• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // MSVC++ requires this to be set before any other includes to get M_SQRT1_2.
6 #define _USE_MATH_DEFINES
7 
8 #include "media/base/channel_mixer.h"
9 
10 #include <algorithm>
11 #include <cmath>
12 
13 #include "base/logging.h"
14 #include "media/audio/audio_parameters.h"
15 #include "media/base/audio_bus.h"
16 #include "media/base/vector_math.h"
17 
18 namespace media {
19 
20 // Default scale factor for mixing two channels together.  We use a different
21 // value for stereo -> mono and mono -> stereo mixes.
22 static const float kEqualPowerScale = static_cast<float>(M_SQRT1_2);
23 
ValidateLayout(ChannelLayout layout)24 static void ValidateLayout(ChannelLayout layout) {
25   CHECK_NE(layout, CHANNEL_LAYOUT_NONE);
26   CHECK_LE(layout, CHANNEL_LAYOUT_MAX);
27   CHECK_NE(layout, CHANNEL_LAYOUT_UNSUPPORTED);
28   CHECK_NE(layout, CHANNEL_LAYOUT_DISCRETE);
29   CHECK_NE(layout, CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC);
30 
31   // Verify there's at least one channel.  Should always be true here by virtue
32   // of not being one of the invalid layouts, but lets double check to be sure.
33   int channel_count = ChannelLayoutToChannelCount(layout);
34   DCHECK_GT(channel_count, 0);
35 
36   // If we have more than one channel, verify a symmetric layout for sanity.
37   // The unit test will verify all possible layouts, so this can be a DCHECK.
38   // Symmetry allows simplifying the matrix building code by allowing us to
39   // assume that if one channel of a pair exists, the other will too.
40   if (channel_count > 1) {
41     DCHECK((ChannelOrder(layout, LEFT) >= 0 &&
42             ChannelOrder(layout, RIGHT) >= 0) ||
43            (ChannelOrder(layout, SIDE_LEFT) >= 0 &&
44             ChannelOrder(layout, SIDE_RIGHT) >= 0) ||
45            (ChannelOrder(layout, BACK_LEFT) >= 0 &&
46             ChannelOrder(layout, BACK_RIGHT) >= 0) ||
47            (ChannelOrder(layout, LEFT_OF_CENTER) >= 0 &&
48             ChannelOrder(layout, RIGHT_OF_CENTER) >= 0))
49         << "Non-symmetric channel layout encountered.";
50   } else {
51     DCHECK_EQ(layout, CHANNEL_LAYOUT_MONO);
52   }
53 
54   return;
55 }
56 
57 class MatrixBuilder {
58  public:
MatrixBuilder(ChannelLayout input_layout,int input_channels,ChannelLayout output_layout,int output_channels)59   MatrixBuilder(ChannelLayout input_layout, int input_channels,
60                 ChannelLayout output_layout, int output_channels)
61       : input_layout_(input_layout),
62         input_channels_(input_channels),
63         output_layout_(output_layout),
64         output_channels_(output_channels) {
65     // Special case for 5.0, 5.1 with back channels when upmixed to 7.0, 7.1,
66     // which should map the back LR to side LR.
67     if (input_layout_ == CHANNEL_LAYOUT_5_0_BACK &&
68         output_layout_ == CHANNEL_LAYOUT_7_0) {
69       input_layout_ = CHANNEL_LAYOUT_5_0;
70     } else if (input_layout_ == CHANNEL_LAYOUT_5_1_BACK &&
71                output_layout_ == CHANNEL_LAYOUT_7_1) {
72       input_layout_ = CHANNEL_LAYOUT_5_1;
73     }
74   }
75 
~MatrixBuilder()76   ~MatrixBuilder() { }
77 
78   // Create the transformation matrix of input channels to output channels.
79   // Updates the empty matrix with the transformation, and returns true
80   // if the transformation is just a remapping of channels (no mixing).
