1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // MSVC++ requires this to be set before any other includes to get M_SQRT1_2.
6 #define _USE_MATH_DEFINES
7
8 #include "media/base/channel_mixer.h"
9
10 #include <algorithm>
11 #include <cmath>
12
13 #include "base/logging.h"
14 #include "media/audio/audio_parameters.h"
15 #include "media/base/audio_bus.h"
16 #include "media/base/vector_math.h"
17
18 namespace media {
19
20 // Default scale factor for mixing two channels together. We use a different
21 // value for stereo -> mono and mono -> stereo mixes.
22 static const float kEqualPowerScale = static_cast<float>(M_SQRT1_2);
23
ValidateLayout(ChannelLayout layout)24 static void ValidateLayout(ChannelLayout layout) {
25 CHECK_NE(layout, CHANNEL_LAYOUT_NONE);
26 CHECK_LE(layout, CHANNEL_LAYOUT_MAX);
27 CHECK_NE(layout, CHANNEL_LAYOUT_UNSUPPORTED);
28 CHECK_NE(layout, CHANNEL_LAYOUT_DISCRETE);
29 CHECK_NE(layout, CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC);
30
31 // Verify there's at least one channel. Should always be true here by virtue
32 // of not being one of the invalid layouts, but lets double check to be sure.
33 int channel_count = ChannelLayoutToChannelCount(layout);
34 DCHECK_GT(channel_count, 0);
35
36 // If we have more than one channel, verify a symmetric layout for sanity.
37 // The unit test will verify all possible layouts, so this can be a DCHECK.
38 // Symmetry allows simplifying the matrix building code by allowing us to
39 // assume that if one channel of a pair exists, the other will too.
40 if (channel_count > 1) {
41 DCHECK((ChannelOrder(layout, LEFT) >= 0 &&
42 ChannelOrder(layout, RIGHT) >= 0) ||
43 (ChannelOrder(layout, SIDE_LEFT) >= 0 &&
44 ChannelOrder(layout, SIDE_RIGHT) >= 0) ||
45 (ChannelOrder(layout, BACK_LEFT) >= 0 &&
46 ChannelOrder(layout, BACK_RIGHT) >= 0) ||
47 (ChannelOrder(layout, LEFT_OF_CENTER) >= 0 &&
48 ChannelOrder(layout, RIGHT_OF_CENTER) >= 0))
49 << "Non-symmetric channel layout encountered.";
50 } else {
51 DCHECK_EQ(layout, CHANNEL_LAYOUT_MONO);
52 }
53
54 return;
55 }
56
57 class MatrixBuilder {
58 public:
MatrixBuilder(ChannelLayout input_layout,int input_channels,ChannelLayout output_layout,int output_channels)59 MatrixBuilder(ChannelLayout input_layout, int input_channels,
60 ChannelLayout output_layout, int output_channels)
61 : input_layout_(input_layout),
62 input_channels_(input_channels),
63 output_layout_(output_layout),
64 output_channels_(output_channels) {
65 // Special case for 5.0, 5.1 with back channels when upmixed to 7.0, 7.1,
66 // which should map the back LR to side LR.
67 if (input_layout_ == CHANNEL_LAYOUT_5_0_BACK &&
68 output_layout_ == CHANNEL_LAYOUT_7_0) {
69 input_layout_ = CHANNEL_LAYOUT_5_0;
70 } else if (input_layout_ == CHANNEL_LAYOUT_5_1_BACK &&
71 output_layout_ == CHANNEL_LAYOUT_7_1) {
72 input_layout_ = CHANNEL_LAYOUT_5_1;
73 }
74 }
75
~MatrixBuilder()76 ~MatrixBuilder() { }
77
78 // Create the transformation matrix of input channels to output channels.
79 // Updates the empty matrix with the transformation, and returns true
80 // if the transformation is just a remapping of channels (no mixing).
81 bool CreateTransformationMatrix(std::vector< std::vector<float> >* matrix);
82
83 private:
84 // Result transformation of input channels to output channels
85 std::vector< std::vector<float> >* matrix_;
86
87 // Input and output channel layout provided during construction.
88 ChannelLayout input_layout_;
89 int input_channels_;
90 ChannelLayout output_layout_;
91 int output_channels_;
92
93 // Helper variable for tracking which inputs are currently unaccounted,
94 // should be empty after construction completes.
95 std::vector<Channels> unaccounted_inputs_;
96
97 // Helper methods for managing unaccounted input channels.
98 void AccountFor(Channels ch);
99 bool IsUnaccounted(Channels ch);
100
101 // Helper methods for checking if |ch| exists in either |input_layout_| or
102 // |output_layout_| respectively.
