• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/rand_util.h"
6 
7 #include <algorithm>
8 #include <limits>
9 
10 #include "base/logging.h"
11 #include "base/memory/scoped_ptr.h"
12 #include "base/time/time.h"
13 #include "testing/gtest/include/gtest/gtest.h"
14 
15 namespace {
16 
17 const int kIntMin = std::numeric_limits<int>::min();
18 const int kIntMax = std::numeric_limits<int>::max();
19 
20 }  // namespace
21 
TEST(RandUtilTest,SameMinAndMax)22 TEST(RandUtilTest, SameMinAndMax) {
23   EXPECT_EQ(base::RandInt(0, 0), 0);
24   EXPECT_EQ(base::RandInt(kIntMin, kIntMin), kIntMin);
25   EXPECT_EQ(base::RandInt(kIntMax, kIntMax), kIntMax);
26 }
27 
TEST(RandUtilTest,RandDouble)28 TEST(RandUtilTest, RandDouble) {
29   // Force 64-bit precision, making sure we're not in a 80-bit FPU register.
30   volatile double number = base::RandDouble();
31   EXPECT_GT(1.0, number);
32   EXPECT_LE(0.0, number);
33 }
34 
TEST(RandUtilTest,RandBytes)35 TEST(RandUtilTest, RandBytes) {
36   const size_t buffer_size = 50;
37   char buffer[buffer_size];
38   memset(buffer, 0, buffer_size);
39   base::RandBytes(buffer, buffer_size);
40   std::sort(buffer, buffer + buffer_size);
41   // Probability of occurrence of less than 25 unique bytes in 50 random bytes
42   // is below 10^-25.
43   EXPECT_GT(std::unique(buffer, buffer + buffer_size) - buffer, 25);
44 }
45 
TEST(RandUtilTest,RandBytesAsString)46 TEST(RandUtilTest, RandBytesAsString) {
47   std::string random_string = base::RandBytesAsString(1);
48   EXPECT_EQ(1U, random_string.size());
49   random_string = base::RandBytesAsString(145);
50   EXPECT_EQ(145U, random_string.size());
51   char accumulator = 0;
52   for (size_t i = 0; i < random_string.size(); ++i)
53     accumulator |= random_string[i];
54   // In theory this test can fail, but it won't before the universe dies of
55   // heat death.
56   EXPECT_NE(0, accumulator);
57 }
58 
59 // Make sure that it is still appropriate to use RandGenerator in conjunction
60 // with std::random_shuffle().
TEST(RandUtilTest,RandGeneratorForRandomShuffle)61 TEST(RandUtilTest, RandGeneratorForRandomShuffle) {
62   EXPECT_EQ(base::RandGenerator(1), 0U);
63   EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(),
64             std::numeric_limits<int64>::max());
65 }
66 
TEST(RandUtilTest,RandGeneratorIsUniform)67 TEST(RandUtilTest, RandGeneratorIsUniform) {
68   // Verify that RandGenerator has a uniform distribution. This is a
69   // regression test that consistently failed when RandGenerator was
70   // implemented this way:
71   //
72   //   return base::RandUint64() % max;
73   //
74   // A degenerate case for such an implementation is e.g. a top of
75   // range that is 2/3rds of the way to MAX_UINT64, in which case the
76   // bottom half of the range would be twice as likely to occur as the
77   // top half. A bit of calculus care of jar@ shows that the largest
78   // measurable delta is when the top of the range is 3/4ths of the
79   // way, so that's what we use in the test.
80   const uint64 kTopOfRange = (std::numeric_limits<uint64>::max() / 4ULL) * 3ULL;
81   const uint64 kExpectedAverage = kTopOfRange / 2ULL;
82   const uint64 kAllowedVariance = kExpectedAverage / 50ULL;  // +/- 2%
83   const int kMinAttempts = 1000;
84   const int kMaxAttempts = 1000000;
85 
86   double cumulative_average = 0.0;
87   int count = 0;
88   while (count < kMaxAttempts) {
89     uint64 value = base::RandGenerator(kTopOfRange);
90     cumulative_average = (count * cumulative_average + value) / (count + 1);
91 
92     // Don't quit too quickly for things to start converging, or we may have
93     // a false positive.
94     if (count > kMinAttempts &&
95         kExpectedAverage - kAllowedVariance < cumulative_average &&
96         cumulative_average < kExpectedAverage + kAllowedVariance) {
97       break;
98     }
99 
100     ++count;
101   }
102 
103   ASSERT_LT(count, kMaxAttempts) << "Expected average was " <<
104       kExpectedAverage << ", average ended at " << cumulative_average;
105 }
106 
TEST(RandUtilTest,RandUint64ProducesBothValuesOfAllBits)107 TEST(RandUtilTest, RandUint64ProducesBothValuesOfAllBits) {
108   // This tests to see that our underlying random generator is good
109   // enough, for some value of good enough.
110   uint64 kAllZeros = 0ULL;
111   uint64 kAllOnes = ~kAllZeros;
112   uint64 found_ones = kAllZeros;
113   uint64 found_zeros = kAllOnes;
114 
115   for (size_t i = 0; i < 1000; ++i) {
116     uint64 value = base::RandUint64();
117     found_ones |= value;
118     found_zeros &= value;
119 
120     if (found_zeros == kAllZeros && found_ones == kAllOnes)
121       return;
122   }
123 
124   FAIL() << "Didn't achieve all bit values in maximum number of tries.";
125 }
126 
127 // Benchmark test for RandBytes().  Disabled since it's intentionally slow and
128 // does not test anything that isn't already tested by the existing RandBytes()
129 // tests.
TEST(RandUtilTest,DISABLED_RandBytesPerf)130 TEST(RandUtilTest, DISABLED_RandBytesPerf) {
131   // Benchmark the performance of |kTestIterations| of RandBytes() using a
132   // buffer size of |kTestBufferSize|.
133   const int kTestIterations = 10;
134   const size_t kTestBufferSize = 1 * 1024 * 1024;
135 
136   scoped_ptr<uint8[]> buffer(new uint8[kTestBufferSize]);
137   const base::TimeTicks now = base::TimeTicks::HighResNow();
138   for (int i = 0; i < kTestIterations; ++i)
139     base::RandBytes(buffer.get(), kTestBufferSize);
140   const base::TimeTicks end = base::TimeTicks::HighResNow();
141 
142   LOG(INFO) << "RandBytes(" << kTestBufferSize << ") took: "
143             << (end - now).InMicroseconds() << "µs";
144 }
145