1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2013 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30
31 #include "ceres/incomplete_lq_factorization.h"
32
33 #include <vector>
34 #include <utility>
35 #include <cmath>
36 #include "ceres/compressed_row_sparse_matrix.h"
37 #include "ceres/internal/eigen.h"
38 #include "ceres/internal/port.h"
39 #include "glog/logging.h"
40
41 namespace ceres {
42 namespace internal {
43
44 // Normalize a row and return it's norm.
NormalizeRow(const int row,CompressedRowSparseMatrix * matrix)45 inline double NormalizeRow(const int row, CompressedRowSparseMatrix* matrix) {
46 const int row_begin = matrix->rows()[row];
47 const int row_end = matrix->rows()[row + 1];
48
49 double* values = matrix->mutable_values();
50 double norm = 0.0;
51 for (int i = row_begin; i < row_end; ++i) {
52 norm += values[i] * values[i];
53 }
54
55 norm = sqrt(norm);
56 const double inverse_norm = 1.0 / norm;
57 for (int i = row_begin; i < row_end; ++i) {
58 values[i] *= inverse_norm;
59 }
60
61 return norm;
62 }
63
64 // Compute a(row_a,:) * b(row_b, :)'
RowDotProduct(const CompressedRowSparseMatrix & a,const int row_a,const CompressedRowSparseMatrix & b,const int row_b)65 inline double RowDotProduct(const CompressedRowSparseMatrix& a,
66 const int row_a,
67 const CompressedRowSparseMatrix& b,
68 const int row_b) {
69 const int* a_rows = a.rows();
70 const int* a_cols = a.cols();
71 const double* a_values = a.values();
72
73 const int* b_rows = b.rows();
74 const int* b_cols = b.cols();
75 const double* b_values = b.values();
76
77 const int row_a_end = a_rows[row_a + 1];
78 const int row_b_end = b_rows[row_b + 1];
79
80 int idx_a = a_rows[row_a];
81 int idx_b = b_rows[row_b];
82 double dot_product = 0.0;
83 while (idx_a < row_a_end && idx_b < row_b_end) {
84 if (a_cols[idx_a] == b_cols[idx_b]) {
85 dot_product += a_values[idx_a++] * b_values[idx_b++];
86 }
87
88 while (a_cols[idx_a] < b_cols[idx_b] && idx_a < row_a_end) {
89 ++idx_a;
90 }
91
92 while (a_cols[idx_a] > b_cols[idx_b] && idx_b < row_b_end) {
93 ++idx_b;
94 }
95 }
96
97 return dot_product;
98 }
99
100 struct SecondGreaterThan {
101 public:
operator ()ceres::internal::SecondGreaterThan102 bool operator()(const pair<int, double>& lhs,
103 const pair<int, double>& rhs) const {
104 return (fabs(lhs.second) > fabs(rhs.second));
105 }
106 };
107
108 // In the row vector dense_row(0:num_cols), drop values smaller than
109 // the max_value * drop_tolerance. Of the remaining non-zero values,
110 // choose at most level_of_fill values and then add the resulting row
111 // vector to matrix.