103 bool HasInputChannel(Channels ch);
104 bool HasOutputChannel(Channels ch);
105
106 // Helper methods for updating |matrix_| with the proper value for
107 // mixing |input_ch| into |output_ch|. MixWithoutAccounting() does not
108 // remove the channel from |unaccounted_inputs_|.
109 void Mix(Channels input_ch, Channels output_ch, float scale);
110 void MixWithoutAccounting(Channels input_ch, Channels output_ch,
111 float scale);
112
113 DISALLOW_COPY_AND_ASSIGN(MatrixBuilder);
114 };
115
ChannelMixer(ChannelLayout input_layout,ChannelLayout output_layout)116 ChannelMixer::ChannelMixer(ChannelLayout input_layout,
117 ChannelLayout output_layout) {
118 Initialize(input_layout,
119 ChannelLayoutToChannelCount(input_layout),
120 output_layout,
121 ChannelLayoutToChannelCount(output_layout));
122 }
123
ChannelMixer(const AudioParameters & input,const AudioParameters & output)124 ChannelMixer::ChannelMixer(
125 const AudioParameters& input, const AudioParameters& output) {
126 Initialize(input.channel_layout(),
127 input.channels(),
128 output.channel_layout(),
129 output.channels());
130 }
131
Initialize(ChannelLayout input_layout,int input_channels,ChannelLayout output_layout,int output_channels)132 void ChannelMixer::Initialize(
133 ChannelLayout input_layout, int input_channels,
134 ChannelLayout output_layout, int output_channels) {
135 // Stereo down mix should never be the output layout.
136 CHECK_NE(output_layout, CHANNEL_LAYOUT_STEREO_DOWNMIX);
137
138 // Verify that the layouts are supported
139 if (input_layout != CHANNEL_LAYOUT_DISCRETE)
140 ValidateLayout(input_layout);
141 if (output_layout != CHANNEL_LAYOUT_DISCRETE)
142 ValidateLayout(output_layout);
143
144 // Create the transformation matrix
145 MatrixBuilder matrix_builder(input_layout, input_channels,
146 output_layout, output_channels);
147 remapping_ = matrix_builder.CreateTransformationMatrix(&matrix_);
148 }
149
CreateTransformationMatrix(std::vector<std::vector<float>> * matrix)150 bool MatrixBuilder::CreateTransformationMatrix(
151 std::vector< std::vector<float> >* matrix) {
152 matrix_ = matrix;
153
154 // Size out the initial matrix.
155 matrix_->reserve(output_channels_);
156 for (int output_ch = 0; output_ch < output_channels_; ++output_ch)
157 matrix_->push_back(std::vector<float>(input_channels_, 0));
158
159 // First check for discrete case.
160 if (input_layout_ == CHANNEL_LAYOUT_DISCRETE ||
161 output_layout_ == CHANNEL_LAYOUT_DISCRETE) {
162 // If the number of input channels is more than output channels, then
163 // copy as many as we can then drop the remaining input channels.
164 // If the number of input channels is less than output channels, then
165 // copy them all, then zero out the remaining output channels.
166 int passthrough_channels = std::min(input_channels_, output_channels_);
167 for (int i = 0; i < passthrough_channels; ++i)
168 (*matrix_)[i][i] = 1;
169
170 return true;
171 }
172
173 // Route matching channels and figure out which ones aren't accounted for.
174 for (Channels ch = LEFT; ch < CHANNELS_MAX + 1;
175 ch = static_cast<Channels>(ch + 1)) {
176 int input_ch_index = ChannelOrder(input_layout_, ch);
177 if (input_ch_index < 0)
178 continue;
179
180 int output_ch_index = ChannelOrder(output_layout_, ch);
181 if (output_ch_index < 0) {
182 unaccounted_inputs_.push_back(ch);
183 continue;
184 }
185
186 DCHECK_LT(static_cast<size_t>(output_ch_index), matrix_->size());
187 DCHECK_LT(static_cast<size_t>(input_ch_index),
188 (*matrix_)[output_ch_index].size());
189 (*matrix_)[output_ch_index][input_ch_index] = 1;
190 }
191
192 // If all input channels are accounted for, there's nothing left to do.
193 if (unaccounted_inputs_.empty()) {
194 // Since all output channels map directly to inputs we can optimize.
195 return true;
196 }
197
198 // Mix front LR into center.
199 if (IsUnaccounted(LEFT)) {
200 // When down mixing to mono from stereo, we need to be careful of full scale
201 // stereo mixes. Scaling by 1 / sqrt(2) here will likely lead to clipping
202 // so we use 1 / 2 instead.
203 float scale =
204 (output_layout_ == CHANNEL_LAYOUT_MONO && input_channels_ == 2) ?
205 0.5 : kEqualPowerScale;
206 Mix(LEFT, CENTER, scale);
207 Mix(RIGHT, CENTER, scale);
208 }
209
210 // Mix center into front LR.