81   bool CreateTransformationMatrix(std::vector< std::vector<float> >* matrix);
82 
83  private:
84   // Result transformation of input channels to output channels
85   std::vector< std::vector<float> >* matrix_;
86 
87   // Input and output channel layout provided during construction.
88   ChannelLayout input_layout_;
89   int input_channels_;
90   ChannelLayout output_layout_;
91   int output_channels_;
92 
93   // Helper variable for tracking which inputs are currently unaccounted,
94   // should be empty after construction completes.
95   std::vector<Channels> unaccounted_inputs_;
96 
97   // Helper methods for managing unaccounted input channels.
98   void AccountFor(Channels ch);
99   bool IsUnaccounted(Channels ch);
100 
101   // Helper methods for checking if |ch| exists in either |input_layout_| or
102   // |output_layout_| respectively.
103   bool HasInputChannel(Channels ch);
104   bool HasOutputChannel(Channels ch);
105 
106   // Helper methods for updating |matrix_| with the proper value for
107   // mixing |input_ch| into |output_ch|.  MixWithoutAccounting() does not
108   // remove the channel from |unaccounted_inputs_|.
109   void Mix(Channels input_ch, Channels output_ch, float scale);
110   void MixWithoutAccounting(Channels input_ch, Channels output_ch,
111                                           float scale);
112 
113   DISALLOW_COPY_AND_ASSIGN(MatrixBuilder);
114 };
115 
ChannelMixer(ChannelLayout input_layout,ChannelLayout output_layout)116 ChannelMixer::ChannelMixer(ChannelLayout input_layout,
117                            ChannelLayout output_layout) {
118   Initialize(input_layout,
119              ChannelLayoutToChannelCount(input_layout),
120              output_layout,
121              ChannelLayoutToChannelCount(output_layout));
122 }
123 
ChannelMixer(const AudioParameters & input,const AudioParameters & output)124 ChannelMixer::ChannelMixer(
125     const AudioParameters& input, const AudioParameters& output) {
126   Initialize(input.channel_layout(),
127              input.channels(),
128              output.channel_layout(),
129              output.channels());
130 }
131 
Initialize(ChannelLayout input_layout,int input_channels,ChannelLayout output_layout,int output_channels)132 void ChannelMixer::Initialize(
133     ChannelLayout input_layout, int input_channels,
134     ChannelLayout output_layout, int output_channels) {
135   // Stereo down mix should never be the output layout.
136   CHECK_NE(output_layout, CHANNEL_LAYOUT_STEREO_DOWNMIX);
137 
138   // Verify that the layouts are supported
139   if (input_layout != CHANNEL_LAYOUT_DISCRETE)
140     ValidateLayout(input_layout);
141   if (output_layout != CHANNEL_LAYOUT_DISCRETE)
142     ValidateLayout(output_layout);
143 
144   // Create the transformation matrix
145   MatrixBuilder matrix_builder(input_layout, input_channels,
146                                output_layout, output_channels);
147   remapping_ = matrix_builder.CreateTransformationMatrix(&matrix_);
148 }
149 
CreateTransformationMatrix(std::vector<std::vector<float>> * matrix)150 bool MatrixBuilder::CreateTransformationMatrix(
151     std::vector< std::vector<float> >* matrix) {
152   matrix_ = matrix;
153 
154   // Size out the initial matrix.
155   matrix_->reserve(output_channels_);
156   for (int output_ch = 0; output_ch < output_channels_; ++output_ch)
157     matrix_->push_back(std::vector<float>(input_channels_, 0));
158 
159   // First check for discrete case.
160   if (input_layout_ == CHANNEL_LAYOUT_DISCRETE ||
161       output_layout_ == CHANNEL_LAYOUT_DISCRETE) {
162     // If the number of input channels is more than output channels, then
163     // copy as many as we can then drop the remaining input channels.
164     // If the number of input channels is less than output channels, then
165     // copy them all, then zero out the remaining output channels.
