• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // Limited memory positive definite approximation to the inverse
32 // Hessian, using the LBFGS algorithm
33 
34 #ifndef CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
35 #define CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
36 
37 #include <list>
38 
39 #include "ceres/internal/eigen.h"
40 #include "ceres/linear_operator.h"
41 
42 namespace ceres {
43 namespace internal {
44 
45 // LowRankInverseHessian is a positive definite approximation to the
46 // Hessian using the limited memory variant of the
47 // Broyden-Fletcher-Goldfarb-Shanno (BFGS)secant formula for
48 // approximating the Hessian.
49 //
50 // Other update rules like the Davidon-Fletcher-Powell (DFP) are
51 // possible, but the BFGS rule is considered the best performing one.
52 //
53 // The limited memory variant was developed by Nocedal and further
54 // enhanced with scaling rule by Byrd, Nocedal and Schanbel.
55 //
56 // Nocedal, J. (1980). "Updating Quasi-Newton Matrices with Limited
57 // Storage". Mathematics of Computation 35 (151): 773–782.
58 //
59 // Byrd, R. H.; Nocedal, J.; Schnabel, R. B. (1994).
60 // "Representations of Quasi-Newton Matrices and their use in
61 // Limited Memory Methods". Mathematical Programming 63 (4):
62 class LowRankInverseHessian : public LinearOperator {
63  public:
64   // num_parameters is the row/column size of the Hessian.
65   // max_num_corrections is the rank of the Hessian approximation.
66   // use_approximate_eigenvalue_scaling controls whether the initial
67   // inverse Hessian used during Right/LeftMultiply() is scaled by
68   // the approximate eigenvalue of the true inverse Hessian at the
69   // current operating point.
70   // The approximation uses:
71   // 2 * max_num_corrections * num_parameters + max_num_corrections
72   // doubles.
73   LowRankInverseHessian(int num_parameters,
74                         int max_num_corrections,
75                         bool use_approximate_eigenvalue_scaling);
~LowRankInverseHessian()76   virtual ~LowRankInverseHessian() {}
77 
78   // Update the low rank approximation. delta_x is the change in the
79   // domain of Hessian, and delta_gradient is the change in the
80   // gradient.  The update copies the delta_x and delta_gradient
81   // vectors, and gets rid of the oldest delta_x and delta_gradient
82   // vectors if the number of corrections is already equal to
83   // max_num_corrections.
84   bool Update(const Vector& delta_x, const Vector& delta_gradient);
85 
86   // LinearOperator interface
87   virtual void RightMultiply(const double* x, double* y) const;
LeftMultiply(const double * x,double * y)88   virtual void LeftMultiply(const double* x, double* y) const {
89     RightMultiply(x, y);
90   }
num_rows()91   virtual int num_rows() const { return num_parameters_; }
num_cols()92   virtual int num_cols() const { return num_parameters_; }
93 
94  private:
95   const int num_parameters_;
96   const int max_num_corrections_;
97   const bool use_approximate_eigenvalue_scaling_;
98   double approximate_eigenvalue_scale_;
99   ColMajorMatrix delta_x_history_;
100   ColMajorMatrix delta_gradient_history_;
101   Vector delta_x_dot_delta_gradient_;
102   std::list<int> indices_;
103 };
104 
105 }  // namespace internal
106 }  // namespace ceres
107 
108 #endif  // CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
109