211 if (IsUnaccounted(CENTER)) {
212 // When up mixing from mono, just do a copy to front LR.
213 float scale =
214 (input_layout_ == CHANNEL_LAYOUT_MONO) ? 1 : kEqualPowerScale;
215 MixWithoutAccounting(CENTER, LEFT, scale);
216 Mix(CENTER, RIGHT, scale);
217 }
218
219 // Mix back LR into: side LR || back center || front LR || front center.
220 if (IsUnaccounted(BACK_LEFT)) {
221 if (HasOutputChannel(SIDE_LEFT)) {
222 // If we have side LR, mix back LR into side LR, but instead if the input
223 // doesn't have side LR (but output does) copy back LR to side LR.
224 float scale = HasInputChannel(SIDE_LEFT) ? kEqualPowerScale : 1;
225 Mix(BACK_LEFT, SIDE_LEFT, scale);
226 Mix(BACK_RIGHT, SIDE_RIGHT, scale);
227 } else if (HasOutputChannel(BACK_CENTER)) {
228 // Mix back LR into back center.
229 Mix(BACK_LEFT, BACK_CENTER, kEqualPowerScale);
230 Mix(BACK_RIGHT, BACK_CENTER, kEqualPowerScale);
231 } else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
232 // Mix back LR into front LR.
233 Mix(BACK_LEFT, LEFT, kEqualPowerScale);
234 Mix(BACK_RIGHT, RIGHT, kEqualPowerScale);
235 } else {
236 // Mix back LR into front center.
237 Mix(BACK_LEFT, CENTER, kEqualPowerScale);
238 Mix(BACK_RIGHT, CENTER, kEqualPowerScale);
239 }
240 }
241
242 // Mix side LR into: back LR || back center || front LR || front center.
243 if (IsUnaccounted(SIDE_LEFT)) {
244 if (HasOutputChannel(BACK_LEFT)) {
245 // If we have back LR, mix side LR into back LR, but instead if the input
246 // doesn't have back LR (but output does) copy side LR to back LR.
247 float scale = HasInputChannel(BACK_LEFT) ? kEqualPowerScale : 1;
248 Mix(SIDE_LEFT, BACK_LEFT, scale);
249 Mix(SIDE_RIGHT, BACK_RIGHT, scale);
250 } else if (HasOutputChannel(BACK_CENTER)) {
251 // Mix side LR into back center.
252 Mix(SIDE_LEFT, BACK_CENTER, kEqualPowerScale);
253 Mix(SIDE_RIGHT, BACK_CENTER, kEqualPowerScale);
254 } else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
255 // Mix side LR into front LR.
256 Mix(SIDE_LEFT, LEFT, kEqualPowerScale);
257 Mix(SIDE_RIGHT, RIGHT, kEqualPowerScale);
258 } else {
259 // Mix side LR into front center.
260 Mix(SIDE_LEFT, CENTER, kEqualPowerScale);
261 Mix(SIDE_RIGHT, CENTER, kEqualPowerScale);
262 }
263 }
264
265 // Mix back center into: back LR || side LR || front LR || front center.
266 if (IsUnaccounted(BACK_CENTER)) {
267 if (HasOutputChannel(BACK_LEFT)) {
268 // Mix back center into back LR.
269 MixWithoutAccounting(BACK_CENTER, BACK_LEFT, kEqualPowerScale);
270 Mix(BACK_CENTER, BACK_RIGHT, kEqualPowerScale);
271 } else if (HasOutputChannel(SIDE_LEFT)) {
272 // Mix back center into side LR.
273 MixWithoutAccounting(BACK_CENTER, SIDE_LEFT, kEqualPowerScale);
274 Mix(BACK_CENTER, SIDE_RIGHT, kEqualPowerScale);
275 } else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
276 // Mix back center into front LR.
277 // TODO(dalecurtis): Not sure about these values?
278 MixWithoutAccounting(BACK_CENTER, LEFT, kEqualPowerScale);
279 Mix(BACK_CENTER, RIGHT, kEqualPowerScale);
280 } else {
281 // Mix back center into front center.
282 // TODO(dalecurtis): Not sure about these values?
283 Mix(BACK_CENTER, CENTER, kEqualPowerScale);
284 }
285 }
286
287 // Mix LR of center into: front center || front LR.
288 if (IsUnaccounted(LEFT_OF_CENTER)) {
289 if (HasOutputChannel(LEFT)) {
290 // Mix LR of center into front LR.
291 Mix(LEFT_OF_CENTER, LEFT, kEqualPowerScale);
292 Mix(RIGHT_OF_CENTER, RIGHT, kEqualPowerScale);
293 } else {
294 // Mix LR of center into front center.
295 Mix(LEFT_OF_CENTER, CENTER, kEqualPowerScale);
296 Mix(RIGHT_OF_CENTER, CENTER, kEqualPowerScale);
297 }
298 }
299
300 // Mix LFE into: front LR || front center.