166     int passthrough_channels = std::min(input_channels_, output_channels_);
167     for (int i = 0; i < passthrough_channels; ++i)
168       (*matrix_)[i][i] = 1;
169 
170     return true;
171   }
172 
173   // Route matching channels and figure out which ones aren't accounted for.
174   for (Channels ch = LEFT; ch < CHANNELS_MAX + 1;
175        ch = static_cast<Channels>(ch + 1)) {
176     int input_ch_index = ChannelOrder(input_layout_, ch);
177     if (input_ch_index < 0)
178       continue;
179 
180     int output_ch_index = ChannelOrder(output_layout_, ch);
181     if (output_ch_index < 0) {
182       unaccounted_inputs_.push_back(ch);
183       continue;
184     }
185 
186     DCHECK_LT(static_cast<size_t>(output_ch_index), matrix_->size());
187     DCHECK_LT(static_cast<size_t>(input_ch_index),
188               (*matrix_)[output_ch_index].size());
189     (*matrix_)[output_ch_index][input_ch_index] = 1;
190   }
191 
192   // If all input channels are accounted for, there's nothing left to do.
193   if (unaccounted_inputs_.empty()) {
194     // Since all output channels map directly to inputs we can optimize.
195     return true;
196   }
197 
198   // Mix front LR into center.
199   if (IsUnaccounted(LEFT)) {
200     // When down mixing to mono from stereo, we need to be careful of full scale
201     // stereo mixes.  Scaling by 1 / sqrt(2) here will likely lead to clipping
202     // so we use 1 / 2 instead.
203     float scale =
204         (output_layout_ == CHANNEL_LAYOUT_MONO && input_channels_ == 2) ?
205         0.5 : kEqualPowerScale;
206     Mix(LEFT, CENTER, scale);
207     Mix(RIGHT, CENTER, scale);
208   }
209 
210   // Mix center into front LR.
211   if (IsUnaccounted(CENTER)) {
212     // When up mixing from mono, just do a copy to front LR.
213     float scale =
214         (input_layout_ == CHANNEL_LAYOUT_MONO) ? 1 : kEqualPowerScale;
215     MixWithoutAccounting(CENTER, LEFT, scale);
216     Mix(CENTER, RIGHT, scale);
217   }
218 
219   // Mix back LR into: side LR || back center || front LR || front center.
220   if (IsUnaccounted(BACK_LEFT)) {
221     if (HasOutputChannel(SIDE_LEFT)) {
222       // If we have side LR, mix back LR into side LR, but instead if the input
223       // doesn't have side LR (but output does) copy back LR to side LR.
224       float scale = HasInputChannel(SIDE_LEFT) ? kEqualPowerScale : 1;
225       Mix(BACK_LEFT, SIDE_LEFT, scale);
226       Mix(BACK_RIGHT, SIDE_RIGHT, scale);
227     } else if (HasOutputChannel(BACK_CENTER)) {
228       // Mix back LR into back center.
229       Mix(BACK_LEFT, BACK_CENTER, kEqualPowerScale);
230       Mix(BACK_RIGHT, BACK_CENTER, kEqualPowerScale);
231     } else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
232       // Mix back LR into front LR.
233       Mix(BACK_LEFT, LEFT, kEqualPowerScale);
234       Mix(BACK_RIGHT, RIGHT, kEqualPowerScale);
235     } else {
236       // Mix back LR into front center.
237       Mix(BACK_LEFT, CENTER, kEqualPowerScale);
238       Mix(BACK_RIGHT, CENTER, kEqualPowerScale);
239     }
240   }
241 
242   // Mix side LR into: back LR || back center || front LR || front center.
243   if (IsUnaccounted(SIDE_LEFT)) {
244     if (HasOutputChannel(BACK_LEFT)) {
245       // If we have back LR, mix side LR into back LR, but instead if the input
246       // doesn't have back LR (but output does) copy side LR to back LR.