112
DropEntriesAndAddRow(const Vector & dense_row,const int num_entries,const int level_of_fill,const double drop_tolerance,vector<pair<int,double>> * scratch,CompressedRowSparseMatrix * matrix)113 void DropEntriesAndAddRow(const Vector& dense_row,
114 const int num_entries,
115 const int level_of_fill,
116 const double drop_tolerance,
117 vector<pair<int, double> >* scratch,
118 CompressedRowSparseMatrix* matrix) {
119 int* rows = matrix->mutable_rows();
120 int* cols = matrix->mutable_cols();
121 double* values = matrix->mutable_values();
122 int num_nonzeros = rows[matrix->num_rows()];
123
124 if (num_entries == 0) {
125 matrix->set_num_rows(matrix->num_rows() + 1);
126 rows[matrix->num_rows()] = num_nonzeros;
127 return;
128 }
129
130 const double max_value = dense_row.head(num_entries).cwiseAbs().maxCoeff();
131 const double threshold = drop_tolerance * max_value;
132
133 int scratch_count = 0;
134 for (int i = 0; i < num_entries; ++i) {
135 if (fabs(dense_row[i]) > threshold) {
136 pair<int, double>& entry = (*scratch)[scratch_count];
137 entry.first = i;
138 entry.second = dense_row[i];
139 ++scratch_count;
140 }
141 }
142
143 if (scratch_count > level_of_fill) {
144 nth_element(scratch->begin(),
145 scratch->begin() + level_of_fill,
146 scratch->begin() + scratch_count,
147 SecondGreaterThan());
148 scratch_count = level_of_fill;
149 sort(scratch->begin(), scratch->begin() + scratch_count);
150 }
151
152 for (int i = 0; i < scratch_count; ++i) {
153 const pair<int, double>& entry = (*scratch)[i];
154 cols[num_nonzeros] = entry.first;
155 values[num_nonzeros] = entry.second;
156 ++num_nonzeros;
157 }
158
159 matrix->set_num_rows(matrix->num_rows() + 1);
160 rows[matrix->num_rows()] = num_nonzeros;
161 }
162
163 // Saad's Incomplete LQ factorization algorithm.
IncompleteLQFactorization(const CompressedRowSparseMatrix & matrix,const int l_level_of_fill,const double l_drop_tolerance,const int q_level_of_fill,const double q_drop_tolerance)164 CompressedRowSparseMatrix* IncompleteLQFactorization(
165 const CompressedRowSparseMatrix& matrix,
166 const int l_level_of_fill,
167 const double l_drop_tolerance,
168 const int q_level_of_fill,
169 const double q_drop_tolerance) {
170 const int num_rows = matrix.num_rows();
171 const int num_cols = matrix.num_cols();
172 const int* rows = matrix.rows();
173 const int* cols = matrix.cols();
174 const double* values = matrix.values();
175
176 CompressedRowSparseMatrix* l =
177 new CompressedRowSparseMatrix(num_rows,
178 num_rows,
179 l_level_of_fill * num_rows);
180 l->set_num_rows(0);
181
182 CompressedRowSparseMatrix q(num_rows, num_cols, q_level_of_fill * num_rows);
183 q.set_num_rows(0);
184
185 int* l_rows = l->mutable_rows();
186 int* l_cols = l->mutable_cols();
187 double* l_values = l->mutable_values();
188
189 int* q_rows = q.mutable_rows();
190 int* q_cols = q.mutable_cols();
191 double* q_values = q.mutable_values();
192
193 Vector l_i(num_rows);
194 Vector q_i(num_cols);
195 vector<pair<int, double> > scratch(num_cols);
196 for (int i = 0; i < num_rows; ++i) {
197 // l_i = q * matrix(i,:)');
198 l_i.setZero();
199 for (int j = 0; j < i; ++j) {
200 l_i(j) = RowDotProduct(matrix, i, q, j);
201 }
202 DropEntriesAndAddRow(l_i,
203 i,
204 l_level_of_fill,
205 l_drop_tolerance,
206 &scratch,
207 l);
208
209 // q_i = matrix(i,:) - q(0:i-1,:) * l_i);
210 q_i.setZero();
211 for (int idx = rows[i]; idx < rows[i + 1]; ++idx) {
212 q_i(cols[idx]) = values[idx];
213 }
214
215 for (int j = l_rows[i]; j < l_rows[i + 1]; ++j) {
216 const int r = l_cols[j];
217 const double lij = l_values[j];
218 for (int idx = q_rows[r]; idx < q_rows[r + 1]; ++idx) {
219 q_i(q_cols[idx]) -= lij * q_values[idx];
220 }
221 }
222 DropEntriesAndAddRow(q_i,
223 num_cols,
224 q_level_of_fill,
225 q_drop_tolerance,
226 &scratch,
227 &q);
228
229 // lii = |qi|
230 l_cols[l->num_nonzeros()] = i;
231 l_values[l->num_nonzeros()] = NormalizeRow(i, &q);
232 l_rows[l->num_rows()] += 1;
233 }
234
235 return l;
236 }
237
238 } // namespace internal
239 } // namespace ceres
240