301 if (IsUnaccounted(LFE)) {
302 if (!HasOutputChannel(CENTER)) {
303 // Mix LFE into front LR.
304 MixWithoutAccounting(LFE, LEFT, kEqualPowerScale);
305 Mix(LFE, RIGHT, kEqualPowerScale);
306 } else {
307 // Mix LFE into front center.
308 Mix(LFE, CENTER, kEqualPowerScale);
309 }
310 }
311
312 // All channels should now be accounted for.
313 DCHECK(unaccounted_inputs_.empty());
314
315 // See if the output |matrix_| is simply a remapping matrix. If each input
316 // channel maps to a single output channel we can simply remap. Doing this
317 // programmatically is less fragile than logic checks on channel mappings.
318 for (int output_ch = 0; output_ch < output_channels_; ++output_ch) {
319 int input_mappings = 0;
320 for (int input_ch = 0; input_ch < input_channels_; ++input_ch) {
321 // We can only remap if each row contains a single scale of 1. I.e., each
322 // output channel is mapped from a single unscaled input channel.
323 if ((*matrix_)[output_ch][input_ch] != 1 || ++input_mappings > 1)
324 return false;
325 }
326 }
327
328 // If we've gotten here, |matrix_| is simply a remapping.
329 return true;
330 }
331
~ChannelMixer()332 ChannelMixer::~ChannelMixer() {}
333
Transform(const AudioBus * input,AudioBus * output)334 void ChannelMixer::Transform(const AudioBus* input, AudioBus* output) {
335 CHECK_EQ(matrix_.size(), static_cast<size_t>(output->channels()));
336 CHECK_EQ(matrix_[0].size(), static_cast<size_t>(input->channels()));
337 CHECK_EQ(input->frames(), output->frames());
338
339 // Zero initialize |output| so we're accumulating from zero.
340 output->Zero();
341
342 // If we're just remapping we can simply copy the correct input to output.
343 if (remapping_) {
344 for (int output_ch = 0; output_ch < output->channels(); ++output_ch) {
345 for (int input_ch = 0; input_ch < input->channels(); ++input_ch) {
346 float scale = matrix_[output_ch][input_ch];
347 if (scale > 0) {
348 DCHECK_EQ(scale, 1.0f);
349 memcpy(output->channel(output_ch), input->channel(input_ch),
350 sizeof(*output->channel(output_ch)) * output->frames());
351 break;
352 }
353 }
354 }
355 return;
356 }
357
358 for (int output_ch = 0; output_ch < output->channels(); ++output_ch) {
359 for (int input_ch = 0; input_ch < input->channels(); ++input_ch) {
360 float scale = matrix_[output_ch][input_ch];
361 // Scale should always be positive. Don't bother scaling by zero.
362 DCHECK_GE(scale, 0);
363 if (scale > 0) {
364 vector_math::FMAC(input->channel(input_ch), scale, output->frames(),
365 output->channel(output_ch));
366 }
367 }
368 }
369 }
370
AccountFor(Channels ch)371 void MatrixBuilder::AccountFor(Channels ch) {
372 unaccounted_inputs_.erase(std::find(
373 unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch));
374 }
375
IsUnaccounted(Channels ch)376 bool MatrixBuilder::IsUnaccounted(Channels ch) {
377 return std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(),
378 ch) != unaccounted_inputs_.end();
379 }
380
HasInputChannel(Channels ch)381 bool MatrixBuilder::HasInputChannel(Channels ch) {
382 return ChannelOrder(input_layout_, ch) >= 0;
383 }
384
HasOutputChannel(Channels ch)385 bool MatrixBuilder::HasOutputChannel(Channels ch) {
386 return ChannelOrder(output_layout_, ch) >= 0;
387 }
388
Mix(Channels input_ch,Channels output_ch,float scale)389 void MatrixBuilder::Mix(Channels input_ch, Channels output_ch, float scale) {
390 MixWithoutAccounting(input_ch, output_ch, scale);
391 AccountFor(input_ch);
392 }
393
MixWithoutAccounting(Channels input_ch,Channels output_ch,float scale)394 void MatrixBuilder::MixWithoutAccounting(Channels input_ch, Channels output_ch,
395 float scale) {
396 int input_ch_index = ChannelOrder(input_layout_, input_ch);
397 int output_ch_index = ChannelOrder(output_layout_, output_ch);
398
399 DCHECK(IsUnaccounted(input_ch));
400 DCHECK_GE(input_ch_index, 0);
401 DCHECK_GE(output_ch_index, 0);
402
403 DCHECK_EQ((*matrix_)[output_ch_index][input_ch_index], 0);
404 (*matrix_)[output_ch_index][input_ch_index] = scale;
405 }
406
407 } // namespace media
408