247       float scale = HasInputChannel(BACK_LEFT) ? kEqualPowerScale : 1;
248       Mix(SIDE_LEFT, BACK_LEFT, scale);
249       Mix(SIDE_RIGHT, BACK_RIGHT, scale);
250     } else if (HasOutputChannel(BACK_CENTER)) {
251       // Mix side LR into back center.
252       Mix(SIDE_LEFT, BACK_CENTER, kEqualPowerScale);
253       Mix(SIDE_RIGHT, BACK_CENTER, kEqualPowerScale);
254     } else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
255       // Mix side LR into front LR.
256       Mix(SIDE_LEFT, LEFT, kEqualPowerScale);
257       Mix(SIDE_RIGHT, RIGHT, kEqualPowerScale);
258     } else {
259       // Mix side LR into front center.
260       Mix(SIDE_LEFT, CENTER, kEqualPowerScale);
261       Mix(SIDE_RIGHT, CENTER, kEqualPowerScale);
262     }
263   }
264 
265   // Mix back center into: back LR || side LR || front LR || front center.
266   if (IsUnaccounted(BACK_CENTER)) {
267     if (HasOutputChannel(BACK_LEFT)) {
268       // Mix back center into back LR.
269       MixWithoutAccounting(BACK_CENTER, BACK_LEFT, kEqualPowerScale);
270       Mix(BACK_CENTER, BACK_RIGHT, kEqualPowerScale);
271     } else if (HasOutputChannel(SIDE_LEFT)) {
272       // Mix back center into side LR.
273       MixWithoutAccounting(BACK_CENTER, SIDE_LEFT, kEqualPowerScale);
274       Mix(BACK_CENTER, SIDE_RIGHT, kEqualPowerScale);
275     } else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
276       // Mix back center into front LR.
277       // TODO(dalecurtis): Not sure about these values?
278       MixWithoutAccounting(BACK_CENTER, LEFT, kEqualPowerScale);
279       Mix(BACK_CENTER, RIGHT, kEqualPowerScale);
280     } else {
281       // Mix back center into front center.
282       // TODO(dalecurtis): Not sure about these values?
283       Mix(BACK_CENTER, CENTER, kEqualPowerScale);
284     }
285   }
286 
287   // Mix LR of center into: front center || front LR.
288   if (IsUnaccounted(LEFT_OF_CENTER)) {
289     if (HasOutputChannel(LEFT)) {
290       // Mix LR of center into front LR.
291       Mix(LEFT_OF_CENTER, LEFT, kEqualPowerScale);
292       Mix(RIGHT_OF_CENTER, RIGHT, kEqualPowerScale);
293     } else {
294       // Mix LR of center into front center.
295       Mix(LEFT_OF_CENTER, CENTER, kEqualPowerScale);
296       Mix(RIGHT_OF_CENTER, CENTER, kEqualPowerScale);
297     }
298   }
299 
300   // Mix LFE into: front LR || front center.
301   if (IsUnaccounted(LFE)) {
302     if (!HasOutputChannel(CENTER)) {
303       // Mix LFE into front LR.
304       MixWithoutAccounting(LFE, LEFT, kEqualPowerScale);
305       Mix(LFE, RIGHT, kEqualPowerScale);
306     } else {
307       // Mix LFE into front center.
308       Mix(LFE, CENTER, kEqualPowerScale);
309     }
310   }
311 
312   // All channels should now be accounted for.
313   DCHECK(unaccounted_inputs_.empty());
314 
315   // See if the output |matrix_| is simply a remapping matrix.  If each input
316   // channel maps to a single output channel we can simply remap.  Doing this
317   // programmatically is less fragile than logic checks on channel mappings.
318   for (int output_ch = 0; output_ch < output_channels_; ++output_ch) {
319     int input_mappings = 0;
320     for (int input_ch = 0; input_ch < input_channels_; ++input_ch) {
321       // We can only remap if each row contains a single scale of 1.  I.e., each
322       // output channel is mapped from a single unscaled input channel.
