + level_of_fill,
146                 scratch->begin() + scratch_count,
147                 SecondGreaterThan());
148     scratch_count = level_of_fill;
149     sort(scratch->begin(), scratch->begin() + scratch_count);
150   }
151 
152   for (int i = 0; i < scratch_count; ++i) {
153     const pair<int, double>& entry = (*scratch)[i];
154     cols[num_nonzeros] = entry.first;
155     values[num_nonzeros] = entry.second;
156     ++num_nonzeros;
157   }
158 
159   matrix->set_num_rows(matrix->num_rows() + 1);
160   rows[matrix->num_rows()] = num_nonzeros;
161 }
162 
163 // Saad's Incomplete LQ factorization algorithm.
IncompleteLQFactorization(const CompressedRowSparseMatrix & matrix,const int l_level_of_fill,const double l_drop_tolerance,const int q_level_of_fill,const double q_drop_tolerance)164 CompressedRowSparseMatrix* IncompleteLQFactorization(
165     const CompressedRowSparseMatrix& matrix,
166     const int l_level_of_fill,
167     const double l_drop_tolerance,
168     const int q_level_of_fill,
169     const double q_drop_tolerance) {
170   const int num_rows = matrix.num_rows();
171   const int num_cols = matrix.num_cols();
172   const int* rows = matrix.rows();
173   const int* cols = matrix.cols();
174   const double* values = matrix.values();
175 
176   CompressedRowSparseMatrix* l =
177       new CompressedRowSparseMatrix(num_rows,
178                                     num_rows,
179                                     l_level_of_fill * num_rows);
180   l->set_num_rows(0);
181 
182   CompressedRowSparseMatrix q(num_rows, num_cols, q_level_of_fill * num_rows);
183   q.set_num_rows(0);
184 
185   int* l_rows = l->mutable_rows();
186   int* l_cols = l->mutable_cols();
187   double* l_values = l->mutable_values();
188 
189   int* q_rows = q.mutable_rows();
190   int* q_cols = q.mutable_cols();
191   double* q_values = q.mutable_values();
192 
193   Vector l_i(num_rows);
194   Vector q_i(num_cols);
195   vector<pair<int, double> > scratch(num_cols);
196   for (int i = 0; i < num_rows; ++i) {
197     // l_i = q * matrix(i,:)');
198     l_i.setZero();
199     for (int j = 0; j < i; ++j) {
200       l_i(j) = RowDotProduct(matrix, i, q, j);
201     }
202     DropEntriesAndAddRow(l_i,
203                          i,
204                          l_level_of_fill,
205                          l_drop_tolerance,
206                          &scratch,
207                          l);
208 
209     // q_i = matrix(i,:) - q(0:i-1,:) * l_i);
210     q_i.setZero();
211     for (int idx = rows[i]; idx < rows[i + 1]; ++idx) {
212       q_i(cols[idx]) = values[idx];
213     }
214 
215     for (int j = l_rows[i]; j < l_rows[i + 1]; ++j) {
216       const int r = l_cols[j];
217       const double lij = l_values[j];
218       for (int idx = q_rows[r]; idx < q_rows[r + 1]; ++idx) {
219         q_i(q_cols[idx]) -= lij * q_values[idx];
220       }
221     }
222     DropEntriesAndAddRow(q_i,
223                          num_cols,
224                          q_level_of_fill,
225                          q_drop_tolerance,
226                          &scratch,
227                          &q);
228 
229     // lii = |qi|
230     l_cols[l->num_nonzeros()] = i;
231     l_values[l->num_nonzeros()] = NormalizeRow(i, &q);
232     l_rows[l->num_rows()] += 1;
233   }
234 
235   return l;
236 }
237 
238 }  // namespace internal
239 }  // namespace ceres
240