323       if ((*matrix_)[output_ch][input_ch] != 1 || ++input_mappings > 1)
324         return false;
325     }
326   }
327 
328   // If we've gotten here, |matrix_| is simply a remapping.
329   return true;
330 }
331 
~ChannelMixer()332 ChannelMixer::~ChannelMixer() {}
333 
Transform(const AudioBus * input,AudioBus * output)334 void ChannelMixer::Transform(const AudioBus* input, AudioBus* output) {
335   CHECK_EQ(matrix_.size(), static_cast<size_t>(output->channels()));
336   CHECK_EQ(matrix_[0].size(), static_cast<size_t>(input->channels()));
337   CHECK_EQ(input->frames(), output->frames());
338 
339   // Zero initialize |output| so we're accumulating from zero.
340   output->Zero();
341 
342   // If we're just remapping we can simply copy the correct input to output.
343   if (remapping_) {
344     for (int output_ch = 0; output_ch < output->channels(); ++output_ch) {
345       for (int input_ch = 0; input_ch < input->channels(); ++input_ch) {
346         float scale = matrix_[output_ch][input_ch];
347         if (scale > 0) {
348           DCHECK_EQ(scale, 1.0f);
349           memcpy(output->channel(output_ch), input->channel(input_ch),
350                  sizeof(*output->channel(output_ch)) * output->frames());
351           break;
352         }
353       }
354     }
355     return;
356   }
357 
358   for (int output_ch = 0; output_ch < output->channels(); ++output_ch) {
359     for (int input_ch = 0; input_ch < input->channels(); ++input_ch) {
360       float scale = matrix_[output_ch][input_ch];
361       // Scale should always be positive.  Don't bother scaling by zero.
362       DCHECK_GE(scale, 0);
363       if (scale > 0) {
364         vector_math::FMAC(input->channel(input_ch), scale, output->frames(),
365                           output->channel(output_ch));
366       }
367     }
368   }
369 }
370 
AccountFor(Channels ch)371 void MatrixBuilder::AccountFor(Channels ch) {
372   unaccounted_inputs_.erase(std::find(
373       unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch));
374 }
375 
IsUnaccounted(Channels ch)376 bool MatrixBuilder::IsUnaccounted(Channels ch) {
377   return std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(),
378                    ch) != unaccounted_inputs_.end();
379 }
380 
HasInputChannel(Channels ch)381 bool MatrixBuilder::HasInputChannel(Channels ch) {
382   return ChannelOrder(input_layout_, ch) >= 0;
383 }
384 
HasOutputChannel(Channels ch)385 bool MatrixBuilder::HasOutputChannel(Channels ch) {
386   return ChannelOrder(output_layout_, ch) >= 0;
387 }
388 
Mix(Channels input_ch,Channels output_ch,float scale)389 void MatrixBuilder::Mix(Channels input_ch, Channels output_ch, float scale) {
390   MixWithoutAccounting(input_ch, output_ch, scale);
391   AccountFor(input_ch);
392 }
393 
MixWithoutAccounting(Channels input_ch,Channels output_ch,float scale)394 void MatrixBuilder::MixWithoutAccounting(Channels input_ch, Channels output_ch,
395                                          float scale) {
396   int input_ch_index = ChannelOrder(input_layout_, input_ch);
397   int output_ch_index = ChannelOrder(output_layout_, output_ch);
398 
399   DCHECK(IsUnaccounted(input_ch));
400   DCHECK_GE(input_ch_index, 0);
401   DCHECK_GE(output_ch_index, 0);
402 
403   DCHECK_EQ((*matrix_)[output_ch_index][input_ch_index], 0);
404   (*matrix_)[output_ch_index][input_ch_index] = scale;
405 }
406 
407 }  // namespace media
408